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1. Introduction  

The problem of finding appropriate representations for various is a subject of continued 
research in the field of artificial intelligence and related fields. In some practical situations, 
mathematical and computational tools for faithfully modeling or representing systems with 
uncertainties, inaccuracies or variability in computation should be provided; and it is 
preferable to develop models that use ranges as values. A need to provide tolerance ranges 
and inability to record accurate values of the variables are examples of such a situation 
where ranges of values must be used (Lingras, 1996). Representations with ranges improve 
data integrity for non-integral numerical attributes in data storage and would be preferable 
due to no lose of information. Rough patterns proposed by Lingras are based on an upper 
and a lower bound that form a rough value that can be used to effectively represent a range 
or set of values for variables such as daily weather, stock price ranges, fault signal, hourly 
traffic volume, and daily financial indicators (Lingras, 1996; Lingras & Davies, 2001). The 
problems involving, on input/output or somewhere at the intermediate stages, interval or, 
more generally, bounded and set-membership uncertainties and ambiguities may be 
overcome by the use of rough patterns. Further developments in rough set theory have 
shown that the general concept of upper and lower bounds provide a wider framework that 
may be useful for different types of applications (Lingras & Davies, 2001). 
Generating random sequences with a long period and good uniformity is very important for 
easily simulating complex phenomena, sampling, numerical analysis, decision making and 
especially in heuristic optimization. Its quality determines the reduction of storage and 
computation time to achieve a desired accuracy. Chaos is a deterministic, random-like 
process found in non-linear, dynamical system, which is non-period, non-converging and 
bounded.  Moreover, it has a very sensitive dependence upon its initial condition and 
parameter (Schuster, 1998). The nature of chaos is apparently random and unpredictable 
and it also possesses an element of regularity. Mathematically, chaos is randomness of a 
simple deterministic dynamical system and chaotic system may be considered as sources of 
randomness. 
Chaotic sequences have been proven easy and fast to generate and store, there is no need for 
storage of long sequences (Heidari-Bateni & McGillem, 1994). Merely a few functions 
(chaotic maps) and few parameters (initial conditions) are needed even for very long 
sequences. In addition, an enormous number of different sequences can be generated simply 
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by changing its initial condition. Moreover these sequences are deterministic and 
reproducible. The choice of chaotic sequences is justified theoretically by their 
unpredictability, i.e., by their spread-spectrum characteristic, and ergodic properties. 
In this chapter, a generalization of particle swarm optimization (PSO) based on rough values 
has been proposed. Furthermore, sequences generated from chaotic systems substitute 
random numbers in all phases of PSO where it is necessary to make a random-based choice. 
By this way it is intended to develop the global convergence and to prevent to stick on a 
local solution. The proposed chaotic rough particle swarm optimization algorithm (CRPSO) 
can complement the existing tools developed in rough computing using chaos. Definitions 
of basic building blocks of CRPSO such as rough decision variable, rough particle, and 
different chaotic maps have been provided. Application of CRPSO in data mining has also 
been performed. 

2. Rough Particle Swarm Optimization (RPSO) 

Objects, instances, or records can be described by a finite set of attributes. The description of 
an object is an n-dimensional vector, where n is the number of attributes that characterizes 
an object. A pattern is a class of objects based on the values of some attributes of objects 
belonging to the class. 

Let x be an attribute in the description of an object and xx, represent lower and upper 

bounds (endpoints) of x such that x ≤ x  . A rough pattern value of each attribute variable 

consists of lower and upper bounds and can be presented as Eq. (1). It can be 
diagrammatically seen in Figure 5. It is as a closed, compact, and bounded subset of the set 
of real numbers R. 

( )xxx ,=  (1) 

x

x x

Figure 1. A rough value 

If 0 ≤ x the rough value is called a positive rough value, and we write x > 0. Conversely, if 

x ≤  0 we call the rough value a negative rough value, and write x < 0. Positive or negative 

rough values are the two types of sign coherent rough values. If x = 0 or x = 0 we call the 

rough value a zero-bound rough value. A zero-bound positive rough value is called a zero-
positive rough value. Similarly, a zero-bound negative rough value is called a zero-negative 
rough value. A rough value that has both positive and negative values is called a zero-
straddling rough value. These definitions are summed up in Table 1. 
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Definition Condition 

positive rough value (x>0) Iff x >0

negative rough value (x<0) Iff x <0

zero-positive rough value (x ≥ 0) Iff x =0

zero-negative rough value (x ≤ 0) Iff x =0

zero-straddling rough value (x<>0) Iff x >0 and x <0

Table 1. Definitions on rough values 

The midpoint (mid), radius (rad), and width of a rough value x are defined as: 

( ) ( ) 2/xxxmid +=  (2) 

( ) ( ) 2/xxxrad −=  (3) 

( ) ( )xxxwidth −= =2rad(x) (4) 

Since x = (mid(x)-rad(x), mid(x)+rad(x)) rough values can also be represented in terms of 
midpoint and radius instead of endpoints. 
Rough values are useful in representing an interval or set of values for an attribute, where 
only lower and upper bounds are considered relevant in a computation. It may be very 
popular for many areas of computational mathematics. For example, by computing with 
rough values, it is possible (with some error) to evaluate a function over an entire interval 
rather than a single value. In other words, if we evaluate a function f(x) over some interval 

of x (e.g. x∈ ( xx, )), we know what the possibly overestimated bounds of the function are 

within that interval. Since working with rough values always produces exact or 
overestimated bounds, it cannot miss a critical value in a function. Therefore, it is very 
useful for robust root finding, global maximum/minimum finding, and other optimization 
problems.
In fact, a conventional pattern can be easily represented as a rough pattern by using both 
lower and upper bounds to be equal to the value of the variable.  Some operations on rough 
values can be implemented as: 

( ) ( ) ( )yxyxyyxxyx ++=+=+ ,,,  (5) 

( ) ( )( ) ( )yxyxyyxxyx −−=−+=− ,,,  (6) 

( ) ( )( )yxyxyxyxyxyxyxyxyx ,,,max,,,,min=×  (7) 

( )xx
xxx

,0,
1
,
11

∉=
 (8) 

( )
( )

( ) ( )yy

yy

xx

yy

xx

y

x
,0,

1
,
1

,

,

,
∉==

 (9) 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 4

( ) ( ) ( )
( ) <××

≥××
=×=×=×

0,

0,
,,

cifxcxc

cifxcxc
cxxxxcxc

 (10) 

In fact, these operations are borrowed from the conventional interval calculus (Lingras & 
Davies, 1999). 
The algebraic properties of addition and multiplication operations on rough values have 
been described in Table 2. 

Algebraic
properties

Description Condition 

x+y=y+x

Commutativity 

xy=yx

No condition 

(x+y)+z=x+(y+z)
Associativity 

(xy)z=x(yz)

No condition 

0+x=x
Neutral 
Element

1.x=x

No condition 

x(y+z)=xy+xz If xx =

x(y+z)=xy+xz If y ≥ 0 and z ≥ 0 (non-negative terms) 

x(y+z)=xy+xz If y ≤ 0 and z ≤ 0 (non-positive terms) 

x(y+z)=xy+xz
If x ≥ 0, y =0 and z =0

(positive factor, zero-straddling terms) 

x(y+z)=xy+xz
If x ≤ 0, y =0 and z =0 (negative factor, zero-

straddling terms) 

x(y-z)=xy-xz If y ≥ 0 and z ≤ 0 (non-negative terms variation) 

Distributivity

x(y-z)=xy-xz If y ≤ 0 and z ≥ 0 (non-positive terms variation) 

Table 2. Algebraic properties 

A rough particle r is string of rough parameters ri:

( )nirr i ≤≤= 1|  (11) 

A rough parameter ri is a pair of conventional parameters, one for lower bound called lower 

parameter (
ir ) and the other for upper bound called upper parameter (

ir ):
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( )iii rrr ,=  (12) 

Figure 2 shows examples of rough particles. 

Figure 2. Rough particles 

The value of each rough parameter is the range for that variable. The use of range shows 
that the information represented by a rough particle is not precise. Hence, an information 
measure called precision may be useful when evaluating the fitness levels (Lingras, 1996; 
Lingras & Davies, 2001). 

( )
( )≤≤

−
−=

ni i

ii

rRange

rr
rprecision

1 max

 (13) 

Here, ( )irRangemax  is the length of maximum allowable range for the value of rough 

parameter ri.
The conventional parameters and particles used in PSO algorithms are special cases of their 
rough equivalents as shown in Figure 3. For a conventional particle p, precision(p) has the 
maximum possible value of zero. 

Figure 3. Conventional particle and its rough equivalent 

In boundary constraint problems, it is essential to ensure that values of decision variables lie 
inside their allowed ranges after velocity or position update equations. This technique can 
also be generalized for RPSO algorithm. Constraint that the lower bounds in rough variables 
should be less than the upper bounds is already satisfied with RPSO algorithm. 

3. Chaotic Particle Swarm Optimization (CPSO) 

Generating random sequences with a long period and good uniformity is very important for 
easily simulating complex phenomena, sampling, numerical analysis, decision making and 
especially in heuristic optimization. Its quality determines the reduction of storage and 
computation time to achieve a desired accuracy. Generated such sequences may be 
“random” enough for one application however may not be random enough for another.  
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Chaos is a deterministic, random-like process found in non-linear, dynamical system, which 
is non-period, non-converging and bounded.  Moreover, it has a very sensitive dependence 
upon its initial condition and parameter (Schuster, 1998)]. The nature of chaos is apparently 
random and unpredictable and it also possesses an element of regularity. Mathematically, 
chaos is randomness of a simple deterministic dynamical system and chaotic system may be 
considered as sources of randomness.  
A chaotic map is a discrete-time dynamical system

x f x x kk k k+ = < < =1 0 1 0 1 2( ), , , , ,  (14) 

running in chaotic state. The chaotic sequence { },2,1,0: =kxk
can be used as spread-

spectrum sequence as random number sequence. 
Chaotic sequences have been proven easy and fast to generate and store, there is no need for 
storage of long sequences (Heidari-Bateni & McGillem, 1994). Merely a few functions 
(chaotic maps) and few parameters (initial conditions) are needed even for very long 
sequences. In addition, an enormous number of different sequences can be generated simply 
by changing its initial condition. Moreover these sequences are deterministic and 
reproducible.  
Recently, chaotic sequences have been adopted instead of random sequences and very 
interesting and somewhat good results have been shown in many applications such as 
secure transmission (Wong et al., 2005; Suneel, 2006), and nonlinear circuits (Arena et al., 
2000), DNA computing (Manganaro & Pineda, 1997), image processing (Gao et al., 2006). 
The choice of chaotic sequences is justified theoretically by their unpredictability, i.e., by 
their spread-spectrum characteristic and ergodic properties. 
One of the major drawbacks of the PSO is its premature convergence, especially while 
handling problems with more local optima. In this paper, sequences generated from chaotic 
systems substitute random numbers for the PSO parameters where it is necessary to make a 
random-based choice. By this way, it is intended to improve the global convergence and to 
prevent to stick on a local solution. For example, the value of inertia weight is the key factors 
to affect the convergence of PSO. Furthermore the values of random numbers that affect the 
stochastic nature are also key factors that affect the convergence of PSO. In fact, however, 
these parameters can’t ensure the optimization’s ergodicity entirely in phase space, because 
they are random in traditional PSO. 
New approaches introducing chaotic maps with ergodicity, irregularity and the stochastic 
property in PSO to improve the global convergence by escaping the local solutions have 
been provided. The use of chaotic sequences in PSO can be helpful to escape more easily 
from local minima than can be done through the traditional PSO. When a random number is 
needed by the classical PSO algorithm it is generated by iterating one step of the chosen 
chaotic map that has been started from a random initial condition at the first iteration of the 
PSO. New chaos embedded PSO algorithms may be simply classified and described as Table 
3. In this table first column represents the name of PSO. The second column represents 
which values it effect to. And the last column, divided in to three sub columns, represents 
the bounds of the values they can take from the selected chaotic maps. For example CPSO3 
only effects to second acceleration coefficient (c2) and the values taken from the selected 
chaotic map is scaled between 0.5 and 2.5. When rough representation is used these names 
take a “R” for representing the “Rough” after “C” that represents “Chaotic”. Namely when 
rough representation is used for “CPSO1” it is named as “CRPSO1”. 
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Name Effect Scaled Values of Chaotic Maps 

CPSO1 Initial velocities and position 
Lower bound - upper bound of each 
decision variable 

CPSO2 c1 0.5 – 2.5 - - 

CPSO3 c2 0.5 – 2.5 - - 
CPSO4 c1 and c2 0.5 – 2.5  0.5 – 2.5 - 

CPSO5 r1 0.0 – 1.0 - - 

CPSO6 r2 0.0 – 1.0 - - 

CPSO7 r1 and r2 0.0 – 1.0  0.0 – 1.0 - 
CPSO8 w, r1, and r2 0.0 – 1.0  0.0 – 1.0 0.0 – 1.0 

CPSO9 w 0.0 – 1.0 - - 

CPSO10 w and c1 0.0 – 1.0  0.5 – 2.5 - 

CPSO11 w and c2 0.0 – 1.0  0.5 – 2.5 - 
CPSO12 w, c1, and c2 0.0 – 1.0 0.5 – 2.5 0.5 – 2.5 

Table 3. Characteristics of CPSO algorithms 

Note that CPSO1 can be used together with the other CPSO classes. The chaotic maps that 
generate chaotic sequences in PSO phases used in the experiments are listed below. 
Logistic Map: One of the simplest maps which was brought to the attention of scientists by 
Sir Robert May in 1976 that appears in nonlinear dynamics of biological population 
evidencing chaotic behavior is logistic map, whose equation is the following (May, 1976): 

 Xn+1 = aXn(1 – Xn) (15) 

In this equation, Xn is the n-th chaotic number where n denotes the iteration number. 
Obviously, Xn ∈ (0, 1) under the conditions that the initial X0 ∈ (0, 1) and that X0 ∉ {0.0, 0.25, 

0.5, 0.75, 1.0}. a=4 have been used in the experiments. 
Sinusoidal Iterator: The second chaotic sequence generator used in this paper is the so-
called sinusoidal iterator (Peitgen et al., 1992) and it is represented by 

)sin(2
1 nnn xaxX π=+  (16) 

When a=2.3 and X0=0.7 it has the simplified form represented by 

)sin(1 nn xX π=+  (17) 

It generates chaotic sequence in (0, 1)  
Gauss Map: The Gauss map is used for testing purpose in the literature (Peitgen et al., 1992) 
and is represented by: 

( )∈

=
=+

1,0,

0,

)1mod(/1

0

n
1

X

X

X
X

n

n
n  (18) 

−=
nn

n
XX

X
11

)1mod(/1  (19) 

and z denotes the largest integer less than z and acts as a shift on the continued fraction 

representation of numbers. This map also generates chaotic sequences in (0, 1). 
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Zaslavskii Map: The Zaslavskii Map (Zaslavskii, 1978) is an also an interesting dynamic 
system and is represented by: 

( ) )1mod(11 +++=+ naYvnXnX  (20) 

( ) nY
r

e
n
XnY

−
+=+ π2cos1  (21) 

Its unpredictability by its spread-spectrum characteristic and its large Lyapunov exponent 
are theoretically justified. The Zaslavskii map shows a strange attractor with largest 
Lyapunov exponent for v=400, r=3, a=12. Note that in this case, Yn+1∈ [-1.0512, 1.0512]. 

4. CRPSO in Data Mining 

CRPSO has been used for mining numeric association rules (ARs) from databases in which 
records concerned are categorical or numeric. In a numeric AR, attributes are not limited to 
being Boolean but can be numeric (e.g. age, salary, and heat) or categorical (e.g. sex, brand). 
Thus, numeric ARs are more expressive and informative than Boolean ARs (Ke et al., 2006).
An example of a numeric AR in an employee database is:  

“Age ∈[25, 36] ∧ Sex=Male Salary∈[2000-2400] ∧ Have_Car=Yes”

(Support = 4%, Confidence = 80%). 

In this numeric AR, “Age∈[25, 36] ∧ Sex=Male” is antecedent and “Salary∈[2000-
2400] ∧ Have_Car=Yes” is consequent part. This numeric AR states that “4% (support) of 
the employees are males aged between 25 and 36 and earning a salary of between $2.000 and 
$2.400 and have a car”, while “80 % (confidence) of males aged between 25 and 36 are 
earning a salary of between $2.000 and $2.400 and have a car”. 
Following subsections are description of CRPSO for mining numeric ARs. 

4.1 Particle representation 

In this work, the particles which are being produced and modified along the search process 
represent rules. Each particle consists of decision variables which represent the items and 
intervals. A positional encoding, where the i-th item is encoded in the i-th decision variable 
has been used. Each decision variable has three parts. The first part of each decision variable 
represents the antecedent or consequent of the rule and can take three values: ‘0’, ‘1’ or ‘2’. If 
the first part of the decision variable is ‘0’, it means that this item will be in the antecedent of 
the rule and if it is ‘1’, this item will be in the consequent of the rule. If it is ‘2’, it means that 
this item will not be involved in the rule. All decision variables which have ‘0’ on their first 
parts will form the antecedent of the rule while decision variables which have ‘1’ on their 
first part will form the consequent of the rule. While the second part represents the lower 
bound, the third part represents the upper bound of the item interval. The structure of a 
particle has been illustrated in Figure 4, where m is the number of attributes of data being 
mined (Alatas et al., 2007). 

Variable1 Variable2 ... Variablem

AC1 LB1 UB1 AC2 LB2 UB2    ACm LBm UBm

Figure 4. Particle representation 
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Rounding operator that converts a continuous value to an integer value for the first parts of 
this representation by truncation is performed when evaluating.  Rounded variables are not 
elsewhere assigned in order to let CRPSO algorithm work with a swarm of continuous 
variables regardless of the object variable type for maintaining the diversity of the swarm 
and the robustness of the algorithm. 
In the implementation of this particle representation, the second and third part of decision 
variables will be considered as one value, namely rough value. At first glance, this 
representation seems to appropriate for only numeric attributes. However it is very 
straightforward to extend it for discrete, nominal, and numeric attributes. The numeric 
attributes locates at the beginning of the representation and discrete ones at the end. For 
discrete attributes only ACi and Vi where Vi is the value of the attribute are used. Namely, 
instead of LBi and UBi, only Vi is used for values of discrete or nominal attributes. 

4.2 Fitness Function 

The mined rules have to acquire large support and confidence. CRPSO has been designed 
to find the intervals in each of the attributes that conform an interesting rule, in such a 
way that the fitness function itself is the one that decides the amplitude of the intervals. 
That is why, the fitness value has to appropriately shelter these and it has been shown in 
Eq. (22). 

Fitness = 1α × cover (Ant+Cons)+ 2α ×
cover(Ant)

Cons)cover(Ant +
+ 3α × (NA)- 4α ×

Int-
5α × marked

(22)

This fitness function has four parts. Here, Ant and Cons are distinct itemsets that are 
involved in the antecedent and consequent part of the rule respectively. cover (Ant+Cons) is 
ratio of the records that contain Ant+Cons to the total number of records in the database. The 
first part can be considered as support of the rule that is statistical significance of an AR. In 
fact, the second part can be considered as confidence value. The third part is used for 
number of attributes in the particle. NA is number of attributes in the database that has not 
‘2’ in first parts of decision variable of particles. The motivation behind this term is to bias 
the system to give more quality information to the final user. The last part of the fitness is 
used to penalize the amplitude of the intervals that conform the itemset and rule. In this 
way, between two particles that cover the same number of records and have the same 
number of attributes, the one whose intervals are smaller gives the best information. Int has 
been computed as shown in Eq. (23) where ampm is the amplitude factor determined for each 
attribute for balancing the effect of Int to the fitness. 

m

mm

amp

LBUB −
 (23) 

marked is used to indicate that an attribute of a records has previously been covered by a 
rule. Algorithm is forced to mine different rules in later searches by this way. 

1α , 2α , 3α , 4α ,
5α are user specified parameters and one might increase or decrease the 

effects of parts of fitness function by means of these parameters. Int part of the fitness 
calculation concerns particles parts representing numeric attributes. 
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4.3 Mutation 

Mutation has also been performed in this study. Mutation operator is introduced which 
mutates a single decision vector of a particle with probability pmut. Four possible mutations 
(Mata et al., 2002) have been used for CRPSO algorithms: 
• Shifting the whole interval towards the right: The values in lower and upper bounds 

are increased. 

• Shifting the whole interval towards the left: The values in lower and upper bounds 
are decreased. 

• Incrementing the interval size: The value of lower bound is decreased and the value of 
upper bound is increased. 

• Reducing the interval size: The value of lower bound is increased and the value of 
upper bound is decreased. 

When a particle is chosen to be mutated each decision value is then mutated by one of this 
four mutation types or not with probability l/m, where m is the number of decision value in 
the particle. Particle positions are updated only if the mutated particles have better fitness. 

4.4 Refinement of bound intervals 

At the end of the CRPSO search, a refinement in the attributes bounds that belong to the 
covered rule is performed. This refinement process consists reducing the interval size until 
the support value is smaller than the support of the original rule encoded in the related 
particle.

4.5. Parameter Control 

The used parameter values for the experiments have been shown in Table 4. Minimum and 
maximum values for velocity and position depend on the bounds of the decision values. 1α ,

2α , 3α , 4α , and 5α  that have been used in fitness values were selected as 0.8, 0.8, 0.05, 0.1, 

and 0.2 respectively. 

Parameters 
Swarm

size
No. of 

generations 
Mutation

Probability

Values 20 1000 0.5 

Table 4. Used parameters for PSO algorithms 

5. Experimental Results 

Synthetic database is created using the function 2 (Agrawal et al., 1993) to distribute the 
values in records in such a way that they are grouped in pre determined sets. The function 
is shown in Figure 5. The goal is to most accurately find the intervals of each of the 
created regions. Namely, a group is assigned to each record, depending on the values that 
the attributes age and salary take. Figure 6 shows a graphic representation of the 
distribution of 5000 records according to the function where only records belong to Group 
A are presented. 
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If ((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨
((40 ≤ age<60) ∧ (75K ≤ salary ≤ 125K)) ∨

((age ≥ 60) ∧ (25K ≤ salary ≤ 75K)) Group A

else Group B

Figure 5. Function used for the experiment 

Figure 6. Graphic representation of the function for the experiment 

The database has been generated by uniformly distributing the records between the lower 
and upper values of its domains. For attribute salary the extreme values are from 20000 to 
150000 and for attribute age salary the extreme values are from 20 to 80. The third attribute 
for the group has also been added. According to the function almost 37.9% of the records 
belong to Group A. the ARs are those that have the attr butes salary and age in the 
antecedent and the attribute Group in the consequent. That is why, representation of the 
particle respects to this case. 
For a fair comparison of the results initial swarm is initialized in a different way. A same 
record of the database is chosen and the rule is generated departing from it, defining for 

each value of vi of the selected attribute ai, lower limit vi-θ and upper limit vi +θ . θ  is a 

percentage of the value vi. In this way the swarm is conditioned to cover at least one record. 
This has not been performed for CRPSO1. 
An intuitive measure to verify the efficacy of the CRPSO algorithms, verifying that the 
mined ARs have larger quality, consists of checking that the intervals of the rules accord to 
the ones synthetically generated. Mean support and confidence values of mined rules from 
rough PSO algorithm are 12.21 and 93.33. Acceleration coefficients have been selected as 2 
and inertia weight has been gradually decreased from 0.9 to 0.4 for CRPSO1 algorithm. 
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The obtained results from the proposed CRPSO algorithms are shown in Tables 5. All of the 
algorithms have mined three rules and mean support and confidence values of these rules 
have been depicted in this table. If the mean support values are multiplied by 3, values close 
to 37.9% may be found, which means that the rules have practically covered all the records. 
Confidence values are also close to 100%, since in the regions there are no records of other 
groups. Interesting result is that, CRPSO7, CRPSO8, and CRPSO12 have the best 
performances. CRPSO7 using Zaslavskii map seems the best PSO among others. The mined 
rules from CRPSO7 using Zaslavskii map is shown in Table 6. 

Logistic Map 

CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 
CRPSO

10
CRPSO

11
CRPSO

12

Sup
(%)

11.24 10.64 10.96 11.98 10.78 10.80 12.48 12.28 10.82 10.66 11.02 11.54 

Conf
(%)

98.14 98.12 97.01 97.64 97.42 97.96 99.01 98.98 98.42 98.24 98.56 99.08 

Sinusoidal Iterator 

CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 
CRPSO

10
CRPSO

11
CRPSO

12

Sup
(%)

11.20 11.24 10.86 11.62 10.86 10.96 12.38 12.28 10.58 10.90 11.06 11.24 

Conf
(%)

98.48 98.46 98.08 98.06 97.56 97.02 99.08 98.96 98.54 97.98 99.02 98.96 

Gauss Map 

CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 
CRPSO

10
CRPSO

11
CRPSO

12

Sup
(%)

11.91 11.05 10.86 10.24 10.84 10.97 12.28 12.23 10.81 10.23 9.99 11.98 

Conf
(%)

97.22 97.62 98.68 98.16 98.26 97.64 99.04 99.06 98.48 97.86 97.56 98.62 

Zaslavskii Map 

CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 
CRPSO

10
CRPSO

11
CRPSO

12

Sup
(%)

11.05 11.26 10.24 10.22 10.97 10.96 12.62 12.41 10.96 10.82 10.88 11.94 

Conf
(%)

97.56 97.55 97.22 98.08 98.48 98.69 99.65 99.12 98.62 98.86 97.16 98.84 

Table 5. Mean support and confidence values of the rules mined by different CRPSO 
algorithms 

Rule Sup(%) Conf(%) 

If age∈ [20, 40] ∧ salary∈ [50136, 99869] Group A 12.63 98.94 

If age∈ [41, 59] ∧ salary∈ [76779, 12469] Group A 12.62 100 

If age∈ [61, 80] ∧ salary∈ [25440, 73998] Group A 12.61 100 

Table 6. ARs mined by CRPSO7 using Zaslavskii map 

6. Conclusions 

In this chapter chaotic rough PSO, CRPSO, algorithms that use rough decision variables and 
rough particles that are based on notion of rough patterns have been proposed. Different 
chaotic maps have been embedded to adapt the parameters of PSO algorithm. This has been 
done by using of chaotic number generators each time a random number is needed by the 
classical PSO algorithm. Twelve PSO methods have been proposed and four chaotic maps 
have been analyzed in the data mining application. It has been detected that coupling 
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emergent results in different areas, like those of PSO and complex dynamics, can improve 
the quality of results in some optimization problems and also that chaos may be a desired 
process. It has been also shown that, these methods have somewhat increased the solution 
quality, that is in some cases they improved the global searching capability by escaping the 
local solutions. The proposed CRPSO algorithms can complement the existing tools 
developed in rough computing using chaos. These proposed methods seem to provide 
useful extensions for practical applications. More elaborated experiments by using 
optimized parameters may be performed with parallel or distributed implementation of 
these methods. 
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