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1. Introduction  

Wireless communication is a central technology to many applications such as wireless TV, 
radio broadcasting, global positioning, satellite-based cellular systems, mobile telephony, 
wireless LAN, to name a few. The research and development of wireless products have also 
bloomed the wireless communication applications to a new era. However, the available 
bandwidth does not grow as fast as the exploding demands from the consumer markets, so 
we need an algorithm to effectively and repetitively assign the available channels to 
multiple demanding cells such that no electromagnetic interference is induced. The aim of 
the channel assignment problem (CAP) is to minimize the span, the spectrum between the 
maximum and minimum used frequency, of allocated channels with an associated 
assignment that satisfies the bandwidth demands without incurring electromagnetic 
interference among them. The CAP can be polynomially reduced to the graph-coloring 
problem which has been known to be NP-hard. This means the derivation of the exact 
solution to the CAP in the general case is computationally prohibitive. 
Most existing methods for tackling CAP are based on three approaches, namely, 
mathematical programming, heuristics, and metaheuristics. The mathematical programming 
techniques such as integer linear programming (Janssen & Kilakos, 1999; Mathar & Schmeink, 
2002) and branch-and-bound (Tcha et al., 1997) are efficient in finding the exact solutions, 
however, they are limited to the application of small-sized problems only. Heuristics such as 
ordering technique (Sivarajan et al., 2000) and sequential packing technique (Sung & Wong, 
1997) use a heuristic function for determining the order or packing of radio cells to allocate 
channels. These methods can quickly obtain a feasible solution even for a large problem but 
the solution quality varies a lot with the instances of the problem. Alternatively, more and 
more CAP researchers are attracted by the promising results on some applications using 
metaheuristics including genetic algorithms (Ngo & Li, 1998; Ghosh et al., 2003), simulated 
annealing (Aardal et al., 2003), tabu search (Hao & Perrier, 1999), and ant colony 
optimization (Montemanni, 2002). Their results have demonstrated some advantanges in 
problem scalability, easy implementation, economic computation, and high quality 
solutions over other approaches.  
Inspired by the success of metaheuristics, in this chapter we present a hybrid ant colony 
optimization (HACO) algorithm embodied with several problem-dependent heuristics to 

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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take advantages of various approaches. The HACO algorithm provides an elegant 
framework for maintaining a good balance between exploration and exploitation trajectories in 
the solution space during the search, while the embedded heuristics are customized to the 
properties of CAP and is helpful in intensifying the promising area previously found in the 
search history. The performance of our algorithm is evaluated using a set of benchmark 
problems named Philadelphia that has been broadly used in early literature. Compared to 
existing approaches, our algorithm manifests the robustness and efficicency in solving the 
tested problems. 
The remainder of this chapter is organized as follows. Section 2 presents the formulation of 
CAP considered in the chapter. Section 3 renders the details of the proposed HACO 
algorithm. In Section 4, the experimental results and discussions are presented. Finally, a 
conclusion is given in Section 5. 

2. Problem Formulation 

The objective of the CAP is to find an economic channel assignment with the minimum span 
of frequency spectrum to a number of demanding cells such that no electromagnetic 
interference is induced. There are three broadly considered electromagnetic compatibility 
(EMC) constraints as described as follows. 

• Co-channel constraint   The same channel cannot be assigned simultaneously to 
certain pairs of cells that are within a stipulated distance. 

• Adjacent channel constraint The adjacent channels are not allowed to be assigned to 
adjacent cells simultaneously.  

• Co-cell constraint      The separation in channel units between any pair of channels 
assigned to a cell should be larger than a minimum separation threshold. 

This chapter considers the CAP scenario involving the three EMC constraints. Assume that 
we are given n radio cells and m available channels, the three EMC constraints can be 

described together by a compatibility matrix C = { }
njiijc ≤≤ ,1

 which stipulates the minimum 

separation in channel units between any pair of channels assigned to cell i and cell j
simultaneously. The demands of the n radio cells can be described by a demanding vector D

= { }
niid ≤≤1

 where di indicates the amount of channels requested by cell i. The decision 

variables can be defined as F = { }
idjniijf ≤≤≤≤ 1,1
 where fij denotes the index of the jth allocated 

channel to cell i. The addressed CAP can be formulated as follows. 

 Min 1max
,,,

+−
∀

klij
lkji

ff  (1) 

subject to 

ikklij cff ≥− ∀ i, j, k, l and (i, j) ≠ (k, l). (2) 

The objective function (1) describes the goal of the optimization problem that is to minimize 
the span in the channels assigned to the demanding cells. The constraint (2) stipulates that 
the channel assignment must satisfy all of the three EMC constraints described in terms of 
the compatibility matrix C.
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3. Hybrid Ant Colony Optimization for the CAP 

In addition to the good generalization of metaheuristics, many successful applications using 
metaheurisitcs rely on an elaborately designed procedure for handling the problem-specific 
constraints. There are two different approaches for constraint handling. The relaxation method 
releases the constraints by adding a penalty to the objective value where the penalty is a 
monotonically increasing function of the degree of the solution infeasibility with respect to the 
constraints. The hybrid method employs a problem-specific heuristic to guide the generation of 
new solutions that satisfy the constraints. As the convergence rate of the relaxation method 
could be slow if the constraints are too complicate, we adopt the hybrid method to design our 
algorithm. In particular, the ordering technique (Sivarajan et al., 2000) and the sequential 
packing technique (Sung & Wong, 1997) that have been developed for solving the CAP are 
embedded into an ant colony optimization framework to create an efficient hybrid algorithm. 
Moreover, a local optimizer is proposed to improve the candidate solutions generated in each 
iteration such that the quality of the candidate solutions is guaranteed. 

f1

                    

f1

f1

 (a) (b) 

f1

f1 f1

                    

f1

f1 f1
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f1f1

f1

 (c) (d) 

Figure 1. Illustration of the sequential packing method 

3.1 Ordering and sequential packing 

The ordering heuristic (Sivarajan et al., 2000) determines the order of the cells with which 
the channels are assigned in turn. In particular, the order of the cell is given according to the 
cell sequence in decreasing value of the cell degree, which is defined as 

ii

n

j ijji ccd −=
=1

δ

taking into account the demands and the EMC constraints. The cell with a greater demand 

f1
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and inducing more EMC interference with its surrounding cells is associated with a greater 
degree and will be considered for assigning channels earlier.  
The sequential packing heuristic (Sung & Wong, 1997) sequentially packs the cells that are 
the “best” for the assignment of a particular channel considering the partial channel 
assignment already done. The “best” criterion is according to the heuristic that maximizes the 
overlap between the interfering area induced by the next cell which the channel is assigned to 
and that by the cells already been assigned channels. Fig. 1 gives an illustration of the 
sequential packing procedure. Assume that we start with packing with frequency f1 and it is 
first assigned to the central cell as shown in Fig. 1(a). The interfering area induced by the 
electromagnetic effect is marked by light stripes. It should be noted here, although there is 
only one assigned channel shown in this illustration, the interfering area induced by all of the 
already assigned channels should be marked. Thus, the unmarked cells are interference free 
and are candidates for the next cell to assign the channel. The sequential packing heuristic 
arbitrarily selects one from those that have the maximal interfering overlap with the marked 
area such that the usage of the assigned channel is maximized. All the unmarked cells 
surrounding the marked area in Fig. 1(a) are candidates for selecting the next cell to assign the 
same channel except the bottom-left and upper-right cells. Thus, we can select an arbitrary one 
as shown in Fig. 1(b). Again, the interfering area due to the new assignment of the channel is 
marked with light stripes. The process is iterated until all the cells are marked and no 
interference free cells can be selected, as shown in Figs. 1(c) and 1(d). The sequential packing 
heuristic starts with the assignment of the first channel and continues with the assignment of 
the rest channels in turn until the demands of all cells are fulfilled.  

3.2 The HACO algorithm 

Dorigo developed the first framework of ant colony optimization (ACO) in his Ph.D. 
dissertation (Dorigo, 1992). He related his ant algorithm to the natural metaphor that ants 
are able to construct the shortest feasible path from their colony to the feeding source by the 
use of pheromone trails. An ant leaves some quantities of pheromone on the path it walks 
along, the next ant senses the pheromone laid on different paths and chooses one to follow 
with a probability that is proportional to the intensity of pheromone on the path, then leaves 
its own pheromone. This is an autocatalytic (positive feedback) process that is prone to 
select the preferable path along which more ants have previously traversed. The ACO has 
manifested successful applications such as the travelling salesman problem (Dorigo & 
Gambardella, 1997), quadratic assignment problem (Maniezzo et al., 1994), combined heat 
and power economic dispatch problem (Song et al., 1999), and the digital curve 
segmentation problem (Yin, 2003). 
To circumvent the CAP problem by using the ACO, we propose a hybrid framework that 
embodies the ordering and sequential packing heuristics and a local optimiser into the ACO 
iterations. The details will be articulated in the following subsections. 

3.2.1 Graph representation  

ACO is a solution-construction algorithm that enables each of the artificial ants (which will 
be called ants hereafter for simplicity) to sequentially construct a solution by traversing a 
path on a problem-dependent graph. By iterating the solution construction process, the 
graph forms a pheromone field contributed by all the ants. Therefore, near-optimal solution 
can be constructed according to the pheromone attractiveness.  
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The conversion of a CAP problem to a corresponding graph is straightforward. Assume 
there are n radio cells, we can construct a graph G = <S, E>, where S = (s1, s2, …, sn) is the set 
of all radio cells and E = { }jinjieij ≠≤≤ ,,1  is the set of edges connecting any pairs of cells. 

Note that there is no loop, i.e., the edge connecting a cell to itself, in E because the co-cell 
constraint prohibits the same channel to be assigned twice within a cell.  

3.2.2 Node transition rule  

To allow the ant to traverse a path (in fact, it is to construct a solution), a node transition rule 
needs to be devised. The node transition rule is a probabilistic function which is defined on 
a biased probability distribution that is proportional to the product values of the pheromone 

intensity 
ijτ  and the visibility value 

ijη  associated with the edges. The value of 
ijτ  is initially 

set equal to a small constant and is iteratively updated using the pheromone updating rule 
as will be noted. While the value of 

ijη  is determined by a greedy heuristic 
jijij A δη =  where 

ijA  is the overlap area of the electromagnetic interference if cell j is selected as the next cell 

to assign the channel as explained in the sequential packing heuristic, and 
jδ  is the degree 

of cell j defined in the ordering heuristic. Hence, the visibility greedily prefers to transit to 
the next cell which causes a greater overlap interference area and has a larger demand and is 
located in a more complex topology with its surrounding cells.  
We now define the probability pij with which the ant transits from node i to node j as 

∉

=

tabuh

ihih

ijij

ijp βα

βα

ητ

ητ

)()(

)()( , (3) 

where tabu is the set of cells containing those violating the EMC constraints and those whose 
demands have been fulfilled (so there is no need to be considered for channel assignemnt 

further), parameters α and β are the weights for the relative importance of pheromone and 
visibility. The ties with respect to pij are broken randomly.  
The solution construction process starts with the assignment of the first channel. When all 
cells are marked as interfering area due to this channel, the algorithm clears all the marks 
and continues with the assignment of the next channel. The assignment process is iterated 
until the demands of all the cells are fulfilled. As such, a feasible channel assignment is 
obtained.

3.2.3 Pheromone Updating Rule  

After each ant has finished constructing a solution by traversing a path, the pheromone field 
(the pheromone intensity at the edges of the graph) should be updated according to the 
quality of the constructed solutions. As such, the experience can be accumulated in order to 
guide the future traverse conducted by the ants. In particular, the pheromone intensity at 
edge eij is updated by 

( )
=

Δ+−←
P

k

k

ijijij

1

1 ττρτ , (4) 
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where )1,0(∈ρ  is the evaporation rate of previous pheromone trails, and P is the number 

of ants used in the algorithm. We define k

ijτΔ  as the quantity of new pheromone trails left at 

edge eij by the kth ant and it is computed by 

eij= Q/Spank , if eij was traversed by ant k at the current iteration; (5) 

 = 0,  otherwise,  

where Q is a constant and Spank is the span of the channel assignment constructed by the kth
ant. Therefore, the edges that constitute shorter spans will receive greater amount of 
pheromone and serve as building blocks for constructing elite solutions in future iterations. 
This is an autocatalytic process and the near-optimal solution is more likely to be 
constructed as the pheromone field converges. 

3.2.4 Local optimizer 

1, 6, 11, 20, 25, 38, 56, 61, 66, 73

, 6, 11, 20, 25, 38, 56, 61, 66, 

731

, 6, 11,      , 25, 38,      , 61, 66,    

20 56 731

20 56

, 6, 11,      , 25, 38,      , 61, 66, 

731

16 44 49 54

16, 6, 11, 44, 25, 38, 49, 61, 66, 54

6, 11, 16, 25, 38, 44, 49, 54, 61, 66

Figure 2. Illustration of the local optimizer process 

In order to ensure the quality of the solution that is used for pheromone updating, a local 
optimizer is devised to modify the solution found by each ant to a local optimum in a 
definite local neighborhood. The local optimizer randomly selects certain allocated channels 
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and replaces them with the best available channels under the EMC constraints. As the span 
can be shorten only when the least indexed and the greatest indexed allocated channels are 
replaced, we always include the two channels for replacement. An illustration of the local 
optimizer process is given in Fig. 2. Assume that the span of the currently allocated channels 
is equal to 73. The local optimizer will move the first (1) and the last indices (73) of the 
allocated channels to a tempary memory. However, the indices of the rest of the allocated 
channels are moved subject to a replacement probability. In this illustration, say, channels 20 
and 56 are selected for replacement. Then, for each of the holes left by the moves, the local 
optimizer tries to fill it with the best among available channels under the EMC constraints. 
In this illustration, say, the holes are filled with channels 16, 44, 49, and 54, respectively. 
After re-sorting the allocated channels, we observe that the span is equal to 61 which is 
shorter than that of the previous channel assignment. 

3.2.5 The algorithm 

The pseudo code of the HACO algorithm for the CAP problem is summarized in Fig. 3.  

1. Initialize 

Convert the CAP problem into the corresponding graph G = <S, E>

Set the initial pheromone to a constant value 

2. Repeat

For each ant do 

Randomly select a starting node  

Repeat

 Move to the next node according to the node transition rule 

Until the demands of all radio cells are fulfilled 

Improve the channel assignment using the local optimizer 

End For 

For each edge do 

Update the pheromone intensity using the pheromone updating rule 

End For 

Until a maximal number of iterations are experienced 

3. Output the minimal span channel assignment found 

Figure 3. Pseudo code of the HACO algorithm 

4. Experimental Results and Discussions 

In this section, we present the computational results and evaluate the performance of the 
HACO algorithm. The platform of the experiments is a PC with a 2.4 GHz CPU and 256 MB 
RAM. The algorithm is coded in C++.  
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4.1 Benchmark instances 

The Philadelphia benchmark is one of the most widely used testing set of instances in the 
literature. It contains 21 hexagonal cells of a cellular phone network in Philadelphia. The 
hexagonal network structure is shown in Fig. 4. Following the literature, we use two 
nonhomogeneous demand vectors D1 and D2 detailed in Table 1 and four different settings 
of EMC constraints C1, C2, C3 and C4 in terms of specific values of the minimum separation 
threshold, as shown in Table 2. With the combinations of these settings, we get a set of eight 
problem instances shown in Table 3.  

5

12

1 2 3 4

6 7 8 9 10 11

13 14 15 16 17 18

19 20 21

Figure 4. Hexagonal network structure of Philadelphia 

1   2   3   4   5   6   7   8   9   10  11  12  13

8  25  8   8   8  15 18 52 77  28  13  15  31
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Table 1. Two nonhomogeneous demand vectors 
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Table 2. Four different settings of EMC constraints 

Problem 1 2 3 4 5 6 7 8 

EMC constraints C1 C2 C3 C4 C1 C2 C3 C4

Demand vectors D1 D1 D1 D1 D2 D2 D2 D2

Table 3. Eight testing problem instances 

4.2 Comparative results 

As we use the benchmark instances, the comparative performances of the proposed HACO 
algorithm and some representitives in the literature can be evaluated. The parameters 
involved in the HACO algorithm are optimally tuned based on intensive experiments. They 
are set as the values tabulated in Table 4. For the application of the HACO algorithm in real-
world cases, we set the stopping criterion of the algorithm to a fixed execution time intead 
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of setting to different execution times according to the hardness of the problems because it is 
hard to know in advance the hardness of the problem in hand by observing on the 
compatibility matrix and the demand vectors. For example, it is hard to know which of the 
eight problems listed in Table 3 is the most difficult at this stage, although it turns out that 
problems 2 and 6 are the most difficult in this set after conducting the experiments as will be 
noted. In the following, the maximal execution time of the HACO algorithm for each of the 
benchmark problems is set to 10 min. 

Parameter Value 

Number of ants (P) 20 

Pheromone weight (α) 2

Visibility weight (β) 9

Evaporation rate (ρ) 0.2

Table 4. Parameter values used in the HACO algorithm 

Ghosh et al. (2003) summarized the numerical results of a number of representitives in the 
literature tested on the same eight instances listed in Table 3. We only quoted the most 
recent results no earlier than 1999 from their report. Table 5 shows the comparative 
performances of the competing algorithms. The lower bound for each of the problems is also 
listed. It is seen that the methods proposed by Ghosh et al. (2003) and Beckmann & Killat 
(1999) are able to solve each of the benchmark problems optimally. Both of the two 
approaches are based on genetic algorithms, manifesting the promising direction of solving 
CAP using metaheuristics. The HACO can optimally solve problems 1, 3, 4, 5, 7, and 8, but 
obtains near-optimal solutions for problems 2 and 6, which have been known to be the most 
difficult problems in Philadelphia dataset. Nonetheless, the HACO spent 10 min for solving 
either problem 2 or problem 6, the GA-based method in Ghosh et al. (2003) spent 12-80 h for 
solving the two problems. The method in Beckmann & Killat (1999) starts with a lower 
bound and increases one channel at a time if a feasible channel assignment cannot be found 
by their algorithm, however, a reachable lower bound is not available in the general cases. 
The rest of the competing algorithms are based on heuristics, their performances are not 
comparable to those based on metaheuristics such as GA or ACO. While the heuristic 
proposed in Battiti et al. (2001) can obtain competitive results, the method they adopted 
involves randomisation process, which is a central feature of metaheuristics.  

Problem 1 2 3 4 5 6 7 8 

Lower bound 381 427 533 533 221 253 309 309 

HACO 381 433 533 533 221 258 309 309 

Ghosh et al., 2003 381 427 533 533 221 253 309 309 

Chakraborty, 2001 381 463 533 533 221 273 309 309 

Battiti et al., 2001 381 427 533 533 221 254 309 309 

Tcha et al., 2000 381 433 533 533 - 260 - 309 

Beckmann & Killat, 1999 381 427 533 533 221 253 309 309 

Table 5. Comparative performances of the HACO algorithm and a number of representative 
algorithms in the literature 
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4.3 Convergence analysis 

It is important to analyze the convergence behavior of the practiced algorithm because even 
a pure random search can report a solution improving with elapsed execution time, but the 
explored solutions never converge. The information entropy was used here to measure the 
amount of information observed in the pheromone field. The expected information entropy 
E over all radio cells is defined as  

nppE
n

i j

ijij

= ∀

−=
1

2log  (6) 

where pij is the node transition probability defined in Eq. (3). Hence, the less the value of E,
the purer the information exhibited by pij related for each cell, which means the node 
transition rule becomes more deterministic due to a dominating probability and less 
information can be explored further.  
Fig. 5 shows the variations of the expected information entropy as the number of HACO 
iterations increases. It is observed that the value of the expected information entropy 
decreases rapidly during the first 20 iterations (note that, to clearly demonstrate this 
phenomenon, the scale on the x-axis is varied in different intervals). This is because the node 
transition probabilities are uniformly distributed at the initialization phase of the algorithm 
and the transition probabilities related to the preferable paths (with shoter frequency span) 
are reinforced by the pheromone updating rule during the iterations, thus the expected 
information entropy is quickly decreased. After the 20th iteration, the decreasing rate of the 
expected information entropy becomes moderate, and gradually reaches stagnation as the 
number of iterations approaches 2000. This is due to the fact that the node transition rule 
becomes more deterministic and guides the ants to the paths corresponding to elite 
solutions. Although the information (building blocks) exchange among the elite solutions is 
still ungoing in order to finely improve the best solution found, the information gain is less 
than that obtained at the earlier iterations, because there is a large overlap at the building 
blocks of the elite solutions. So the solution improving ratio per unit time becomes less 
economic as the elapsed execution time increases. The practitioners must determine the best 
stopping criterion according to the allocated computational resource for their applications. 
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Figure 5. Variations of the expected information entropy as the number of HACO iterations 
increases

Number of HACO iterations 
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5. Conclusion 

In this chapter, we investigate the channel assignment problem (CAP) that is critical in 
wireless communication applications. Researchers strive to develop algorithms that are able 
to effectively assign limited channels to a number of cells with nonhomogeneous demands. 
Inspired by the recent success of metaheuristics, a hybrid ant colony optimisation (HACO) is 
proposed in this chapter. The HACO embodies several problem-dependent heuristics 
including ordering, sequential packing, and a local optimiser into an ACO framework. The 
advantages of this hybrid are two-fold. First, the EMC constraints can be effectively handled 
by the problem-dependent heuristics instead of using a penalty function as observed in 
other works which may lengthen the elapsed time in order to reach convergence. Second, 
the embedded heuristics serve as intensification strategies conducted by the metaheuristic 
framework and help improve the generated solutions from different view points.  
The performance of the HACO algorithm is evaluated on the Philadelphia benchmark set, 
such that it can be compared to that of existing approaches. It is observed from the 
experimental results that the HACO algorithm can solve optimally six of the eight 
benchmark problems and obtain near-optimal solutions for the other two problems which 
have been known to be the most difficult in the literature. For practical reasons, we only 
allow the HACO algorithm to run for a relatively short time compared to that used by other 
approaches. It is plausible to get a better result if more computational time is allocated.  
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