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1. Introduction 

Gait generation for bipedal robots is a very complex problem. The basic cycle of a bipedal 
gait, called a stride, consists of two main phases, namely the single-support phase and the 
double-support phase, which take place in sequence. During the single-support phase, one 
foot is in contact with the ground and the other foot is in swing motion, being transferred 
from back to front position. In the double-support phase, both feet simultaneously touch the 
ground, and the weight of the robot is shifted from one foot to the other. During the 
completion of a stride, the stability of the robot changes dynamically, and there is always a 
risk of tipping over. Thus it is crucial to actively maintain the stability and walking balance 
of the robot at all times. 
In the conventional engineering approach, there are two main methods for bipedal gait 
synthesis: Off-line trajectory generation, and on-line motion planning (Wahde and 
Pettersson, 2002; Katic and Vukobratovic, 2003). Both these methods rely on the calculation 
of reference trajectories, such as e.g. trajectories of joint angles, for the robot to follow. An 
off-line controller assumes that there exists an adequate dynamic model of the robot and its 
environment, which can be used to derive a body motion that adheres to a stability criterion, 
such as e.g. the zero-moment point (ZMP) criterion (Li et al., 1992; Huang et al., 2001; Huang 
and Nakamura, 2005; Hirai et al., 1998; Yamaguchi et al., 1999; Takanishi et al., 1985) that 
requires the ZMP to stay within an allowable region, namely the convex hull of the support 
region defined by the feet. An on-line motion controller, on the other hand, uses limited 
knowledge of the kinematics and dynamics of the robot and its environment (Furusho and 
Sano, 1990; Fujimoto et al., 1998; Kajita and Tani, 1996; Park and Cho, 2000; Zheng and Shen, 
1990). Instead, simplified models are used to describe the relationship between input and 
output. This method also relies much on real-time feedback information. 
Control policies based on classical control theory, like the ones outlined above, have been 
successfully implemented on bipedal robots in a number of cases, see e.g. the references 
mentioned in the previous paragraph. When the robot is operating in a well-known, 
structured environment, the abovementioned control methods normally work well. 
However, the success of these methods relies on the calculation of reference trajectories for 
the robot to follow. When the robot is moving in a realistic, dynamically changing 
environment such reference trajectories can rarely be specified, since the events that might 
occur can never be predicted completely. Furthermore, a control policy based on O
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conventional control theory will lead to lack of flexibility in an unpredictable environment 
(Taga, 1994). A shift towards biologically inspired control methods is therefore taking place 
in the field of robotics research (Katic and Vukobratovic, 2003). Such methods do not, in 
general, require any reference trajectories (Beer et al., 1997; Bekey, 1996; Quinn and 
Espenschied, 1993). 
A common approach in biologically inspired control of walking robots is to use artificial 
neural networks (ANNs). A review of such methods can be found in (Katic and 
Vukobratovic, 2003). It is also common to employ the paradigm of artificial evolution 
(evolutionary algorithms, EAs) to optimize controllers that may consist of, for example, 
recurrent neural networks (RNNs) (Reil and Massey, 2001), finite state machines (FSMs) 
(Pettersson et al., 2001), or any other control structure of sufficient degree of flexibility 
(Boeing et al., 2004). The controller may also consist of a structure coded by hand (Wolff and 
Nordin, 2001). A related approach is to use genetic programming (GP), which is a special 
case of EAs, to generate control structures (or programs), for locomotion control of robots, 
see (Wolff and Nordin, 2003; Ziegler et al., 2002). 
In some cases, the evolutionary optimization (or generation) of program structures may be 
applied to a certain component of the overall controller as, for example, in (Ok et al., 2001), 
where a feedback network was generated using GP. However, to the authors’ knowledge, 
there exist only a few examples, such as (Wolff and Nordin, 2003; Ziegler et al., 2002), which 
go beyond parametric optimization and generate also the complete structure of a controller 
for bipedal walking. As an additional example, in (Wolff et al., 2006), both the structure and 
the parameters of a central pattern generator (CPG) network were evolved, using a genetic 
algorithm (GA) as the optimization method. 
In the work described in this chapter, linear genetic programming (LGP) was used to 
generate gait control programs from first principles for simulated bipedal robots. Two 
slightly different approaches will be presented. In the first approach, the control system of 
the robot consisted of evolved programs generated from a completely random starting 
point, whereas, in the second approach, the joint torques were forced to vary sinusoidally, 
even though the (slow) variation of the parameters of the sinusoidal torques was evolved 
from a random starting point, using LGP. It should be noted that no explicit model of the 
bipedal system was provided to the controllers in either case, and neither were the evolved 
controllers given any a priori knowledge on how to walk (except, perhaps, for the forced 
sinusoidal variation in the second approach). 

2. Evolutionary Robotics 

Many problems in robotics, e.g. the generation of bipedal gaits, can be formulated as 
optimization problems. Traditional optimization techniques generally require the existence 

of a mathematical, fixed objective function, i.e. a function ),,,( 21 nxxxff = , where 

nxxx ,,, 21
 are the variables of the problem. In robotics applications, such as gait 

generation, the value of the objective function can normally only be obtained by actually 
letting the robot execute its behavior (for example, walking), and then studying the results. 
In such applications, even though the value of the objective function can always be obtained, 
it cannot be computed without an (often lengthy) evaluation of a (physical or simulated) 
robot. Thus, analytical expressions for, say, the derivative of the objective function cannot be 
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obtained. Furthermore, in robotics, the control system (robotic brain) being optimized does 
not always have a fixed structure. For example, in cases where the robotic control system 
consists of an ANN, the number of nodes (neurons) in the network may vary during 
optimization, meaning that the number of variables in the objective function varies as well. 
Thus, for problems of this kind, other optimization methods than the traditional ones are 
more appropriate. As the name implies, in evolutionary robotics, the optimization is carried 
out by means of EAs. In addition to coping with structures of variable size and implicit 
objective functions of the kind described above, EAs can also handle non-differentiable 
objective functions containing variables of any kind, e.g. real-valued, integer-valued, 
Boolean etc. 

2.1 Evolutionary Algorithms 

EAs are methods for search and optimization inspired by Darwinian evolution. An EA 
maintains a set (population) of candidate solutions to the problem at hand. The members of 
the set are referred to as individuals. Before the evaluation of an individual, a decoding step 
is often carried out, during which the genetic material of the individual is used for 
generating the structure that is to be evaluated. In a standard GA, as well as in certain 
implementations of GP (such as LGP), the genetic material is in the form of a linear 
chromosome consisting of a sequence of numbers referred to as genes. 
After decoding, each individual is evaluated and assigned a fitness value¹ based on its 
performance. Once the individuals have been evaluated, new individuals are generated by 
means of genetic operators such as selection, crossover, and mutation. The genetic operators 
are normally stochastic. For example, selection is normally, and rather obviously, 
implemented such that individuals with high fitness values have a higher probability of 
being selected (for reproduction) than individuals with low fitness value. Crossover 
combines the genetic material of two individuals. Mutations are random modifications of 
genes that provide the algorithm with new material to work with. 

2.2 Linear Genetic Programming 

LGP is a specific type of EA and, as such, it consists of the same basic components: A 
population of candidate solutions, the genetic operators, certain selection methods, and a 
fitness function. The main characteristic of LGP, however, concerns the representation of 
individuals. An individual in LGP is referred to as a program, and it consists of a linear list 
of instructions that are executed by a so-called virtual register machine (VRM) during the 
evaluation of the individual (Huelsbergen, 1996). Common LGP implementations use two-
register and three-register instructions. The three-register instructions work on two source 

registers and assign the result to a third register, : .i j kr r r= + In two-register instructions, the 

operator either requires only one operand, e.g. : sini jr r= , or the destination register acts as a 

second operand, e.g. 
iji rrr +=:  (Brameier, 2003). The registers can hold floating point 

values, and all program input and output is communicated through the registers. 



338 Climbing & Walking Robots, Towards New Applications 

Fig. 1. Schematic description of the evaluation of an individual in LGP. The input is 
supplied to the input registers. The constant registers are supplied with values at 
initialization. During execution by the VRM, the LGP individual manipulates the 
contents of the calculation registers, by running through the sequence of instructions, 
starting with the topmost instruction. When the program execution has been 
completed (i.e. when the evaluation reaches the end of the program), the result is 
supplied to the output registers 

Note that the LGP structure facilitates the use of multiple program outputs. By contrast, 
functional expressions like GP trees calculate one output only. Apart from registers assigned 
as either input or output registers, a program in LGP consists of registers holding constant 
values, which do not change during the program execution, as well as registers used as 
temporary calculation registers. Of course, additional constants can be built during 
execution, for example by adding or multiplying the contents of two constant registers and 
placing the results in one of the calculation registers. The values of the input registers are 
usually protected from being overwritten during the execution of the program. A 
conceptual description of LGP is given in Fig. 1. 
In addition to the registers, an LGP instruction consists of an operator. Operations 
commonly used in LGP are arithmetic operations, exponential functions, trigonometric 
functions, Boolean operations, and conditional branches (Brameier, 2003). Conditional 
branching in LGP is usually defined in the following way: If the condition in the IF 
statement evaluates to true, the next instruction is executed. If, on the other hand, the 
condition in the IF statement evaluates to false the next instruction is skipped, and program 
execution jumps to the subsequent instruction instead (i.e. the first instruction after the one 
that was skipped). The evolutionary search process of LGP begins with a randomly 
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generated initial population, and is driven by the genetic operators selection, crossover and 
mutation. Selection favors individuals with high fitness values. 

Fig. 2. Two-point crossover in LGP. Two crossover points are randomly chosen in each 
parent’s genome. The instructions between the crossover points are swapped, and the 
resulting individuals constitute the offspring 

Any of the fitness-proportionate selection schemes commonly associated with EAs, or 
tournament selection, may be applied with LGP. Crossover works by swapping linear 
genome segments of parent individuals as shown in Fig. 2. The mutation operator simply 
replaces a randomly chosen instruction by another, randomly generated, instruction. 
Finally, as in any application involving an EA to search for a sufficiently good solution in a 
complex problem domain, finding a proper fitness measure that guides the evolution in the 
desired direction is crucial. This issue will be further discussed in Subsects. 3.1.4 and 3.2.4. 

2.3 Evolution in Physical Robots Versus Simulations 

In the work described in this chapter, evolution of robot controllers has been studied using 
realistic, physical simulators. Furthermore, in previous work, as well as in the work of other 
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researchers, evolution of gait programs in real, physical robots has been investigated as well 
(Wolff and Nordin, 2001; Wolff et al., 2007; Ziegler et al., 2002). As clearly shown by those 
examples, evolution in real, physical hardware is indeed achievable. In general, however, 
evolution in hardware is much more challenging than evolution in simulators, for several 
reasons: First, evolution in real robots can be very demanding for the hardware (i.e. the 
robots), thus requiring frequent replacement of parts such as servo motors. Obviously, this 
problem does not occur in simulations. 
Second, the process of evolution in a simulator can relatively easily be parallelized, given 
that appropriate computational resources are available. A straightforward approach for 
parallelization is to divide the population into a number of subpopulations, or demes, where 
each deme is assigned to a separate processor. In such applications, individuals are allowed 
to migrate (with low probability) from one deme to another during evolution. A 
corresponding parallelization in the case of evolution in real, physical robots would be more 
difficult and costly: It would require multiple instances of the robot, as well as duplicate 
experimental environments. However, there are some examples of an ER methodology, 
where the entire evolutionary process takes place on a population of physical robots (Ficici et 
al., 1999; Watson et al., 1999). 
Third, evaluation of individuals in simulators can often be carried out several times faster 
than real-time, which is not the case for evaluation of individuals in real robots: Evolution in 
physical robots is very time-consuming, something that normally restricts the number of 
evaluated generations considerably (Wolff and Nordin, 2001; Wolff et al., 2007). 
While evolution in simulators is more convenient from the researcher’s viewpoint than 
evolution in physical robots, the simulation approach presents other problems. The main 
issue concerns whether the controllers obtained from the simulation can be transferred to a 
real, physical robot. This problem is referred to as the reality gap (Jakobi et al., 1995). 
Although there are some serious difficulties associated with the process of transferring 
evolved programs to a real, physical robot, for the type of study presented here there is no 
realistic alternative to simulations: Evolution of bipedal gait controllers, in the way 
described in this chapter, could hardly be achieved directly in a real, physical robot, due to 
the large number of evaluations required in order to obtain useful results. Furthermore, 
regardless of the difficulties involved in transferring simulations results to physical robots, a 
simulation study may provide valuable qualitative insight concerning, for example, the 
choice of suitable sensory modalities, before the (often costly) construction of a physical 
robot is initiated. 

3. LGP for Bipedal Gait Generation 

While LGP can, in principle, be applied to almost any optimization problem, some 
adjustments and special considerations are of course needed in complex applications such as 
gait generation. In the work described here, two different implementations of LGP were 
used, namely (1) an implementation in the C language using the Open Dynamics Engine1

(ODE) physics simulator, and (2) an implementation using the EvoDyn physics simulator 
(Pettersson, 2003). In the following subsections these two implementations will be described 
in detail. 

1
http://ode.org/
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Fig. 3. The leftmost panel shows the bipedal model used in the ODE simulations, and the 
second panel from the left shows its kinematics structure with 26 DOFs. The two 
right panels show the 14-DOF robot model used in the EvoDyn simulations 

3.1 ODE Implementation 

3.1.1 Physics Simulator 

In the first implementation the ODE simulator was used. This simulator is available both for 
the Windows and Linux platforms. In ODE, the equations of motion are derived from a 
Lagrange multiplier velocity-based model, and a first order integrator is employed. The 
bipedal model used in connection with ODE has 26 degrees of freedom (DOFs) and is 
shown in the two leftmost panels of Fig. 3. 

3.1.2 Controller Model 

In the ODE implementation, a motor is associated with each joint. The physics engine is 
implemented in such a way that the motors can be controlled by simply setting a desired 
speed and a maximum torque that the motor will use to achieve that speed. However, in 
this implementation the speed and maximum torque values of each joint motor were pre-
set. Thus, the evolving controller just has to set the rotational direction, (+) or ( ), for each 
joint of the robot. 
The control loop as a whole is executed in the following way: (the numbers below 
correspond to the numbers shown in Fig. 4) (1) At time step t the robot’s sensors receive 
perceptual input S, which is fed into the sensor registers. Simultaneously, the robot’s current 
joint angles are recorded in both the input and output (I/O) registers, and in the calculation 
registers (the constant registers were supplied with values at the LGP initialization). (2) The 
VRM then executes the program specified by the LGP-individual, manipulating the contents 
of the calculation registers. During this stage, the I/O, sensor, and constant registers are 
read-only. (3) When program execution has been completed (i.e. when the last instruction of 
the program has been executed), motor signal generation (MSG) is initiated: A modified 
signum function, defined as 
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<−

=
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Fig. 4. Schematic depiction of the flow of information through the robot control system, 
which consists of the following main parts: The LGP-individual, which specifies the 
control program, the VRM, which interprets and executes the LGP individual, the 
MSG module, which generates the actual motor signals, and the registers, which 
constitute the interface between the control system and the robot 

is then applied to the contents of the calculation registers, and the result is placed in the I/O 
registers. The value of the parameter  was empirically determined to 0.12, and this value 

was used throughout the simulations. (4) These motor signals are then sent to the robot for 

execution in time step Kt + . Thus, motor signals are only updated every thK  time step, in 

order to avoid very rapid (and therefore unrealistic) oscillations of the joints. 

3.1.3 Simulation Setup 

The ODE implementation was used in 60 independent simulation runs, in which the effects 
of varying specific parameter settings were examined, as illustrated in Table 3. In these 
simulations the robot was controlled by a program specified by an LGP-individual, as 
described in the previous subsection. Current joint angles were used as input to the 
controller, together with measurements, obtained directly from the physics simulation, of 
linear and angular accelerations of certain body parts of the robot. 

The registers used by the VRM were implemented in the following way: Registers 
261 rr −

were used as input and output registers, i.e. they were fed with the robot’s current joint 
angle positions in the input stage of the control loop, and then fed with motor signals in the 
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Table 1. Instruction set used in the simulations 

output stage. There was one register of this type associated with each DOF of the robot. The 

registers 
5227 rr −  were assigned as internal calculation registers of the VRM, i.e. they could 

be used to store intermediate results of the computations. At the beginning of the LGP run, 

registers 
5553 rr −  were supplied with constant values, and finally, registers 

6756 rr −  were 

associated with sensor input. The sensor signals used were the linear acceleration rates of 
the robot’s feet in three dimensions, and the linear and angular acceleration rates of the 
robot’s head, also in all three dimensions. A first-order, moving average filter with a 
window size of ten time steps was used with the sensor signals. In this implementation an 
instruction was encoded as a set of integers, e.g. {55, 51, 3, 42}. The first and second elements 
of an instruction refer to the registers to be used as arguments, the third element 
corresponds to the operator, and the last element determines where to put the result of the 
operation. The complete instruction set is shown in Table 1. The arithmetic operators used 
here were encoded in the chromosome as add = 1, sub = 2, mul = 3, div = 4, and sine = 5. 

Conditional branching operators were encoded in the third element as [ ] [ ])(6 krjrif >= ,

and [ ] [ ])(7 krjrif ≤= . When decoded, the instruction given above as an exmple is 

interpreted as r[42] = r[55] × r[51]. Furthermore, in order to avoid division by zero, a slightly 
modified division operator was defined such that, if the denominator was exactly equal to 

zero, the operator returned a large, but finite, constant value, here set to 810 .

In the simulations, all individuals started from the same upright pose, oriented with their 
sagittal plane parallel to the x-axis. All the individuals were evaluated for a time period of 
36 seconds, long enough for the robot to have the possibility of completing several gait 
cycles. 
There were several ways in which the evaluation process of an individual could be 
terminated: First of all, there was, as already mentioned, a maximum allowed evaluation 
time for every individual. Second, if an individual caused the robot to fall over before its 
maximum evaluation time was reached, the evaluation was automatically terminated. 
Third, excessive energy consumption, as described below, could also cause the termination 
of an individual. Last, in order to speed up the evolutionary process, another conditional 
termination criterion was introduced, defined according to the following expression: 
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Table 2. Parameters used in the ODE-based simulations 

where )(iF  equals the fitness contribution at time step 
ci Ft ,  and 

ci are constants, set to 20.0 

and 1000 respectively. The interpretation of the above inequality is that the fitness 
contribution in each time step should grow at least linearly with time. The right hand side of 
the inequality is a constant, specifying the minimal growth rate accepted. If the expression 
evaluates to true at some point, evaluation of that individual is terminated immediately. 
Thus, with this termination criterion, individuals that spent most of their evaluation time 
standing idle were terminated more quickly than would otherwise have been the case, 
resulting in a significant saving of simulation time. In addition, such individuals 
automatically received a lower fitness value, as a result of the premature termination. 
Furthermore, in order to favor the emergence of human-like gaits, an energy discharging 
function was included in the simulations. It was motivated by the fact that human bipedal 
locomotion is very energy efficient, compared with the gaits of humanoid robots. For 
instance, the state-of-the-art Honda humanoid Asimo uses at least 10 times the energy 
(scaled) of a typical human when walking (Collins et al., 2005). Each individual was allowed 
only to use a specific amount of energy as it moved. In general, the work performed by a 

(generalized) force in circular motion, moving from an angle 
aϕ  to 

bϕ , is defined as  

ϕ
ϕ

ϕ

dW
b

a

ba Μ=      (3) 

where Μ  is the applied torque. The energy consumption 
jtE  of the thj  joint during time 

step t  equals the work performed by that joint during the time step. In the simulations, time 

was discrete, and the applied torque was constant during each time step. Thus, the total 
energy consumption is given by: 
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)( Μ−== ϕϕ    (4) 

When the total energy consumption 
totE  reached some predefined value, evaluation of that 

individual was terminated. 

3.1.4 Optimization Procedure 

The optimization was carried out using a steady-state EA with tournament selection. The 
tournament size was set to four. Furthermore, two-point crossover and mutation, as 
described in Subsect. 2.2, and in (Brameier, 2003), were implemented. In the 60 independent 
simulation runs performed, specific parameter values were examined according to Table 3. 
In order to guide the evolution towards human-like gaits, much time was spent on finding 
an appropriate fitness function. First, in a previous study by (Wolff and Nordin, 2003) it was  

Table 3. Parameters examined in connection with the ODE-based simulations 

assumed that including a term in the fitness function measuring the height of the robot’s 
center of mass above the ground should be important. However, it was found that such a 
term did not improve the results: The robot was instead prevented from moving freely 
enough to improve its gait. Consequently, that term was simply skipped. 
Second, another problem arose when the evolved gait controllers had reached a level of 
performance where they could balance the robot in an upright standing pose. In order to 
reach higher levels of fitness they just let the robot stand idle almost until the end of the 
evaluation time, and then the robot took a large leap forward. By doing so, the controllers 
obtained a reward for distance covered over the trial, and the fact that the robot would have 
fallen to the ground, had the evaluation time been slightly longer, did not affect the fitness 
negatively. Finally, a good fitness measure was found to be the following: 

)(
1

LR

N

t

xxF +=
=

    (5) 

where N is the number of time steps in the simulation and 
Rx  and 

Lx  are the position 

coordinates of the robot’s right and left foot, respectively, in its initial direction of heading, 
along the x-axis. The motivation for this fitness measure is that it gives a small reward in 
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each time step. Thus, with this measure, individuals that remain idle for a large part of the 
evaluation time receive lower fitness. Thus, for a given distance covered, this fitness 
measure favors a gradual movement, rather than a quick leap towards the end of the 
simulation time. 

3.2 EvoDyn Implementation 

As mentioned earlier, in the ODE implementation described above, the user sets target 
speeds rather than joint torques. In order to make it possible to explicitly specify a more 
natural (sinusoidal) variation in the control torques, a different implementation was tried as 
well. In this implementation, the EvoDyn simulation library, developed at Chalmers 
University of Technology, was used (Pettersson, 2003). 

3.2.1 Physics Simulator 

Implemented in object-oriented Pascal, EvoDyn is capable of simulating tree-structured 
rigid-body systems and runs on both the Windows and Linux platforms. Its dynamics 
engine is based on a recursively formulated algorithm that scales linearly with the number 
of rigid bodies in the system (Featherstone, 1987). For numerical integration of the state 
derivatives of the simulated system, a fourth order Runge-Kutta method is used. 
Visualization is achieved using the OpenGL library2. A fully three-dimensional bipedal 
robot with 14 DOFs, shown in the two rightmost panels of Fig. 3, was used in the 
simulations. 

3.2.2 Controller model 

In EvoDyn, torques are applied directly to each joint. In the EvoDyn-based simulations, the 
torque on joint i varied according to 

.14,,1),sin()( =+= itkAtr iiii δ     (6) 

where, in turn, the values of the parameters 
ii kA ,  and 

iδ  were allowed to vary slowly, the 

rate of variation being determined by the output from a VRM. Letting z  denote an 

arbitrary parameter (
ii kA , or

iδ ) the variation was taken as 

d
tanh

d

z
c r

t
=      (7) 

where c is a constant and r  an output register from the VRM, corresponding to the 

parameter in question. The tanh function was introduced in order to limit the rate of 

variation to the interval [ ]cc,− . Thus, even in cases where the contents of the output 

registers varied strongly between time steps, the variation in the corresponding parameter 
would be more gentle than in the ODE implementation described above, provided, of 
course, that the value of c was sufficiently small. 

2
http://opengl.org
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In the EvoDyn implementation, the perceptual input consisted of (1) current joint angles for 
the 14 joints, and (2) readings from eight touch sensors (four under each foot), filtered using 
a moving average with a window size of 25 time steps. The time step length was 0.002 s, and 
the maximum simulation time was set to 20 s. 
The control loop for the simulation was quite similar to the one used in the ODE 

implementation: Every thK  time step, the perceptual input was measured, and stored in the 
sensor registers (see the next subsection for a description of the registers) of the VRM. Next, 
the VRM executed the program specified by the LGP-individual, thus modifying the 
contents of the calculation registers. The contents of the output registers were then used for 

computing the variation of the parameters 
ii kA ,  and 

iδ , as described above. Finally, the 

torques were applied to the robot’s joints. The interval (number of time steps) K  between 
successive updates was set to 25. Between updates, the applied torques were constant. 

3.2.3 Simulation Setup 

In the EvoDyn implementation, a hybrid evolutionary algorithm was used, in which the 
genome of the individual consisted of two chromosomes: one that specified the sequence of 
instructions executed by the VRM (i.e. the LGP-individual, using the same nomenclature as 
for the ODE-based simulations), and one that set the initial values (for the individual in 

question) of the 42 parameters 
ii kA , , and 

iδ  as well as the 42 parameters (c, in Eq. (7)) 

determining the rate of variation of 
ii kA , , and 

iδ . Thus, the second chromosome was used 

as in a standard genetic algorithm, i.e. essentially as a lookup-table. 
Compared to the ODE implementation, a slightly different specification of registers (for the 

VRM) was used: Registers 
141 rr −  were used as input registers, storing the joint angles. In 

addition, registers 
7063 rr −  were used for storing the (filtered) readings from the eight 

contact sensors under the feet. Registers 
15r 59r  were used as calculation registers, whereas 

registers 
6260 rr −  were used for storing the constant values 0.1, 0.01, and 0.001, respectively. 

Registers 
5915 rr −  were initialized to zero before each execution of the LGP-individual. Once 

every thK  time step, when the execution of the LGP-individual had been completed, the 

contents of registers 
2815 rr −  were used as output determining the variation in the 

parameters
iA , as in Eq. (7). Similarly, the contents of registers 

4229 rr −  and 
5643 rr −  were 

used for determining the variation of 
ik  and 

iδ , respectively. The instruction set was the 

same as for the ODE implementation, see Table 1. 
As in the ODE implementation, a combination of termination criteria was used during the 
evaluation of individuals. Simulations were terminated if either (1) the maximum 
simulation time was reached, (2) the center-of-mass of the robot dropped below a pre-
specified threshold (indicating that the robot had fallen over), or (3) the center-of-mass of 
the upper body dropped below that of the waist, indicating that the robot was attempting to 
use the upper body as a third leg. In some runs, additional termination criteria were added. 
For example, simulations could be terminated if the robot deviated strongly from a straight-
line path or if it took a very long initial step (in which case it would gain an immediate 
fitness increase, but would then find it difficult to retain its balance). 



348 Climbing & Walking Robots, Towards New Applications 

3.2.4 Optimization Procedure 

In the EvoDyn-based simulations, an EA with population size P was used. Tournament 
selection was used, again with each tournament again involving four individuals. However, 
in the EvoDyn-based simulations, generational replacement was used instead of steady-state 
replacement. For the first chromosome (specifying the program executed by the VRM), two-
point crossover was used whereas, for the second chromosome, a single crossover point was 
used. 
Several different fitness functions were tried, following essentially the sequence described in 
Subsect. 3.1.4 above. In the end, the fitness measure was taken as in Eq. (5), but with a 
punishment for sideways deviation, i.e. 
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   (8) 

where 0

Ry  and 0

Ly denote the initial y-coordinates of the feet. 

4. Results 

In this section the results obtained with the two different implementations will be presented, 
starting with the results from the ODE-based simulations. 

4.1 Results from the ODE implementation 

The parameter values examined in the ODE-based simulations are shown in Table 4, and the 
simulation results are summarized in Table 5. The parameters were varied, one at a time, 

from their default values, resulting in 20 unique parameter combinations (thus, not all 
54

possible parameter combinations were tested). In order to increase the reliability of the 

results, each parameter setting was evaluated in three separate runs. In Table 5, max )( maxf

denotes the best fitness value obtained in any of the three separate runs for the parameter 
setting in question, 

maxf
 denotes the average of the best fitness values obtained in the three 

runs and s )( maxf  denotes the standard deviation. Finally, 
avgf  denotes the average (over the 

three runs) of the average fitness values (taken over the population). 

Table 4. The different parameter settings examined in the ODE-based simulations. The 
default values are typeset in italic
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The best overall fitness values were obtained for the parameter settings 

128, 128, 0.8, 0.2, and 256i c mut iP L p r E= = = = = and 256=iE . As is clear from Table 

5, the default parameter values of P  and 
mutr  produced the best fitness values. The (default) 

value of 0.8 for the parameter 
cp  also gave the best result, at least in terms of the 

maxf
 and 

avgf
 fitness values. On the contrary, when considering only the best fitness value of a single 

individual, a cp  value of 0.0 (i.e. only mutation used) gave better results, albeit with a large 

standard deviation. For 
iL  and 

iE , the best values turned out to be 32 and 256, 

respectively. It should be noted that, with a few exceptions, the difference in performance 
between the various parameter settings is not statistically significant. 
The best individual found had a fitness value of 8958. During its 36 s evaluation time (4000 
time steps), the robot covered a distance of 1.93 m. The graphs of Fig. 6 show covered 
distances, )(td , for the best individual found and for two other individuals, for comparison. 

As is clear from the figure, the best individual (i.e. the one labeled ’8958’) moved the longest 
distance during the evaluation time. At the end of the evaluation period, however, it fell 
backwards, an event indicated by the drop in the graph of )(td  at the end. The other two 

individuals both remained on their feet for the whole evaluation period, but they received 
lower fitness values. The cyclic nature of the robots’ movements can be seen as oscillations 
in the curves shown in the figure. 

Table 5. Results from the parameter study using the ODE implementation. The first column 

shows the fitness values of the best individual, max )( maxf  obtained for each 

parameter setting; The second and third columns show the averages, 
maxf , over the 

three runs (for each parameter setting) of the best fitness values as well as the 

standard deviations s )( maxf  (over the three runs) of the same values; The fourth 
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column shows the average 
avgf  (over the three runs) of the average fitness values 

in the population. All values were measured after 25000 selection steps 
(tournaments). Each of the five partitions of the table shows the variations of a 
single parameter value. Numbers in bold represent the best fitness values of each 
partition

4.2 Results from the EvoDyn implementation 

As will be further discussed below, the gaits obtained using the ODE implementation were, 
in fact, not very human-like. In order to try to overcome this problem, the EvoDyn 
implementation, allowing direct sinusoidal variation in the control torques, was tested. 
Several runs were carried out, using population sizes )(P  in the range [30, 500], and initial 

lengths of the LGP programs (obtained from the first chromosome, as described in Subsect. 
3.2) in the range [8, 512]. 
In most runs, the best evolved controller managed to keep the robot upright for the duration 
of the simulation (20 s, corresponding to 10000 time steps). Furthermore, the robots 
normally managed to take one or a few human-like steps forward, as can be seen in Fig. 7. 
However, continuous human-like walking was not achieved: After the first few steps, the 
robot normally got stuck with the back foot seemingly glued to the ground. However, in a 
few rare cases  

Fig. 5. Top panel: Walking scene of the bipedal robot in the ODE-based simulations. Starting 
from the left, the double support phase is depicted (a), followed by the single support 
phase with the left foot in swing motion (b). Then another double support phase is 
shown (c), followed by single support phase with the right foot in swing motion (d). 
Finally, the gait cycle is completed with a double support phase (e). Bottom panel: Plot 
of the depicted gait cycle. The graphs show the height above ground, )(th , of the 

center-of-mass of the left foot (solid line) and the right foot (dashed line), 
respectively. The vertical lines indicate the double- and single support phases (a) 
through (e) 
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the evolved robots would walk essentially as in the ODE implementation, taking very short 
steps. An example of such a case is shown in Fig. 8. Here, the length of the first step was 
roughly equal to the length of the foot. The robot then moved the back foot in line with the 
front foot. All subsequent steps were significantly shorter, as indicated by the two rightmost 
panels of the figure. Note the somewhat peculiar, backwards-leaning posture of the robot. 

5. Discussion and Conclusion 

This study has been centered on essentially model-free evolution of bipedal gaits, in which 
the controller was not provided with any model of the bipedal robot, neither any a priori
knowledge on how to walk. In both the ODE and EvoDyn implementations, the gait-
generating controller programs were evolved starting from random sequences of basic LGP 
instructions (supplemented by initial values of the parameters used for specifying the 
torques, in the EvoDyn case). 

Fig. 6. Graphs of covered distances in the ODE-based simulations, )(td , during 4000 

evaluation time steps, for three different individuals. These individuals received 
fitness scores of 8958, 5728 and 5591, respectively. The individual with fitness value 
8958 was actually the best individual found in any run 

With the ODE implementation, evolution generated individuals that made the simulated 
robot walk forward almost indefinitely, albeit very slowly. In fact, some of the best 
individuals were actually capable of producing locomotion behavior lasting more than 
thirty times the evaluation time used during evolution. For example, the individual labeled 
’5592’ was capable of keeping the robot upright and (slowly) walking for at least 20 minutes.
However, no individuals obtained with the ODE implementation reached a walking speed 
exceeding 0.054 m/s. Considering the fact that the dimensions of the simulated robot were 
similar to those of a (small) human being, this is indeed a very low walking speed. Even the 
best individuals made the robot lift its feet only a small distance above the ground while 
walking, and the step length was also very small (see Fig. 5). As a result, the walking speed 
of the robot was very low. It appears that these individuals had difficulties in activating the 
knee joints very much, instead relying on the hip joints, making each step quite short. 
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A possible reason for these somewhat discouraging results may be derived from the manner 

in which joint torques (or set speeds, in the ODE case) were generated: Every thK  time step 
of a simulation, the robot must execute its LGP program, generating torque values based on 
current sensor readings. While an LGP program can, in principle, provide any form of 
variation in the registers of the VRM, it is rather unlikely to find, in a huge search space, the 
kind of smooth, cyclic variation generally associated with bipedal locomotion. This 
realization prompted the use of the second (EvoDyn) implementation, which allows direct 
setting of the control torques. Here, a slightly different approach was used, in which 
sinusoidally varying torques were applied, and the LGP program was used for determining 
the rate of variation of the parameters specifying the sinusoidal torques. With this 
implementation, the evolved individuals did indeed take larger steps or, rather, one large 
step. After the first step (or, in rare cases, a few steps), the evolved robots generally had 
difficulties proceeding: Either they simply fell over, or (more commonly) they stopped, 
incapable of moving the back foot forward. The obvious way of avoiding large initial steps 
is to alter the fitness measure so that large steps are discouraged, for example by reducing 
the fitness if the distance (in the x-direction) between the two feet exceeds a certain 

Fig. 7. The left panel shows the initial posture used in the EvoDyn-based simulations. The 
two panels on the right show typical first steps taken by evolved individuals. As can 
be seen, the first step was commonly quite long, making it difficult for the robot to 
maintain its posture in subsequent steps 

Fig. 8. An example of a successful gait obtained with the EvoDyn implementation. With the 
exception of the first two steps, the robot moved by taking very small steps 
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threshold. This approach was indeed tried and while the step length was reduced, the 
modification instead generated other unwanted behaviors. For example, many individuals 
started walking on their toes, much like a ballet dancer (but, alas, with much less skill), in 
order to minimize the distance between the feet in the direction of motion. Further 
modifications of the fitness measure, intended to remove also these adverse effects, only 
caused other problems to emerge. 
These problems are indicative of a more general difficulty commonly present in the 
evolution of bipedal gaits, namely the problem of specifying a good fitness measure. As 
mentioned above, a significant effort was made in order to find the best possible fitness 
measure. Naive candidates generally give poor results. For example, if the fitness measure is 
taken as the distance walked (measured, for instance, by the position of the robot’s center-
of-mass), the robot will simply throw its body forward. Attempts at modifying the fitness 
measure to avoid such behaviors normally create more problems than they solve: There is 
always some loophole that evolution can use in order to obtain high fitness values without, 
at the same time, walking properly. These problems, of course, stem from the difficulty of 
going from a more or less random starting point to a state of walking: Even though human-
like, continuous walking would generate higher fitness values than any of the behaviors that 
actually emerge, finding such a solution in the gigantic search space of all possible ways of 
specifying joint torques is very difficult indeed. 
In the end, essentially the same fitness measures were used in both implementations (with 
an added punishment for sideways deviation in the EvoDyn case), see Eq. (8). By integrating 
the positions of the feet (in the direction of motion) this fitness measure allows the ODE 
implementation to generate careful, slow steps. The EvoDyn implementation, being forced 
to apply sinusoidal torque variations, had more difficulties in generating such gaits, even 
though they did appear in rare cases. 
A further explanation for the somewhat poor results with respect to gait quality obtained in 
the simulations presented here compared, for example, to the results obtained in (Wolff et 
al., 2006), could be the choice of sensor feedback: In the implementations used here, the 
feedback consisted of joint angles supplemented by a balancing sense (in the ODE case) or 
touch sensors in the feet (in the EvoDyn case). However, unlike the simulations in (Wolff et 
al., 2006), which were based on a more elaborate structure involving central pattern 
generators (CPGs), the feedback did not include the angles of the waist, thigh, and leg 
relative to the vertical axis. Apparently, this feedback seems to be more important (and 
perhaps also easier for the controller to interpret and use) than the feedback signals used in 
the study presented here. A thorough investigation of this issue is a topic for future work. 
On the other hand, it is known that tactile feedback from the foot, indicating foot-to-ground 
contact, is essential for human locomotion (Van Wezel et al., 1997). 
To summarize, the current study has shown that entirely model-free evolution of bipedal 
gaits (as in the ODE case) is indeed feasible, but that the generated gaits, while stable, are 
unlikely to be very human-like. 
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