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1. Introduction  

There are more than 100 million land mines buried throughout the world, and, at present, 
the removal of these mines is primarily being done by hand. Our research group has 
suggested a mine detection method using six-legged robots, such as COMET-I, II, and III, to 
establish the land mine detection and removal technology. Mine detection by six-legged 
robots such as COMET-II and III have two manipulators at the front of the body designed 
for mine detection. Since most mine detection is performed on irregular terrain, it is 
necessary for a six-legged robot to maintain a stable posture in the mine detection using two 
manipulators. The authors have examined attitude control methods for achieving stable 
land mine detection by six-legged robot. With respect to the attitude control, we have 
examined the control method to control the height of the body and the pitching and the 
rolling angles according to the force reference signal in the perpendicular direction at the 
supporting leg. As an attitude control method, we have applied the extended sky hook 

suspension control (ESHSC) (Uchida  Nonami, 2001), the optimal servo control system 

(Uchida & Nonami, 2002), and the sliding mode control (Uchida & Nonami, 2003). These 
methods targeted COMET-II, each leg link of which is driven by a direct current motor. 
However, at present, the research is conducted using COMET-III, in an attempt to develop it 
for practical use. Leg links of the COMET-III are driven by hydraulic actuators. When the 
above-mentioned attitude control methods are applied to COMET-III, it is difficult to realize 
stable attitude control because of the delay of the hydraulic actuators. Therefore, it is 
desirable to establish an attitude control method considering the delay of the actuator. 
In the present study, as a model considering the delay of the hydraulic actuator, we 
construct a mathematical model in which inputs are the driving torque of the thigh links in 
the supporting legs and the outputs are the height of the body, the pitching angle, and the 
rolling angle. The optimal servo control system in modern control theory is designed for this 
model. The validity of the proposed control method is verified by simulations performed 
using a 3D model of the COMET-III, in which the delay of the hydraulic actuator is modeled. O
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ISBN 978-3-902613-16-5, pp.546, October 2007, Itech Education and Publishing, Vienna, Austria



Climbing & Walking Robots, Towards New Applications 300

2. Mine Detecting Six-legged Robot (COMET-III) and CAD Model 

Figure 1 shows the COMET-III mine detecting six-legged robot, which was developed at 
Chiba University. Figure 2 shows a 3D CAD model of COMET-III generated using 
mechanical analysis software. One leg of the robot has three degrees of freedom, and each 
joint is driven by a hydraulic actuator. The ankle of the leg has two degrees of freedom so 
that the sole of the entire bottom surface of the foot touches the ground. The parameters of 
COMET-III are shown in Table 1. The mass of the robot is approximately 1,200 [kgf]. The 
width of the body is 2,500 [mm], and the length of the body is 3,500 [mm]. The height of the 
body is 850 [mm]. An attitude sensor is attached to the body of COMET-III to detect the 
pitching and rolling angles. In addition, a six-axis force sensor is attached to each leg. In the 
present study, we verify the validity of the proposed attitude control method using a 3D 
model. 

Fig. 1. COMET-III mine detecting six-legged robot  

Fig. 2. 3D CAD model of COMET-III 

Table 1. Parameters of COMET-III

Weight 1,200 [kgf] 

Width of the body 2,500 [mm] 

Length of the body 3,500 [mm] 

Height of the body 850 [mm] 



Attitude Control of a Six-legged Robot in Consideration of Actuator Dynamics by Optimal Servo  
Control System

301

3. Walking Pattern 

In the present study, it is desirable that there be little risk of the robot falling down, so that 
the attitude control method is examined. Therefore, static walking, which has high stability, 
is adopted. The effectiveness of the proposed method is verified by the walking pattern of 
five supporting legs. The leg numbers of a six-legged robot are shown in Figure 3. Figure 4 
shows the walking pattern by five supporting legs. The period of the swing phase is 3 [s], 
and one period of the gait is 18 [s]. In Figure 4, the white area indicates a swing phase, and 
the black area indicates a supporting phase. Therefore, the order of the swing motion of the 
legs is II III IV I IV V.

Fig. 3. Leg numbers 
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Fig. 4. Walking pattern 

4. Attitude Control Method 

This chapter examines the attitude control method that must be applied in the case of 
walking and mine detection work on irregular terrain such as a minefield. On even terrain, 
each angle of the joint is controlled to follow desired values, which are obtained by inverse-
kinematics. However, on irregular terrain, it is difficult for only position control to keep the 
walking and attitude stable. Therefore, it is necessary for the attitude control to recover the 
body inclines by adding a force to the supporting legs. This attitude control is realized by 
controlling the force in the perpendicular direction of each supporting leg. Moreover, it is 
necessary to consider the delay of the hydraulic actuator because the hydraulic actuator is 
used for COMET-III. 
In the present study, as a model considering the delay of the hydraulic actuator, we make a 
mathematical model in which the inputs are the driving torque of the thigh link in the 
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supporting legs and the outputs are the height of the body, the pitching angle, and the 
rolling angle. In this process, we must seek the force acting the supporting legs, so that the 
force is obtained by an approximation formula using the angle and the angular velocity of 
the thigh link and the virtual spring and dumping coefficient. The delay of the hydraulic 
actuator is considered because this model calculates the force and the attitude in the 
perpendicular direction of the supporting leg from the state value of the thigh link. The 
optimal servo control system in modern control theory is designed for this model. 

4.1 Mathematical Model of the Thigh Link 

The leg links of the six-legged robot used in this research have three degrees of freedom, 

namely, the shoulder ( )i1θ , the thigh ( )i2θ , and the shank ( )( )6,,13 ⋅⋅⋅=iiθ . Equation (1) 

shows the transfer function of the thigh link, which is very important in the case of the 
attitude control of COMET-III. The delay model of the hydraulic actuator is approximated 
by a 1st-order Pade approximation.
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Figure 5 shows the step reference response of the PD feedback control system for the system 
shown as Eq. (1). A delay of approximately 0.2 [s] occurs. 

The description of the state space in Eq. (1) is as follows: 
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where

ix state variable vector iu input vector 

i2θ angle of each thigh i foot number 

1a , 2a , 1c , 2c  : coefficients obtained by Eq. (1). 
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Fig. 5. Step response of the thigh driven by the hydraulic cylinder 
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Fig. 6. Relationship between the angle of thigh and the force in the perpendicular direction 
of the supporting leg. 

4.2 Mathematical Model from the Input of the Thigh Link to the Attitude of the Body 

Figure 6 shows the relationship between the angle of the thigh and the force in the 

perpendicular direction of the supporting leg. In Fig. 6, til  is the length of the thigh, and eC

and eK  are the dumping and the spring coefficient of the ground, respectively. The 

following assumptions are used in Fig. 6. 

 The shank always becomes vertical to the ground ( )03 =iθ .

 The change of i2θ  is small. 

According to the above assumptions, the force iF  in the perpendicular direction of the 

supporting leg is given by the following equation: 

ietiietii ClKlF 22 θθ +=  (3) 

Substituting Eq. (2) for Eq. (3), iF  is given by the following equation: 

( ) iieietiiietii xcCcKlxcKlF 2212211 ++= iieti xcCl 232+  (4) 
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Moreover, the height, and the pitching and rolling angles of the body are controlled by 
controlling the force in the perpendicular direction of the supporting leg. The motion 
equations of the force and the moment equilibrium in the perpendicular direction and the 
pitching and rolling axes in the case of support by six legs are given by Eq. (5). Figure 7 
shows the coordinates of each foot. 

+++++=

+++++=

−+++++=

FxFxFxFxFxFxI

FyFyFyFyFyFyI

MgFFFFFFzM

rr

pp
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665544332211

654321

θ

θ  (5) 

where

M mass of the body g acceleration of gravity 

pI inertia around the pitching axis rI inertia around the rolling axis 

Substituting Eq. (4) for Eq. (5), and by defining the 24th-order state value as 

,,,,,,,,,[ 3612312111 zxxxxxx rp θθ⋅⋅⋅= T

rp z],,θθ , which consists of the state values 

of each thigh link, the pitching and rolling angles, the height of the body and its velocity, the 
following state equation is obtained: 
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Equation (6) is rewritten as follows: 

fgBuAxx ++= (7)

Here, each row shows the following:  

1st 3rd  :  1st 3rd column is Eq. (2) and shows the dynamics of Leg I. 

4th 6th  :  4th 6th column is Eq. (2) and shows the dynamics of Leg II. 

7th 9th :  7th 9th column is Eq. (2) and shows the dynamics of Leg III. 

10th 12th :  10th 12th column is Eq. (2) and shows the dynamics of Leg IV. 

13th 15th :  13th 15th column is Eq. (2) and shows the dynamics of Leg V. 

16th 18th :  16th 18th column is Eq. (2) and shows the dynamics of Leg IV. 

19th 21st :  shows the relationship among the angular velocity pθ , rθ , and z .

22nd 24th :  shows the equation of motion in Eq. (5). 

Fig. 7. Coordinates of each leg 

4.3 Optimal Servo System 

The servo system that the system shown by Eq. (7) follows to the desired value is designed. 
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 (8) 

where, z  is the error vector between the desired vector and the output vector. Equation (8) 
is given in matrix form as follows: 
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Equation (9) is described in equation form as follows: 
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rfgduBxAx gggggg +++=  (10) 

The feedback (FB) control input bu  to the actuator driving the thigh link is obtained in 

order to minimize the following cost function:  

[ ]∞
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dtRu(t)u(t)(t)Qx(t)xJ T

g

T

g
 (11) 

where ( )nnQ ×  and ( )mmR ×  are the weighting matrixes given by the design 

specifications, and 0,0 >≥ RQ . The control input to minimize Eq. (11) is as follows: 
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where ( )nnP ×  is the solution of the following Ricatti equation: 

01 =+−+ − QPBRPBPAPA T

gg

T

gg
 (13) 

Figure 8 shows a block diagram of the optimal servo control system. 

z zr x x

Fig. 8. Block diagram of optimal servo control system 

4.4 Making a Controlled System for an Uncontrolled System 

We examined the controllability for the system as Eq. (10), which is constructed using Eq. (2). 
However, it has become an uncontrollable system. The 3rd-order delay system is then 
approximated to the delay system of the 2nd-order model, which is given by following 
equation:
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In order to obtain the same results for the 3rd-order model as were obtained for the 2nd-order
model, both the values of the magnitude and the phase in the Bode diagram coincide with 

the angular velocity of the walking speed. We searched the values nω  and ζ  to satisfy the 

above condition and obtained the results of nω = 9 [rad/s] and ζ = 0.9. Figure 9 shows a 

comparison of the bode plot for the 2nd-order system and the 3rd-order system. In Fig. 9, the 
solid line shows the 2nd-order model, and the dashed line shows the 3rd-order model. The 
solid line drawn around 0.6 [rad/s] at the angular velocity in the figure shows the angular 
velocity of the walking in this research. The difference between the systems is significant in 
the high-frequency range. However, in this study, in the bandwidth of the walking speed, 
the magnitude and the phase coincide. Therefore, we consider this approximation to be 
appropriate, and so the attitude control method is designed to replace Eq. (2) with Eq. (14), 
and the effectiveness is verified. The system described by Eq. (7) becomes the 19th-order 
model. 

Fig. 9. Comparison of bode plots for the 2nd-order system and the 3rd-order system

5. 3D Simulation 

In this section, in order to verify the validity of the attitude control method considering the 
delay of the hydraulic actuator, we examine the walking characteristics on even terrain and 
on irregular terrain using the 3D model of the COMET-III six-legged robot. We then discuss 
the performance of the attitude control method considering the delay by the simulation 
results. The shoulder and shank parts of the leg links are controlled by the PD control, 

which is a very popular control method to follow the desired value  ir1θ  and  ir3θ

( )6,,2,1=ir  obtained by solving inverse-kinematics. In addition, in the case of walking 

with five supporting legs, the attitude control is applied for the five supporting legs, except for 
one swinging leg. The swinging leg is controlled by the PD control. 
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5.1 Walking on Even Terrain

Figure 10 shows the 3D simulation results of the proposed attitude control method on even 
terrain. Figures 10(a), 10(b), and 10(c) show the time response of the pitching angle, the 
rolling angle, and the height of the body, respectively. The variation of the attitude is very 
small, and the attitude control works to recover the variation. The six-legged robot can 
realize a stable walk. 

(a) Pitching angle 

(b) Rolling angle 

(c) Height of the body 
Fig. 10. Simulation results in the case of even terrain 

5.2 Walking on Irregular Terrain 

Figure 11 shows the simulation case for irregular terrain, in which the six-legged robot 
walks over a 10 [cm] high step. The six-legged robot starts to climb the step at 3 [s] and 
leaves the step at 54 [s]. Figure 12 shows the 3D simulation results for irregular terrain. 
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Figures 12(a), 12(b), and 12(c) show the time response of the pitching angle, the rolling angle, 
and the height of the body, respectively. The vibrations occur in the pitching and rolling 
angles. In addition, approximately 40 [s] is required to settle down at the height of the body 
of approximately 0 [m]. However, the influence of the step is slight and the six-legged robot 
can realize a stable walk. Moreover, Fig. 13 shows the animation results of the 3D simulation 
on irregular terrain. Figures 13(a), 13(b), and 13(c) show animations at the times of 3.45 [s], 
70.8 [s], and 136.25 [s], respectively. In Fig. 13(c), two manipulator attached to the front part 
of the body are pushed into the ground. However, this causes no particular problem, 
because it does not influence the walking operation. Based on the above-mentioned results, 
the attitude control method that considers the dynamics of the actuator proposed in the 
present study is effective. 

Fig. 11. Case of walking on uneven terrain 

(a) Pitching angle 

(b) Rolling angle 
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(c) Height of the body 
Fig. 12. Simulation results in the case of irregular terrain 

(a) Simulation time: 3.45 [s] 

(b) Simulation time: 70.8 [s] 

(c) Simulation time: 136.25 [s] 
Fig. 13. Animations of walking on uneven terrain 



Climbing & Walking Robots, Towards New Applications 312

6. Conclusion 

In the present study, we examined the attitude control method considering the delay of the 
hydraulic actuator whereby the mine detection six-legged robot can realize stable walking 
on irregular terrain without to make an orbit of the foot for irregular terrain. The following 
results were obtained. 

(1) As an attitude control method considering the delay of the actuator of the thigh links, 
we derive a mathematical model in which the inputs are the driving torque of the thigh 
links in the supporting legs and the outputs are the height of the body, the pitching 
angle, and the rolling angle. 

(2) The 3rd-order delay system is approximated as a 2nd-order delay system, and an  
optimal servo control system is applied as the attitude control method. 

(3) The validity of the proposed attitude control method is discussed based on 3D 
simulations of walking on even terrain and irregular terrain. 

The effectiveness of the proposed control method will be examined experimentally in the 
future. Moreover, the method by which to improve the transition response with the time 
delay system will be examined. 
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