
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

16

Evolution of Biped Locomotion Using
Linear Genetic Programming

Krister Wolff and Mattias Wahde
Department of Applied Mechanics, Chalmers University of Technology

Sweden

1. Introduction

Gait generation for bipedal robots is a very complex problem. The basic cycle of a bipedal
gait, called a stride, consists of two main phases, namely the single-support phase and the
double-support phase, which take place in sequence. During the single-support phase, one
foot is in contact with the ground and the other foot is in swing motion, being transferred
from back to front position. In the double-support phase, both feet simultaneously touch the
ground, and the weight of the robot is shifted from one foot to the other. During the
completion of a stride, the stability of the robot changes dynamically, and there is always a
risk of tipping over. Thus it is crucial to actively maintain the stability and walking balance
of the robot at all times.
In the conventional engineering approach, there are two main methods for bipedal gait
synthesis: Off-line trajectory generation, and on-line motion planning (Wahde and
Pettersson, 2002; Katic and Vukobratovic, 2003). Both these methods rely on the calculation
of reference trajectories, such as e.g. trajectories of joint angles, for the robot to follow. An
off-line controller assumes that there exists an adequate dynamic model of the robot and its
environment, which can be used to derive a body motion that adheres to a stability criterion,
such as e.g. the zero-moment point (ZMP) criterion (Li et al., 1992; Huang et al., 2001; Huang
and Nakamura, 2005; Hirai et al., 1998; Yamaguchi et al., 1999; Takanishi et al., 1985) that
requires the ZMP to stay within an allowable region, namely the convex hull of the support
region defined by the feet. An on-line motion controller, on the other hand, uses limited
knowledge of the kinematics and dynamics of the robot and its environment (Furusho and
Sano, 1990; Fujimoto et al., 1998; Kajita and Tani, 1996; Park and Cho, 2000; Zheng and Shen,
1990). Instead, simplified models are used to describe the relationship between input and
output. This method also relies much on real-time feedback information.
Control policies based on classical control theory, like the ones outlined above, have been
successfully implemented on bipedal robots in a number of cases, see e.g. the references
mentioned in the previous paragraph. When the robot is operating in a well-known,
structured environment, the abovementioned control methods normally work well.
However, the success of these methods relies on the calculation of reference trajectories for
the robot to follow. When the robot is moving in a realistic, dynamically changing
environment such reference trajectories can rarely be specified, since the events that might
occur can never be predicted completely. Furthermore, a control policy based on O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Climbing & Walking Robots, Towards New Applications, Book edited by Houxiang Zhang,
ISBN 978-3-902613-16-5, pp.546, October 2007, Itech Education and Publishing, Vienna, Austria

336 Climbing & Walking Robots, Towards New Applications

conventional control theory will lead to lack of flexibility in an unpredictable environment
(Taga, 1994). A shift towards biologically inspired control methods is therefore taking place
in the field of robotics research (Katic and Vukobratovic, 2003). Such methods do not, in
general, require any reference trajectories (Beer et al., 1997; Bekey, 1996; Quinn and
Espenschied, 1993).
A common approach in biologically inspired control of walking robots is to use artificial
neural networks (ANNs). A review of such methods can be found in (Katic and
Vukobratovic, 2003). It is also common to employ the paradigm of artificial evolution
(evolutionary algorithms, EAs) to optimize controllers that may consist of, for example,
recurrent neural networks (RNNs) (Reil and Massey, 2001), finite state machines (FSMs)
(Pettersson et al., 2001), or any other control structure of sufficient degree of flexibility
(Boeing et al., 2004). The controller may also consist of a structure coded by hand (Wolff and
Nordin, 2001). A related approach is to use genetic programming (GP), which is a special
case of EAs, to generate control structures (or programs), for locomotion control of robots,
see (Wolff and Nordin, 2003; Ziegler et al., 2002).
In some cases, the evolutionary optimization (or generation) of program structures may be
applied to a certain component of the overall controller as, for example, in (Ok et al., 2001),
where a feedback network was generated using GP. However, to the authors’ knowledge,
there exist only a few examples, such as (Wolff and Nordin, 2003; Ziegler et al., 2002), which
go beyond parametric optimization and generate also the complete structure of a controller
for bipedal walking. As an additional example, in (Wolff et al., 2006), both the structure and
the parameters of a central pattern generator (CPG) network were evolved, using a genetic
algorithm (GA) as the optimization method.
In the work described in this chapter, linear genetic programming (LGP) was used to
generate gait control programs from first principles for simulated bipedal robots. Two
slightly different approaches will be presented. In the first approach, the control system of
the robot consisted of evolved programs generated from a completely random starting
point, whereas, in the second approach, the joint torques were forced to vary sinusoidally,
even though the (slow) variation of the parameters of the sinusoidal torques was evolved
from a random starting point, using LGP. It should be noted that no explicit model of the
bipedal system was provided to the controllers in either case, and neither were the evolved
controllers given any a priori knowledge on how to walk (except, perhaps, for the forced
sinusoidal variation in the second approach).

2. Evolutionary Robotics

Many problems in robotics, e.g. the generation of bipedal gaits, can be formulated as
optimization problems. Traditional optimization techniques generally require the existence

of a mathematical, fixed objective function, i.e. a function),,,(21 nxxxff = , where

nxxx ,,, 21
 are the variables of the problem. In robotics applications, such as gait

generation, the value of the objective function can normally only be obtained by actually
letting the robot execute its behavior (for example, walking), and then studying the results.
In such applications, even though the value of the objective function can always be obtained,
it cannot be computed without an (often lengthy) evaluation of a (physical or simulated)
robot. Thus, analytical expressions for, say, the derivative of the objective function cannot be

Evolution of Biped Locomotion Using Linear Genetic Programming 337

obtained. Furthermore, in robotics, the control system (robotic brain) being optimized does
not always have a fixed structure. For example, in cases where the robotic control system
consists of an ANN, the number of nodes (neurons) in the network may vary during
optimization, meaning that the number of variables in the objective function varies as well.
Thus, for problems of this kind, other optimization methods than the traditional ones are
more appropriate. As the name implies, in evolutionary robotics, the optimization is carried
out by means of EAs. In addition to coping with structures of variable size and implicit
objective functions of the kind described above, EAs can also handle non-differentiable
objective functions containing variables of any kind, e.g. real-valued, integer-valued,
Boolean etc.

2.1 Evolutionary Algorithms

EAs are methods for search and optimization inspired by Darwinian evolution. An EA
maintains a set (population) of candidate solutions to the problem at hand. The members of
the set are referred to as individuals. Before the evaluation of an individual, a decoding step
is often carried out, during which the genetic material of the individual is used for
generating the structure that is to be evaluated. In a standard GA, as well as in certain
implementations of GP (such as LGP), the genetic material is in the form of a linear
chromosome consisting of a sequence of numbers referred to as genes.
After decoding, each individual is evaluated and assigned a fitness value¹ based on its
performance. Once the individuals have been evaluated, new individuals are generated by
means of genetic operators such as selection, crossover, and mutation. The genetic operators
are normally stochastic. For example, selection is normally, and rather obviously,
implemented such that individuals with high fitness values have a higher probability of
being selected (for reproduction) than individuals with low fitness value. Crossover
combines the genetic material of two individuals. Mutations are random modifications of
genes that provide the algorithm with new material to work with.

2.2 Linear Genetic Programming

LGP is a specific type of EA and, as such, it consists of the same basic components: A
population of candidate solutions, the genetic operators, certain selection methods, and a
fitness function. The main characteristic of LGP, however, concerns the representation of
individuals. An individual in LGP is referred to as a program, and it consists of a linear list
of instructions that are executed by a so-called virtual register machine (VRM) during the
evaluation of the individual (Huelsbergen, 1996). Common LGP implementations use two-
register and three-register instructions. The three-register instructions work on two source

registers and assign the result to a third register, : .i j kr r r= + In two-register instructions, the

operator either requires only one operand, e.g. : sini jr r= , or the destination register acts as a

second operand, e.g.
iji rrr +=: (Brameier, 2003). The registers can hold floating point

values, and all program input and output is communicated through the registers.

338 Climbing & Walking Robots, Towards New Applications

Fig. 1. Schematic description of the evaluation of an individual in LGP. The input is
supplied to the input registers. The constant registers are supplied with values at
initialization. During execution by the VRM, the LGP individual manipulates the
contents of the calculation registers, by running through the sequence of instructions,
starting with the topmost instruction. When the program execution has been
completed (i.e. when the evaluation reaches the end of the program), the result is
supplied to the output registers

Note that the LGP structure facilitates the use of multiple program outputs. By contrast,
functional expressions like GP trees calculate one output only. Apart from registers assigned
as either input or output registers, a program in LGP consists of registers holding constant
values, which do not change during the program execution, as well as registers used as
temporary calculation registers. Of course, additional constants can be built during
execution, for example by adding or multiplying the contents of two constant registers and
placing the results in one of the calculation registers. The values of the input registers are
usually protected from being overwritten during the execution of the program. A
conceptual description of LGP is given in Fig. 1.
In addition to the registers, an LGP instruction consists of an operator. Operations
commonly used in LGP are arithmetic operations, exponential functions, trigonometric
functions, Boolean operations, and conditional branches (Brameier, 2003). Conditional
branching in LGP is usually defined in the following way: If the condition in the IF
statement evaluates to true, the next instruction is executed. If, on the other hand, the
condition in the IF statement evaluates to false the next instruction is skipped, and program
execution jumps to the subsequent instruction instead (i.e. the first instruction after the one
that was skipped). The evolutionary search process of LGP begins with a randomly

Evolution of Biped Locomotion Using Linear Genetic Programming 339

generated initial population, and is driven by the genetic operators selection, crossover and
mutation. Selection favors individuals with high fitness values.

Fig. 2. Two-point crossover in LGP. Two crossover points are randomly chosen in each
parent’s genome. The instructions between the crossover points are swapped, and the
resulting individuals constitute the offspring

Any of the fitness-proportionate selection schemes commonly associated with EAs, or
tournament selection, may be applied with LGP. Crossover works by swapping linear
genome segments of parent individuals as shown in Fig. 2. The mutation operator simply
replaces a randomly chosen instruction by another, randomly generated, instruction.
Finally, as in any application involving an EA to search for a sufficiently good solution in a
complex problem domain, finding a proper fitness measure that guides the evolution in the
desired direction is crucial. This issue will be further discussed in Subsects. 3.1.4 and 3.2.4.

2.3 Evolution in Physical Robots Versus Simulations

In the work described in this chapter, evolution of robot controllers has been studied using
realistic, physical simulators. Furthermore, in previous work, as well as in the work of other

340 Climbing & Walking Robots, Towards New Applications

researchers, evolution of gait programs in real, physical robots has been investigated as well
(Wolff and Nordin, 2001; Wolff et al., 2007; Ziegler et al., 2002). As clearly shown by those
examples, evolution in real, physical hardware is indeed achievable. In general, however,
evolution in hardware is much more challenging than evolution in simulators, for several
reasons: First, evolution in real robots can be very demanding for the hardware (i.e. the
robots), thus requiring frequent replacement of parts such as servo motors. Obviously, this
problem does not occur in simulations.
Second, the process of evolution in a simulator can relatively easily be parallelized, given
that appropriate computational resources are available. A straightforward approach for
parallelization is to divide the population into a number of subpopulations, or demes, where
each deme is assigned to a separate processor. In such applications, individuals are allowed
to migrate (with low probability) from one deme to another during evolution. A
corresponding parallelization in the case of evolution in real, physical robots would be more
difficult and costly: It would require multiple instances of the robot, as well as duplicate
experimental environments. However, there are some examples of an ER methodology,
where the entire evolutionary process takes place on a population of physical robots (Ficici et
al., 1999; Watson et al., 1999).
Third, evaluation of individuals in simulators can often be carried out several times faster
than real-time, which is not the case for evaluation of individuals in real robots: Evolution in
physical robots is very time-consuming, something that normally restricts the number of
evaluated generations considerably (Wolff and Nordin, 2001; Wolff et al., 2007).
While evolution in simulators is more convenient from the researcher’s viewpoint than
evolution in physical robots, the simulation approach presents other problems. The main
issue concerns whether the controllers obtained from the simulation can be transferred to a
real, physical robot. This problem is referred to as the reality gap (Jakobi et al., 1995).
Although there are some serious difficulties associated with the process of transferring
evolved programs to a real, physical robot, for the type of study presented here there is no
realistic alternative to simulations: Evolution of bipedal gait controllers, in the way
described in this chapter, could hardly be achieved directly in a real, physical robot, due to
the large number of evaluations required in order to obtain useful results. Furthermore,
regardless of the difficulties involved in transferring simulations results to physical robots, a
simulation study may provide valuable qualitative insight concerning, for example, the
choice of suitable sensory modalities, before the (often costly) construction of a physical
robot is initiated.

3. LGP for Bipedal Gait Generation

While LGP can, in principle, be applied to almost any optimization problem, some
adjustments and special considerations are of course needed in complex applications such as
gait generation. In the work described here, two different implementations of LGP were
used, namely (1) an implementation in the C language using the Open Dynamics Engine1

(ODE) physics simulator, and (2) an implementation using the EvoDyn physics simulator
(Pettersson, 2003). In the following subsections these two implementations will be described
in detail.

1
http://ode.org/

Evolution of Biped Locomotion Using Linear Genetic Programming 341

Fig. 3. The leftmost panel shows the bipedal model used in the ODE simulations, and the
second panel from the left shows its kinematics structure with 26 DOFs. The two
right panels show the 14-DOF robot model used in the EvoDyn simulations

3.1 ODE Implementation

3.1.1 Physics Simulator

In the first implementation the ODE simulator was used. This simulator is available both for
the Windows and Linux platforms. In ODE, the equations of motion are derived from a
Lagrange multiplier velocity-based model, and a first order integrator is employed. The
bipedal model used in connection with ODE has 26 degrees of freedom (DOFs) and is
shown in the two leftmost panels of Fig. 3.

3.1.2 Controller Model

In the ODE implementation, a motor is associated with each joint. The physics engine is
implemented in such a way that the motors can be controlled by simply setting a desired
speed and a maximum torque that the motor will use to achieve that speed. However, in
this implementation the speed and maximum torque values of each joint motor were pre-
set. Thus, the evolving controller just has to set the rotational direction, (+) or (), for each
joint of the robot.
The control loop as a whole is executed in the following way: (the numbers below
correspond to the numbers shown in Fig. 4) (1) At time step t the robot’s sensors receive
perceptual input S, which is fed into the sensor registers. Simultaneously, the robot’s current
joint angles are recorded in both the input and output (I/O) registers, and in the calculation
registers (the constant registers were supplied with values at the LGP initialization). (2) The
VRM then executes the program specified by the LGP-individual, manipulating the contents
of the calculation registers. During this stage, the I/O, sensor, and constant registers are
read-only. (3) When program execution has been completed (i.e. when the last instruction of
the program has been executed), motor signal generation (MSG) is initiated: A modified
signum function, defined as

>+

<−

=

otherwise

kxif

kxif

x

0

1

1

)(ε (1)

342 Climbing & Walking Robots, Towards New Applications

Fig. 4. Schematic depiction of the flow of information through the robot control system,
which consists of the following main parts: The LGP-individual, which specifies the
control program, the VRM, which interprets and executes the LGP individual, the
MSG module, which generates the actual motor signals, and the registers, which
constitute the interface between the control system and the robot

is then applied to the contents of the calculation registers, and the result is placed in the I/O
registers. The value of the parameter was empirically determined to 0.12, and this value

was used throughout the simulations. (4) These motor signals are then sent to the robot for

execution in time step Kt + . Thus, motor signals are only updated every thK time step, in

order to avoid very rapid (and therefore unrealistic) oscillations of the joints.

3.1.3 Simulation Setup

The ODE implementation was used in 60 independent simulation runs, in which the effects
of varying specific parameter settings were examined, as illustrated in Table 3. In these
simulations the robot was controlled by a program specified by an LGP-individual, as
described in the previous subsection. Current joint angles were used as input to the
controller, together with measurements, obtained directly from the physics simulation, of
linear and angular accelerations of certain body parts of the robot.

The registers used by the VRM were implemented in the following way: Registers
261 rr −

were used as input and output registers, i.e. they were fed with the robot’s current joint
angle positions in the input stage of the control loop, and then fed with motor signals in the

Evolution of Biped Locomotion Using Linear Genetic Programming 343

Table 1. Instruction set used in the simulations

output stage. There was one register of this type associated with each DOF of the robot. The

registers
5227 rr − were assigned as internal calculation registers of the VRM, i.e. they could

be used to store intermediate results of the computations. At the beginning of the LGP run,

registers
5553 rr − were supplied with constant values, and finally, registers

6756 rr − were

associated with sensor input. The sensor signals used were the linear acceleration rates of
the robot’s feet in three dimensions, and the linear and angular acceleration rates of the
robot’s head, also in all three dimensions. A first-order, moving average filter with a
window size of ten time steps was used with the sensor signals. In this implementation an
instruction was encoded as a set of integers, e.g. {55, 51, 3, 42}. The first and second elements
of an instruction refer to the registers to be used as arguments, the third element
corresponds to the operator, and the last element determines where to put the result of the
operation. The complete instruction set is shown in Table 1. The arithmetic operators used
here were encoded in the chromosome as add = 1, sub = 2, mul = 3, div = 4, and sine = 5.

Conditional branching operators were encoded in the third element as [] [])(6 krjrif >= ,

and [] [])(7 krjrif ≤= . When decoded, the instruction given above as an exmple is

interpreted as r[42] = r[55] × r[51]. Furthermore, in order to avoid division by zero, a slightly
modified division operator was defined such that, if the denominator was exactly equal to

zero, the operator returned a large, but finite, constant value, here set to 810 .

In the simulations, all individuals started from the same upright pose, oriented with their
sagittal plane parallel to the x-axis. All the individuals were evaluated for a time period of
36 seconds, long enough for the robot to have the possibility of completing several gait
cycles.
There were several ways in which the evaluation process of an individual could be
terminated: First of all, there was, as already mentioned, a maximum allowed evaluation
time for every individual. Second, if an individual caused the robot to fall over before its
maximum evaluation time was reached, the evaluation was automatically terminated.
Third, excessive energy consumption, as described below, could also cause the termination
of an individual. Last, in order to speed up the evolutionary process, another conditional
termination criterion was introduced, defined according to the following expression:

344 Climbing & Walking Robots, Towards New Applications

c

cc

i

c

i

iF

t

iiF +
<

+)(
 (2)

Table 2. Parameters used in the ODE-based simulations

where)(iF equals the fitness contribution at time step
ci Ft , and

ci are constants, set to 20.0

and 1000 respectively. The interpretation of the above inequality is that the fitness
contribution in each time step should grow at least linearly with time. The right hand side of
the inequality is a constant, specifying the minimal growth rate accepted. If the expression
evaluates to true at some point, evaluation of that individual is terminated immediately.
Thus, with this termination criterion, individuals that spent most of their evaluation time
standing idle were terminated more quickly than would otherwise have been the case,
resulting in a significant saving of simulation time. In addition, such individuals
automatically received a lower fitness value, as a result of the premature termination.
Furthermore, in order to favor the emergence of human-like gaits, an energy discharging
function was included in the simulations. It was motivated by the fact that human bipedal
locomotion is very energy efficient, compared with the gaits of humanoid robots. For
instance, the state-of-the-art Honda humanoid Asimo uses at least 10 times the energy
(scaled) of a typical human when walking (Collins et al., 2005). Each individual was allowed
only to use a specific amount of energy as it moved. In general, the work performed by a

(generalized) force in circular motion, moving from an angle
aϕ to

bϕ , is defined as

ϕ
ϕ

ϕ

dW
b

a

ba Μ= (3)

where Μ is the applied torque. The energy consumption
jtE of the thj joint during time

step t equals the work performed by that joint during the time step. In the simulations, time

was discrete, and the applied torque was constant during each time step. Thus, the total
energy consumption is given by:

Evolution of Biped Locomotion Using Linear Genetic Programming 345

jtbajtajtb
tj

jt
tj

tot EE ,,,
,,

)(Μ−== ϕϕ (4)

When the total energy consumption
totE reached some predefined value, evaluation of that

individual was terminated.

3.1.4 Optimization Procedure

The optimization was carried out using a steady-state EA with tournament selection. The
tournament size was set to four. Furthermore, two-point crossover and mutation, as
described in Subsect. 2.2, and in (Brameier, 2003), were implemented. In the 60 independent
simulation runs performed, specific parameter values were examined according to Table 3.
In order to guide the evolution towards human-like gaits, much time was spent on finding
an appropriate fitness function. First, in a previous study by (Wolff and Nordin, 2003) it was

Table 3. Parameters examined in connection with the ODE-based simulations

assumed that including a term in the fitness function measuring the height of the robot’s
center of mass above the ground should be important. However, it was found that such a
term did not improve the results: The robot was instead prevented from moving freely
enough to improve its gait. Consequently, that term was simply skipped.
Second, another problem arose when the evolved gait controllers had reached a level of
performance where they could balance the robot in an upright standing pose. In order to
reach higher levels of fitness they just let the robot stand idle almost until the end of the
evaluation time, and then the robot took a large leap forward. By doing so, the controllers
obtained a reward for distance covered over the trial, and the fact that the robot would have
fallen to the ground, had the evaluation time been slightly longer, did not affect the fitness
negatively. Finally, a good fitness measure was found to be the following:

)(
1

LR

N

t

xxF +=
=

 (5)

where N is the number of time steps in the simulation and
Rx and

Lx are the position

coordinates of the robot’s right and left foot, respectively, in its initial direction of heading,
along the x-axis. The motivation for this fitness measure is that it gives a small reward in

346 Climbing & Walking Robots, Towards New Applications

each time step. Thus, with this measure, individuals that remain idle for a large part of the
evaluation time receive lower fitness. Thus, for a given distance covered, this fitness
measure favors a gradual movement, rather than a quick leap towards the end of the
simulation time.

3.2 EvoDyn Implementation

As mentioned earlier, in the ODE implementation described above, the user sets target
speeds rather than joint torques. In order to make it possible to explicitly specify a more
natural (sinusoidal) variation in the control torques, a different implementation was tried as
well. In this implementation, the EvoDyn simulation library, developed at Chalmers
University of Technology, was used (Pettersson, 2003).

3.2.1 Physics Simulator

Implemented in object-oriented Pascal, EvoDyn is capable of simulating tree-structured
rigid-body systems and runs on both the Windows and Linux platforms. Its dynamics
engine is based on a recursively formulated algorithm that scales linearly with the number
of rigid bodies in the system (Featherstone, 1987). For numerical integration of the state
derivatives of the simulated system, a fourth order Runge-Kutta method is used.
Visualization is achieved using the OpenGL library2. A fully three-dimensional bipedal
robot with 14 DOFs, shown in the two rightmost panels of Fig. 3, was used in the
simulations.

3.2.2 Controller model

In EvoDyn, torques are applied directly to each joint. In the EvoDyn-based simulations, the
torque on joint i varied according to

.14,,1),sin()(=+= itkAtr iiii δ (6)

where, in turn, the values of the parameters
ii kA , and

iδ were allowed to vary slowly, the

rate of variation being determined by the output from a VRM. Letting z denote an

arbitrary parameter (
ii kA , or

iδ) the variation was taken as

d
tanh

d

z
c r

t
= (7)

where c is a constant and r an output register from the VRM, corresponding to the

parameter in question. The tanh function was introduced in order to limit the rate of

variation to the interval []cc,− . Thus, even in cases where the contents of the output

registers varied strongly between time steps, the variation in the corresponding parameter
would be more gentle than in the ODE implementation described above, provided, of
course, that the value of c was sufficiently small.

2
http://opengl.org

Evolution of Biped Locomotion Using Linear Genetic Programming 347

In the EvoDyn implementation, the perceptual input consisted of (1) current joint angles for
the 14 joints, and (2) readings from eight touch sensors (four under each foot), filtered using
a moving average with a window size of 25 time steps. The time step length was 0.002 s, and
the maximum simulation time was set to 20 s.
The control loop for the simulation was quite similar to the one used in the ODE

implementation: Every thK time step, the perceptual input was measured, and stored in the
sensor registers (see the next subsection for a description of the registers) of the VRM. Next,
the VRM executed the program specified by the LGP-individual, thus modifying the
contents of the calculation registers. The contents of the output registers were then used for

computing the variation of the parameters
ii kA , and

iδ , as described above. Finally, the

torques were applied to the robot’s joints. The interval (number of time steps) K between
successive updates was set to 25. Between updates, the applied torques were constant.

3.2.3 Simulation Setup

In the EvoDyn implementation, a hybrid evolutionary algorithm was used, in which the
genome of the individual consisted of two chromosomes: one that specified the sequence of
instructions executed by the VRM (i.e. the LGP-individual, using the same nomenclature as
for the ODE-based simulations), and one that set the initial values (for the individual in

question) of the 42 parameters
ii kA , , and

iδ as well as the 42 parameters (c, in Eq. (7))

determining the rate of variation of
ii kA , , and

iδ . Thus, the second chromosome was used

as in a standard genetic algorithm, i.e. essentially as a lookup-table.
Compared to the ODE implementation, a slightly different specification of registers (for the

VRM) was used: Registers
141 rr − were used as input registers, storing the joint angles. In

addition, registers
7063 rr − were used for storing the (filtered) readings from the eight

contact sensors under the feet. Registers
15r 59r were used as calculation registers, whereas

registers
6260 rr − were used for storing the constant values 0.1, 0.01, and 0.001, respectively.

Registers
5915 rr − were initialized to zero before each execution of the LGP-individual. Once

every thK time step, when the execution of the LGP-individual had been completed, the

contents of registers
2815 rr − were used as output determining the variation in the

parameters
iA , as in Eq. (7). Similarly, the contents of registers

4229 rr − and
5643 rr − were

used for determining the variation of
ik and

iδ , respectively. The instruction set was the

same as for the ODE implementation, see Table 1.
As in the ODE implementation, a combination of termination criteria was used during the
evaluation of individuals. Simulations were terminated if either (1) the maximum
simulation time was reached, (2) the center-of-mass of the robot dropped below a pre-
specified threshold (indicating that the robot had fallen over), or (3) the center-of-mass of
the upper body dropped below that of the waist, indicating that the robot was attempting to
use the upper body as a third leg. In some runs, additional termination criteria were added.
For example, simulations could be terminated if the robot deviated strongly from a straight-
line path or if it took a very long initial step (in which case it would gain an immediate
fitness increase, but would then find it difficult to retain its balance).

348 Climbing & Walking Robots, Towards New Applications

3.2.4 Optimization Procedure

In the EvoDyn-based simulations, an EA with population size P was used. Tournament
selection was used, again with each tournament again involving four individuals. However,
in the EvoDyn-based simulations, generational replacement was used instead of steady-state
replacement. For the first chromosome (specifying the program executed by the VRM), two-
point crossover was used whereas, for the second chromosome, a single crossover point was
used.
Several different fitness functions were tried, following essentially the sequence described in
Subsect. 3.1.4 above. In the end, the fitness measure was taken as in Eq. (5), but with a
punishment for sideways deviation, i.e.

00

1

(LLRRLR

N

t

yyyyxxF −−−−+=
=

 (8)

where 0

Ry and 0

Ly denote the initial y-coordinates of the feet.

4. Results

In this section the results obtained with the two different implementations will be presented,
starting with the results from the ODE-based simulations.

4.1 Results from the ODE implementation

The parameter values examined in the ODE-based simulations are shown in Table 4, and the
simulation results are summarized in Table 5. The parameters were varied, one at a time,

from their default values, resulting in 20 unique parameter combinations (thus, not all
54

possible parameter combinations were tested). In order to increase the reliability of the

results, each parameter setting was evaluated in three separate runs. In Table 5, max)(maxf

denotes the best fitness value obtained in any of the three separate runs for the parameter
setting in question,

maxf
 denotes the average of the best fitness values obtained in the three

runs and s)(maxf denotes the standard deviation. Finally,
avgf denotes the average (over the

three runs) of the average fitness values (taken over the population).

Table 4. The different parameter settings examined in the ODE-based simulations. The
default values are typeset in italic

Evolution of Biped Locomotion Using Linear Genetic Programming 349

The best overall fitness values were obtained for the parameter settings

128, 128, 0.8, 0.2, and 256i c mut iP L p r E= = = = = and 256=iE . As is clear from Table

5, the default parameter values of P and
mutr produced the best fitness values. The (default)

value of 0.8 for the parameter
cp also gave the best result, at least in terms of the

maxf
 and

avgf
 fitness values. On the contrary, when considering only the best fitness value of a single

individual, a cp value of 0.0 (i.e. only mutation used) gave better results, albeit with a large

standard deviation. For
iL and

iE , the best values turned out to be 32 and 256,

respectively. It should be noted that, with a few exceptions, the difference in performance
between the various parameter settings is not statistically significant.
The best individual found had a fitness value of 8958. During its 36 s evaluation time (4000
time steps), the robot covered a distance of 1.93 m. The graphs of Fig. 6 show covered
distances,)(td , for the best individual found and for two other individuals, for comparison.

As is clear from the figure, the best individual (i.e. the one labeled ’8958’) moved the longest
distance during the evaluation time. At the end of the evaluation period, however, it fell
backwards, an event indicated by the drop in the graph of)(td at the end. The other two

individuals both remained on their feet for the whole evaluation period, but they received
lower fitness values. The cyclic nature of the robots’ movements can be seen as oscillations
in the curves shown in the figure.

Table 5. Results from the parameter study using the ODE implementation. The first column

shows the fitness values of the best individual, max)(maxf obtained for each

parameter setting; The second and third columns show the averages,
maxf , over the

three runs (for each parameter setting) of the best fitness values as well as the

standard deviations s)(maxf (over the three runs) of the same values; The fourth

350 Climbing & Walking Robots, Towards New Applications

column shows the average
avgf (over the three runs) of the average fitness values

in the population. All values were measured after 25000 selection steps
(tournaments). Each of the five partitions of the table shows the variations of a
single parameter value. Numbers in bold represent the best fitness values of each
partition

4.2 Results from the EvoDyn implementation

As will be further discussed below, the gaits obtained using the ODE implementation were,
in fact, not very human-like. In order to try to overcome this problem, the EvoDyn
implementation, allowing direct sinusoidal variation in the control torques, was tested.
Several runs were carried out, using population sizes)(P in the range [30, 500], and initial

lengths of the LGP programs (obtained from the first chromosome, as described in Subsect.
3.2) in the range [8, 512].
In most runs, the best evolved controller managed to keep the robot upright for the duration
of the simulation (20 s, corresponding to 10000 time steps). Furthermore, the robots
normally managed to take one or a few human-like steps forward, as can be seen in Fig. 7.
However, continuous human-like walking was not achieved: After the first few steps, the
robot normally got stuck with the back foot seemingly glued to the ground. However, in a
few rare cases

Fig. 5. Top panel: Walking scene of the bipedal robot in the ODE-based simulations. Starting
from the left, the double support phase is depicted (a), followed by the single support
phase with the left foot in swing motion (b). Then another double support phase is
shown (c), followed by single support phase with the right foot in swing motion (d).
Finally, the gait cycle is completed with a double support phase (e). Bottom panel: Plot
of the depicted gait cycle. The graphs show the height above ground,)(th , of the

center-of-mass of the left foot (solid line) and the right foot (dashed line),
respectively. The vertical lines indicate the double- and single support phases (a)
through (e)

Evolution of Biped Locomotion Using Linear Genetic Programming 351

the evolved robots would walk essentially as in the ODE implementation, taking very short
steps. An example of such a case is shown in Fig. 8. Here, the length of the first step was
roughly equal to the length of the foot. The robot then moved the back foot in line with the
front foot. All subsequent steps were significantly shorter, as indicated by the two rightmost
panels of the figure. Note the somewhat peculiar, backwards-leaning posture of the robot.

5. Discussion and Conclusion

This study has been centered on essentially model-free evolution of bipedal gaits, in which
the controller was not provided with any model of the bipedal robot, neither any a priori
knowledge on how to walk. In both the ODE and EvoDyn implementations, the gait-
generating controller programs were evolved starting from random sequences of basic LGP
instructions (supplemented by initial values of the parameters used for specifying the
torques, in the EvoDyn case).

Fig. 6. Graphs of covered distances in the ODE-based simulations,)(td , during 4000

evaluation time steps, for three different individuals. These individuals received
fitness scores of 8958, 5728 and 5591, respectively. The individual with fitness value
8958 was actually the best individual found in any run

With the ODE implementation, evolution generated individuals that made the simulated
robot walk forward almost indefinitely, albeit very slowly. In fact, some of the best
individuals were actually capable of producing locomotion behavior lasting more than
thirty times the evaluation time used during evolution. For example, the individual labeled
’5592’ was capable of keeping the robot upright and (slowly) walking for at least 20 minutes.
However, no individuals obtained with the ODE implementation reached a walking speed
exceeding 0.054 m/s. Considering the fact that the dimensions of the simulated robot were
similar to those of a (small) human being, this is indeed a very low walking speed. Even the
best individuals made the robot lift its feet only a small distance above the ground while
walking, and the step length was also very small (see Fig. 5). As a result, the walking speed
of the robot was very low. It appears that these individuals had difficulties in activating the
knee joints very much, instead relying on the hip joints, making each step quite short.

352 Climbing & Walking Robots, Towards New Applications

A possible reason for these somewhat discouraging results may be derived from the manner

in which joint torques (or set speeds, in the ODE case) were generated: Every thK time step
of a simulation, the robot must execute its LGP program, generating torque values based on
current sensor readings. While an LGP program can, in principle, provide any form of
variation in the registers of the VRM, it is rather unlikely to find, in a huge search space, the
kind of smooth, cyclic variation generally associated with bipedal locomotion. This
realization prompted the use of the second (EvoDyn) implementation, which allows direct
setting of the control torques. Here, a slightly different approach was used, in which
sinusoidally varying torques were applied, and the LGP program was used for determining
the rate of variation of the parameters specifying the sinusoidal torques. With this
implementation, the evolved individuals did indeed take larger steps or, rather, one large
step. After the first step (or, in rare cases, a few steps), the evolved robots generally had
difficulties proceeding: Either they simply fell over, or (more commonly) they stopped,
incapable of moving the back foot forward. The obvious way of avoiding large initial steps
is to alter the fitness measure so that large steps are discouraged, for example by reducing
the fitness if the distance (in the x-direction) between the two feet exceeds a certain

Fig. 7. The left panel shows the initial posture used in the EvoDyn-based simulations. The
two panels on the right show typical first steps taken by evolved individuals. As can
be seen, the first step was commonly quite long, making it difficult for the robot to
maintain its posture in subsequent steps

Fig. 8. An example of a successful gait obtained with the EvoDyn implementation. With the
exception of the first two steps, the robot moved by taking very small steps

Evolution of Biped Locomotion Using Linear Genetic Programming 353

threshold. This approach was indeed tried and while the step length was reduced, the
modification instead generated other unwanted behaviors. For example, many individuals
started walking on their toes, much like a ballet dancer (but, alas, with much less skill), in
order to minimize the distance between the feet in the direction of motion. Further
modifications of the fitness measure, intended to remove also these adverse effects, only
caused other problems to emerge.
These problems are indicative of a more general difficulty commonly present in the
evolution of bipedal gaits, namely the problem of specifying a good fitness measure. As
mentioned above, a significant effort was made in order to find the best possible fitness
measure. Naive candidates generally give poor results. For example, if the fitness measure is
taken as the distance walked (measured, for instance, by the position of the robot’s center-
of-mass), the robot will simply throw its body forward. Attempts at modifying the fitness
measure to avoid such behaviors normally create more problems than they solve: There is
always some loophole that evolution can use in order to obtain high fitness values without,
at the same time, walking properly. These problems, of course, stem from the difficulty of
going from a more or less random starting point to a state of walking: Even though human-
like, continuous walking would generate higher fitness values than any of the behaviors that
actually emerge, finding such a solution in the gigantic search space of all possible ways of
specifying joint torques is very difficult indeed.
In the end, essentially the same fitness measures were used in both implementations (with
an added punishment for sideways deviation in the EvoDyn case), see Eq. (8). By integrating
the positions of the feet (in the direction of motion) this fitness measure allows the ODE
implementation to generate careful, slow steps. The EvoDyn implementation, being forced
to apply sinusoidal torque variations, had more difficulties in generating such gaits, even
though they did appear in rare cases.
A further explanation for the somewhat poor results with respect to gait quality obtained in
the simulations presented here compared, for example, to the results obtained in (Wolff et
al., 2006), could be the choice of sensor feedback: In the implementations used here, the
feedback consisted of joint angles supplemented by a balancing sense (in the ODE case) or
touch sensors in the feet (in the EvoDyn case). However, unlike the simulations in (Wolff et
al., 2006), which were based on a more elaborate structure involving central pattern
generators (CPGs), the feedback did not include the angles of the waist, thigh, and leg
relative to the vertical axis. Apparently, this feedback seems to be more important (and
perhaps also easier for the controller to interpret and use) than the feedback signals used in
the study presented here. A thorough investigation of this issue is a topic for future work.
On the other hand, it is known that tactile feedback from the foot, indicating foot-to-ground
contact, is essential for human locomotion (Van Wezel et al., 1997).
To summarize, the current study has shown that entirely model-free evolution of bipedal
gaits (as in the ODE case) is indeed feasible, but that the generated gaits, while stable, are
unlikely to be very human-like.

6. Acknowledgment

The authors wish to thank Dr. Jimmy Pettersson for providing the EvoDyn simulation
library, and Mr. David Sandberg for valuable comments on the manuscript.

354 Climbing & Walking Robots, Towards New Applications

7. References

Beer, R. D., Quinn, R. D., Chiel, H. J., and Ritzmann, R. E. Biologically inspired approaches
to robotics: What can we learn from insects? Communications of the ACM, 40(3):30–
38, 1997.

Bekey, G. A. Biologically inspired control of autonomous robots. Robotics and Autonomous
Systems, 18(1–2):21–31, 1996.

Boeing, A., Hanham, S., and Bräunl, T. Evolving autonomous biped control from simulation
to reality. In Proceedings of the Second International Conference on Autonomous Robots
and Agents, pages 440–445, Palmerston North, New Zealand, 2004.

Brameier, M. On Linear Genetic Programming. PhD thesis, Dortmund University, Dortmund,
Germany, 2003.

Collins, S. H., Ruina, A. L., Tedrake, R., and Wisse, M. Efficient bipedal robots based on
passive-dynamic walkers. Science, 307:1082–1085, 2005.

Featherstone, R. Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.
Ficici, S., Watson, R., and Pollack, J. Embodied evolution: A response to challenges in

evolutionary robotics. In Proceedings of the Eighth European Workshop on Learning
Robots, pages 14–22, Lausanne, Switzerland, 1999.

Fujimoto, Y., Obata, S., and Kawamura, A. Robust biped walking with active interaction
control between foot and ground. In Proceedings of the International Conference on
Robotics and Automation, volume 3, pages 2030–2035, Leuven, Belgium, 1998.

Furusho, J. and Sano, A. Sensor-based control of a nine-link biped. International Journal of
Robotics Research, 9(2), 1990.

Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. The development of Honda humanoid
robot. In Proceedings of the International Conference on Robotics and Automation,
volume 2, pages 1321–1326, 1998.

Huang, Q. and Nakamura, Y. Sensory reflex control for humanoid walking. IEEE
Transactions on Robotics and Automation, 21(5):977–984, 2005.

Huang, Q., Nakamura, Y., and Inamura, T. Humanoids walk with feedforward dynamic
pattern and feedback sensory reflection. In Proceedings of the International Conference
on Robotics and Automation, pages 4220–4225, 2001.

Huelsbergen, L. Toward simulated evolution of machine–language iteration. In Proceedings
of the First Annual Conference on Genetic Programming, pages 315–320, Stanford
University, CA, USA, 1996.

Jakobi, N., Husbands, P., and Harvey, I. Noise and the reality gap: The use of simulation in
evolutionary robotics. In Advances in Artificial Life: 3rd European Conference on
Artificial Life, LNCS 929, pages 704–720. Springer, 1995.

Kajita, S. and Tani, K. Adaptive gait control of a biped robot based on realtime sensing of the
ground profile. In Proceedings of the International Conference on Robotics and
Automation, pages 570–577, 1996.

Katic, D. and Vukobratovic, M. Survey of intelligent control techniques for humanoid
robots. Intelligent and Robotic Systems, 37(2):117–141, 2003.

Li, Q., Takanishi, A., and Kato, I. Learning control of compensative trunk motion for biped
walking robot based on ZMP stability criterion. In Proceedings of the 1992 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 597–603, Raleigh,
NC, USA, 1992.

Evolution of Biped Locomotion Using Linear Genetic Programming 355

Ok, S., Miyashita, K., and Hase, K. Evolving bipedal locomotion with genetic programming
—a preliminary report—. In Proceedings of the Congress on Evolutionary Computation,
CEC’01, pages 1025–1032, Seoul, South Korea, 2001.

Park, J. and Cho, H. An on-line trajectory modifier for the base link of biped robots to
enhance locomotion stability. In Proceedings of the International Conference on Robotics
and Automation, pages 3353–3358, 2000.

Pettersson, J. EvoDyn: A simulation library for behavior-based robotics. Technical report,
Department of Machine and vehicle systems, Chalmers University of Technology,
Göteborg, September 2003.

Pettersson, J., Sandholt, H., and Wahde, M. A flexible evolutionary method for the
generation and implementation of behaviors for humanoid robots. In Proceedings of
the 2nd International IEEE-RAS Conference on Humanoid Robots, pages 279–286,
Waseda University, Tokyo, Japan, 22-24 November 2001. Humanoid Robotics
Institute.

Quinn, R. D. and Espenschied, K. S. Control of a hexapod robot using a biologically inspired
neural network. In Proceedings of the workshop on ”Locomotion Control in Legged
Invertebrates” on Biological neural networks in invertebrate neuroethology and robotics,
pages 365–381, San Diego, CA, USA, 1993.

Reil, T. and Massey, C. Biologically inspired control of physically simulated bipeds. Theory
in Biosciences, 120(3–4):327–339, 2001.

Taga, G. Emergence of bipedal locomotion through entrainment among the neuro-musculo-
skeletal system and the environment. Physica D Nonlinear Phenomena, 75:190–208,
1994.

Takanishi, A., Ishida, M., Yamazaki, Y., and Kato, I. The realization of dynamic walking by
the biped walking robot WL-10RD. In Proceedings of the International Conference on
Advanced Robotics, pages 459–466, 1985.

Van Wezel, B. M. H., Ottenhoff, F. A. M., and Duysens, J. Dynamic control of location-
specific information in tactile cutaneous reflexes from the foot during human
walking. The Journal of Neuroscience, 17(10):3804–3814, 1997.

Wahde, M. and Pettersson, J. A brief review of bipedal robotics research. In Proceedings of the
8th Mechatronics Forum International Conference, pages 480–488, Enschede, the
Netherlands, 24-26 June 2002.

Watson, R. A., Ficici, S. G., and Pollack, J. B. Embodied evolution: Embodying an
evolutionary algorithm in a population of robots. In Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 335–342, Washington D.C., USA, 1999.

Wolff, K. and Nordin, P. Evolution of efficient gait with humanoids using visual feedback.
In Proceedings of the 2nd International IEEE-RAS Conference on Humanoid Robots,
pages 99–106, Tokyo, Japan, 22-24 November 2001.

Wolff, K. and Nordin, P. Learning biped locomotion from first principles on a simulated
humanoid robot using linear genetic programming. In Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2723 of LNCS, pages 495–506,
Chicago, 12-16 July 2003.

Wolff, K., Pettersson, J., Heralic, A., and Wahde, M. Structural evolution of central pattern
generators for bipedal walking in 3D simulation. In Proceedings of the 2006 IEEE
International Conference on Systems, Man, and Cybernetics, pages 227–234, 8-11
October 2006.

356 Climbing & Walking Robots, Towards New Applications

Wolff, K., Sandberg, D., and Wahde, M. Evolutionary optimization of a bipedal gait in a
physical robot. Manuscript, to be submitted, 2007.

Yamaguchi, J., Soga, E., Inoue, S., and Takanishi, A. Development of a bipedal humanoid
robot-control method of whole body cooperative dynamic biped walking. In
Proceedings of the International Conference on Robotics and Automation, pages 368–374,
1999.

Zheng, Y. and Shen, J. Gait synthesis for the SD–2 biped robot to climb sloping surface. IEEE
Transactions on Robotics and Automation, 6(1):86–96, 1990.

Ziegler, J., Barnholt, J., Busch, J., and Banzhaf, W. Automatic evolution of control programs
for a small humanoid walking robot. In Proceedings of the 5th International Conference
on Climbing and Walking Robots, 2002.

Climbing and Walking Robots: towards New Applications

Edited by Houxiang Zhang

ISBN 978-3-902613-16-5

Hard cover, 546 pages

Publisher I-Tech Education and Publishing

Published online 01, October, 2007

Published in print edition October, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the advancement of technology, new exciting approaches enable us to render mobile robotic systems

more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a

modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible

mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide

an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers,

scientists, and engineers throughout the world. Different aspects including control simulation, locomotion

realization, methodology, and system integration are presented from the scientific and from the technical point

of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots.

The content is also grouped by theoretical research and applicative realization. Every chapter offers a

considerable amount of interesting and useful information.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Krister Wolff and Mattias Wahde (2007). Evolution of Biped Locomotion Using Linear Genetic Programming,

Climbing and Walking Robots: towards New Applications, Houxiang Zhang (Ed.), ISBN: 978-3-902613-16-5,

InTech, Available from:

http://www.intechopen.com/books/climbing_and_walking_robots_towards_new_applications/evolution_of_bipe

d_locomotion_using_linear_genetic_programming

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

