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Modular Walking Robots 

Ion Ion, Ion Simionescu, Adrian Curaj and Alexandru Marin 
Politehnica University of Bucharest  

Romania

1. Introduction

Since ancient times, Man has been tempted to imagine, conceive and accomplish machines, 
which can imitate patterns of the Nature. It was even born the belief that people building 
mechanical patterns, similar to those of other beings, had a better chance, to discover the 
secrets of life. The way animals walk, the way birds fly, have always been and it will 
probably remain the sources of inspiration and tasks of the scientific research. 

The animals using their feet for walk can move freely, with substantive easiness in 
comparison with what the man-made robot can do. Animals’ locomotion is superior to that 
of the wheeled or caterpillared robot, both energetically and operationally speaking, as well 
as from the point of view of its stability, irrespective of the terrain the movement happens 
on. As compared to the Nature’s achievements, the Man, God’s pride, thanks to his 
cleverness and skills, succeeded to grasp many secrets of his creator, but he is still far from 
the Latter’s accomplishments. Never disheartened with failures Man has created 
instruments for permanent investigation and success has not failed to arrive. 

No matter what the previous generations imagined or not, the present one is creating things, 
that provide solutions to many of his strives and dreams, and this thank to the stored 
knowledge and the fresh opportunities of the technology which is in its full swing. 

Studying the simplest but the most important movement types, such as the man’s and the 
animals’ movement, has been the scientists’ most ancient preoccupation since the beginning 
of time. Mankind is so attached to the anthropomorphism, as it is almost impossible for it to 
conceive or imagine automatic systems, even equipped with artificial brain, which are not 
anthropomorphic. 

In order to reach areas hard to get to, and where Man’s life were jeopardized, the scientific 
research in time, and for different purposes, achieved mechanisms that thanks to their skills 
could cover several fields. Due to the special circumstances, regarding the vegetation and 
the terrain’s state, and viewing the environment protection, the wheeled or the caterpillar 
machines, aiming at such applications, have a restrained mobility and thus, they 
considerably destroy the environment, the vegetation, bushes and the young trees, when 
passing through. 

Walking robots protect the environment in a much better way, as their contact to the terrain 
is discrete, which considerably diminishes the area underwent to crushing; the robot’s 
weight can be optimally distributed all over its leaning surface, by controlling the forces. O
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Source: Climbing & Walking Robots, Towards New Applications, Book edited by Houxiang Zhang,
ISBN 978-3-902613-16-5, pp.546, October 2007, Itech Education and Publishing, Vienna, Austria
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Altering the distance to the ground, the robot can pass over young trees or other vegetation, 
growing in the passage area. 

Avoiding hurdles such as logs or tree trunks is a considerable advantage. Likewise, the 
movement on an unarranged terrain represents another advantage of the walking robot, as 
compared to the other types of vehicles. 

Unlike the wheeled or caterpillar robot, the walking robot is a mechatronic system, its 
practical use requiring both the computer-assisted surveillance and the thorough checking 
by the movement systems. In this century, the locomotion using feet as a movement system 
was reckoned an inefficient movement means. Nevertheless, if it is take into consideration 
the infrastructure’s costs to artificially create the roads for the wheeled robot or own roads 
for the caterpillar robot, arguments for these two robot types diminish in some of the cases. 

Walking main feature is the very fact that the movement is not affected by the terrain’s 
configuration. More and more applications requiring movement on a natural, unarranged 
terrain, made the feet-movement solution become more and more attractive. 

Here there are the main features justifying the superiority of the walking robot as compared 
to the wheeled or caterpillared ones (Hiller M., Muller J., Roll U., Schneider M., Scroter D., 
Torlo M. & Ward D., 1999): 

• the capability to move on unarranged terrains; 

• the walking robot can step over certain hurdles by changing its height (terrain 
clearance); 

• the possibility to change the configuration of the walking robot’s shift system;  

• the feet’s contact to the terrain is discontinuous (it is accomplished only in the 
leaning phase), when a foot has the opportunity to select the contact point, while 
descending on the terrain, contingent of the latter’s surface; 

• the possibility to move on a soft terrain, which is sometimes more difficult for the 
wheeled or the caterpillar robot; 

• the walking robot’s active suspension accomplished by setting the proximity and 
force sensors in the outermost part of feet, enables the movement on uneven terrain 
under stable circumstances; 

• the specific energy consumption is smaller with the movement on natural 
unarranged terrains as against other types of mobile robots; 

• the better preservation of the terrain, that the robot moves on, especially in case it is 
made use of in specific farming or forestry activities. 

Its apparent density grows higher than the normal values by the terrain settlement, namely 
its total porosity goes lower than the usual values. The artificial or anthrop sinking happens 
as a result of the heavy, insensible traffic, during the farming season, because of the 
transportation or for other reasons. The terrain settlement (compactness) is a process specific 
to the modern, intensive and strongly mechanized farming and the higher the 
mechanization level, the deeper the sinking. 

The terrain compactness has many negative effects, whatever its nature. Thus, it diminishes 
the terrain’s capability to keep water, it reduces the aeration and often considerably 
decreases the endurance to penetration and makes the terrain hard to plough. As a result of 
the terrain’s decaying its productivity strongly drops and the crops sometimes diminish by 
50 percents as compared to that on non-compacted terrains. Among the drawbacks of the 
walking robot, here they are some worth to remind: 
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• the movement checking is rather sophisticated thank to the large number of 
freedom degrees; 

• they develop rather low speed; 

• the energy consumption is higher than with the wheeled robot or that on 
caterpillars because of the many accelerations and decelerations of some elements 
in the mechanical system, during walking; 

• they claim bigger manufacture, maintenance and the exploitation costs. 

2. Structure of Walking Robot Displacement Systems 

Some of the most significant components of the walking robots are the mechanisms of the 
displacement systems. The mechanisms of the displacement system can have three or more 
degrees of freedom, and are built so that the lower end of the last element, termed P, to 
follow any trajectory from the task space. Therefore, the point P must gets over an adequate 
trajectory with respect to the robot platform. This trajectory is corresponding to the gait type 
for the displacement. Some of these mechanisms have a simple structure and one or two 
degrees of freedom, so that the shape of the trajectory of the point P may be very little 
adjusted. These displacement systems may be commanded and controlled using the simple 
equipments. The utilization of the mechanisms with complicated structure, with many ways 
of adjustment, capable to ensure the displacements of the walking robot in the various 
conditions, involves existence of a very elaborate control equipment. 

Generally, the mechanisms for the displacement systems may be divided into two 
categories: 

• plane linkages, with the frame can rotates around a vertical axis fixed on the 
platform of the walking machine; 

• spatial linkages. 

The plane linkages have commonly two degree of freedoms and can be very simple, 
consisting of two links, or with a very complicated structure. 

At all this, the lower end of the last link of the leg can get over any spatial trajectory in the 
work space. 

In Fig. 1 is shown the Bessonov (Bessonov A.P. & Umnov N.V., 1973) leg mechanism, with 
nine elements and eleven pairs. This is a triple closed mechanism with two degrees of 
freedom.

Fig. 1. Bessonov type leg mechanism 
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Fig. 2. ODEX-type leg mechanism 

The ODEX-type leg mechanism (Song S.M. & Waldron K.J., 1989) is displayed in Fig. 2. This 
mechanism with four loops has eleven elements, 14 kinematics pairs and two degrees of 
freedom.

An orthogonal legged walking robot (Bares J) is shown in Fig. 3. The robot has al least two 
movement devices and each leg can exhibit an overlapping gait with respect to the other 
ones. Each leg is made of three links, serially connected through three driven pairs. 

In Fig. 4 is shown a walking robot with six legs (Garrec P.). Each leg consist of a plane 
mechanism with one degree of freedom and constituted in such a way that the circular 
movement of a member driven by a motor is expressed by a horizontal rectilinear 
movement of the lower end of the last link. Each leg is connected to the platform by a 
revolute pair with vertical axis. 

Fig. 3. A model of walking robot with six legs 

The MERO experimental modular walking robot, built and tested at POLITEHNICA 
University of Bucharest, is shown in Fig. 5. 
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Fig. 4. Walking robot with six legs (Garrec P) 

Fig. 5. MERO modular walking robot 

Fig. 6. Model of MERO walking modular robot 
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3. Kinematics Analysis of Displacement Systems 

3.1. Mathematical model of gait for walking robots 

The walking robot, unlike the wheels or caterpillars one, uses devices analogous to the man 
or animal legs. Unlike the wheel, the leg is not a system of continuous locomotion. 
Therefore, it has to be lifted away from the support phase, moved towards the advance 
direction of the walking robot and then laid down, following another cycle of another leg. 
As the walking robot has two or more legs, these moves have to be coordinated so that the 
move is ensured in conditions of the stability of the system. In order to allow a theoretical 
approach of the gait of the walking robot it is necessary to define a lot of terms. To achieve 
and manage a walking robot it is necessary to know all the walking possibilities, because the 
selection of the legs number and its structure depends on the selected type of the gait. The 
selection of the type of gait is a very complicated matter, especially in the real conditions of 
walking on the rough terrain. Therefore, it is necessary that the terrain surface to be selected 
before the type of gait is chose. According to the definitions given by McGhee (McGhee R.B. 
& Frank A.A., 1968), (McGhee R.B. & Orin D.E., 1976) and his collaborators, completed by 
Song and Waldorn (Song S.M. & Waldron K.J., 1989), the gait can be periodic or non-periodic. 
According to these definitions it can state the following. 

The transfer phase of a leg is the period of time when the foot is not in contact with the terrain; 

the period of time in which this phase occurs is marked by τ. The leg state of a leg in the 
transfer phase is 1. 

The support phase of a leg is the period of time in which the foot is in contact with the terrain; 

the period of time when this phase occurs is called by ς. The leg state of a leg in the support 
phase is 0. 

The gait is periodic if the similar states of the same leg, during successive strokes occur at the 
same time interval for all the legs; a different type of gait is the aperiodic gait; the period of 
time when a step of the periodic gait occurs is called cycle time.

The duration of a cycle time T is the duration of a complete cycle of locomotion of a leg, during 

a periodic gait and it results from the following equation: T = ς + τ.

3.2 Kinematics analysis of leg mechanisms 

3.2.1 Positions of elements 

The walking robots are able to move on a terrain with irregular surface. As a result, the leg 
mechanisms must have at least three degrees of freedom in the transfer phase [Ion I., 
Simionescu I. & Curaj A. 2003), (McGhee R.B., Frank A.A., 1968), (Song S.M. & Waldron K.J., 
1989). An usually kinematics scheme for the leg mechanisms is displayed in Fig. 7. 
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Fig. 7. Kinematics scheme of leg mechanism 

This mechanism is build by three links, serially connected by three revolute pairs. All of the 
joints are driving ones. The lower end of the link (3) can be moved along an any spatial 
trajectory comprises in the operating field, with respect to the robot platform, with a pre-
established displacement law. 

The goal of the inverse kinematics analysis is to determine the variables of the driving pairs, 
i.e. the generalized coordinates, with respect to the position of the lower end of the link (3).
The position of the point P, located to the lower end of the link (3), is defined with respect to 
the Denavit - Hartenberg axes system attached to this element [Denavit J., & Hartenberg R.S, 
1955), (Uicker J.J.jr., Denavit J., Hartenberg R.S. 1965) by the coordinates x4P, y4P and z4P. The 
position of the point P with respect to the Denavit - Hartenberg system O1x1y1z1 attached to 
the robot platform (0) may be calculated by equation: 
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The origin O1 of the coordinate axes system attached to the robot platform is chosen in a 
convenient mode and specified by the distance s1. The direction of the O1x1 axes is arbitrary 
and must be specified. 

The leg mechanism shown in Fig. 7 has the following features: 

• the axis of the pair A is perpendicular to the axis of the pair B;

• the axis of the pair B is parallel to the axis of the pair C.

Consequently, 1 = /2, 2 = 3 = 0, s2 = s3 = 0, a1 = 0. 
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The matrix equation (1) is equivalence to three scalar equations. In order to perform an 
inverse kinematics analysis of the leg mechanism, the system (1) is solved with respect to the 
unknowns 1, 2 and 3. This is a nonlinear system and must be used an adequate numerical 
method, for example the Newton – Raphson method (Simionescu I., Dranga M. & Moise V. 
1995), (Hildegrand F.B. 1956 ). If the pair i is prismatic one, the angle i is known exactly, 
and the distance si is unknown. 

3.2.2 First time-derivatives of pair variables 

Differentiating both sides of the equation (2) with respect to the time yields: 
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Noting that the problem is to be adapted to computer operation, a linear operator matrix Q
is introduced to perform the indicated differentiation through the following definition 

i
i

i AQ
A

θ=
θ∂

∂
.

Under this definition, the Q  is found to be (Uicker J.J.jr., Denavit J., Hartenberg R.S, 1965): 
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−
=θQ .

It provides a simplified method of taking the partial derivative, especially in computer 
operation. With these the equation (2) becomes 
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Equating the matrices from equation (3) element for element, would produce a  system  of  

three  linear  equations in three unknowns, namely: 
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3.3 Second time-derivatives of pair variables 

Rather than to take the time-derivative of 
t
i

d

dθ
, 3,1=i , from equations (3), it is convenient 

to continue to approach established above in differentiating the matrix equation (3). To 
facilitate the differentiation of this equation, it is first be necessary to find an expression for 
the time derivative of the matrix product 

Bi = A1 … Ai-1Q Ai … A3,

that is 
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Again using the derivative operator to perform the differentiation, the time-derivative of the 
equation (3) is 
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Equating the matrices from equation (4) element for element, would produce a system of 

three linear equati-ons in three unknowns, namely
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problem arises, however, when one of the pairs, for instance pair i, is prismatic. The Ai

transformation matrix for this pair is essentially the same before. However, the angle i is 
known exactly, and the distance si is unknown. The linear operator matrix Qs is replaced by 
the operator Qs:
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Under this definition, the Qs matrix is found to be [30]: 
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Fig. 8 displayed the kinematics scheme of the mechanical system of a walking robot 
achieved in modular structure. Each module is made by a platform which is joined with two 
legs. The modules are joined together by the connecting kinematics chains. These chains 
have three degrees of freedom and are made from two elements that are pinned together by 
three revolute pairs. Each first and last element of the connecting kinematics chain is joined 
to a module platform. All the joints of the connecting chain are driving ones. As a result, 
each kinematic chain is a sequence of three R-type active kinematics groups, connected in 
series (Simionescu I. & Moise V., 1999). It is considered a coordinate axes system attached to 
the platform of the first module. The axes of the Denavit – Hartenberg trihedrons (Denavit J. 
& Hartenberg R.S., 1955) are denoted with two indexes. The subscript index denotes the 
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number of the kinematics pair in the chain, and the superscript index denotes the number of 
the leg. 

The coordinate of the support point Pi of the leg (i) with respect to the platform coordinate 
axes system O0X0Y0Z0 are: 
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In the direct kinematic analysis the variables of the all driving kinematic pairs are 
considered as known. The goal of the direct kinematics analysis is to simulate the 
displacement of the walking robot. 

In the inverse kinematic analysis of the leg mechanism, the position x0P, y0P, z0P, the velocity 

PPP zyx 000 ,,  and the acceleration PPP zyx 000 ,,  of the point P with respect to the robot 

platform are considered as known. The unknowns of the problem are the variables of the 
driving pairs and their first and second time-derivative. The matrix equations (5), (6) and (7) 
are equivalent with three scalar equations and have six unknowns. As a result, three pair 
variables can be calculated by solving of the equations (5), (6) and (7) only. The remaining of 
three pair variables must by established so that the walking robot to adapt to the terrain in 
an optimum mode. The time-derivative of the variables of the driving pairs are calculated 
by solving the equation which arisen by differentiating of the equations (5), (6) and (7).l 
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4. Force Distribution in Displacement Systems of Walking Robots 

The system builds by the terrain on which the displacement is done and the walking robot 
which has three legs in the support phase is statically determinate.  

When it leans upon four (or more) feet, it turns in a statically indeterminate system. 

The problem of determination of reaction force components is made in simplifying 
assumption, namely the stiffness of the walking robot mechanical structure and terrain. 

For establishing the stable positions of a walking robot it is necessary to determine the forces 
distribution in the shifting mechanisms. In the case of a uniform and rectilinear movement 
of the walking robot on a plane and horizontal surface, the reaction forces do not have the
tangential components, because the applied forces are the gravitational forces only. 

Determination of the real forces distribution in the shifting mechanisms of a walking 
locomotion system which moves in rugged land at low speed is necessary for the analysis of 
stability. The position of a walking system depends on the following factors: 

• the configuration of walking mechanisms; 

• the masses of component elements and their positions of gravity centers;  

• the values of friction coefficients between terrain and feet; 

• the shape of terrain surface.  

• the stiffness of terrain; 

The active surface of the foot is relatively small and it is considered that the reaction force is 
applied in the gravity center of this surface. The reaction force represents the resultant of the 
elementary forces, uniformly distributed on the foot sole surface. The gravity center of the 
foot active surface is called theoretical contact point.

To calculate the components of reaction forces, namely: 

• normal component N , perpendicular on the surface of terrain in the theoretical 

contact point; 

• tangential component T , or coulombian frictional force, comprised in the tangent 
plane at terrain surface in the theoretical contact point, 

it is necessary to determine the stable positions of walking robots (Ion I., Simionescu I. & 
Curaj A.,. 2002), (Ion I. & Stefanescu D.M., 1999). 

The magnitude of T vector cannot be greater than the product of the magnitude of the 

normal component N  by the frictional coefficient μ between foot sole and terrain. If this 

magnitude is greater than the friction force, then the foot slips down along the support 
surface to the stable position, where the magnitudes of this component decrease under the 
above-mentioned limit. 

Therefore, the problem of determining the stable position of a walking robot upon some 
terrain has not a unique solution. For every foot is available a field which covers all contact 

points in which the condition T ≤ μN is true. The equal sign corresponds to the field’s 
boundary.

The complex behavior of the earth cannot be described than by an idealization of its 
properties. The surface of terrain which the robot walks on is defined in respect to a fixed 
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coordinates system Oξηζ annexed to the terrain, by the parametrical equations ξ = ξ(u, v); η

= η(u, v); ζ = ζ(u, v), implicit equation F(ξ,η,ζ) = 0, or explicit equation  ζ = f(ξ,η).

These real, continuous and uniform functions with continuous first partial and ordinary 
derivative, establish a biunivocal correspondence between the points of support surface and 

the ordered pairs (u, v), where {u, v}∈ R. Not all partial first order derivatives are null, and 
not all Jacobians  
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 are simultaneous null. 

On the entire surface of the terrain, the equation expressions may be unique or may be 
multiple, having the limited domains of validity.  

Fig. 8. The Hartenberg – Denavit coordinate systems and the reaction force components 

The normal component iN of reaction force at the Pi contact point of the leg i with the 

terrain is positioned by the direction cosine: 
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The tangential component of reaction force, i.e. the friction force, is comprised in the tangent 

plane at the support surface. The equation of the tangent plane in the point Pi (ξPi, ηPi, ζPi) is 
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or: ξi Ai + ηi Bi + ζi Ci - ξPi Ai - ηPi Bi - ζPi Ci = 0. 

The straight-line support of the friction force is included in the tangent plane: 
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therefore: Ai li + Bi mi + Ci ni = 0. 

If the surface over which the robot walked is plane, it is possible that the robot may slip to 
the direction of the maximum slope. 

Generally, the sliding result is a rotational motion superposed on a translational one. The 
instantaneous axis has an unknown position. 

Let us consider 
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the equation of instantaneous axis under canonical form, with respect to the fixed coordinate 
axes system The components of speed of the point Pi, on the fixed coordinate axes system 
with OZ axis identical with the instantaneous axis, are: 
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The projections of the Pi point speed on the axes of fixed system Oξηζ are: 
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where R is the matrix of rotation in space. 

The carrier straight line of Pi point speed, i.e. of the tangential component of reaction force, 
has the equations 

,
ζηξ

ζ
=

η−η
=
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VVV
PiPi

and is contained in the tangent plane to the terrain surface in the point Pi:

Vξ l + Vη m + Vζ n = 0. 

To determine the stable position of the walking robot which leans upon n legs, on some 
shape terrain, it is necessary to solve a nonlinear system, which is formed by: 

- the transformation matrix equation 



64                                                                          Climbing & Walking Robots, Towards New Applications 

11

4

4

4

3210

0

0

0

Pi

Pi

Piiiii

Pi

Pi

Pi

Z

Y

X

Z

Y

X
AAAAA= ,

where:

A is the transformation matrix of coordinate of a point from the system O0X0Y0Z0 of the 

robot platform to the system Oξηζ;

Ai is the Denavit – Hartenberg transformation matrix of coordinates of a point from the 
system Oi+1Xi+1Yi+1Zi+1 of the element (i) to the system OiXiYiZi of the element (i-1) (Denavit 
J. & Hartenberg R.S., 1955),  (Uicker J.J.jr., Denavit J., Hartenberg R.S., 1965): 

- the balance equations 
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which expressed the equilibrium of the forces and  moments system, which acted on the 
elements of walking robot.  

The F and M  are the wrench components of the forces and moments which represent the 

robot load, including the own weight.  

The unknowns of the system are: 

• the coordinates XT, YT, ZT  and direction cosines cos αT, cos βT, cos γT which define 
the platform position with respect to the terrain: 

• the normal iN  and the tangential iT , ni ,1= , components of the reaction forces; 

• the direction numbers li, mi, ni, ni ,1= , of the tangential components; 

• the position parameters U, V, cos α, cos β, cos γ of the instantaneous axis; 

• the magnitude of the V0 /ω ratio, where V0 is the translational instantaneous speed 
of the hardening structure (Okhotsimski D.E. & Golubev I., 1984). The system is 
compatible for n = 3 support points. 

If the number of feet which are simultaneous in the support phase is larger than three the 
system is undetermined static and is necessary to take into consideration the deformations 
of the mechanical structure of the walking robot and terrain. In case of a quadrupedal 
walking robot, the hardening configuration is a six fold hyperstatical structure. To 
determinate the force distribution, one must use a specific method for indeterminate static 
systems. 

The canonical equations in stress method are (Buzdugan Gh., 1980): 

δ11 x1 + δ12 x2 +  … + δ16 x6 =  – δ10;

δ21 x1 + δ22 x2 +  … + δ26 x6 =  – δ20;    (9) 

    . . . . . .  
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δ61 x1 + δ62 x2 +  … + δ66 x6 =  – δ60;

where:

δij is the displacement along the OiXi direction of stress owing to unit load which acts 
on the direction and in application point of the OiXj;

δi0 is the displacement along the Xi direction of stress owing to the external load when 

OiXj = 0, 6,1=i :
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GIxi, 3,1=i , are the torsion stiffness of the legs elements lowers, middles and uppers 

respectively;

EIyi and EIzi, 3,1=i , are the bend stiffness of the legs elements lowers, middles and uppers 

respectively;

M are the bending moments in basic system which is loaded with basic charge; 

m are the bending moments in the basic system loaded with the unit charge. 

The definite integrals 

=

b
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are calculated by the Simpson method: 
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To calculate the mxi, myi, mzi, Mxi, Myi, Mzi, 6,1=i , seven systems are used (Fig. 8), namely: 

• the system S0, where the single load is G, and Xi = 0, 6,1=i ;
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• the systems Si, where the single load is Xi = 1, 6,1=i .

The remaining unknowns, namely xi, 12,7=i , are calculated from the equations (9). The 

normal and tangential components of the reaction forces are calculated as function of the 
positions of tangent planes on the terrain surface at the support points. 

The following hypotheses are considered as true: 

• the stiffnesses of the legs are much less than the robot’s platform stiffness; 

• the four legs are identically.  

• the cross sections of the leg’s elements are constant. 

In Fig. 9, a modular walking robot with six legs is shown.  The hardening structure of this 
robot is a 12-fold hyperstatical structure. 

Fig. 9. The reaction force components in the support points of the modular walking robot 

5. Movement of Walking Robots 

Part of the characteristic parameters of the walking robot may change widely enough when 
using it as a transportation mean. For instance, the additional loads on board, change the 
positions of the gravity centers and the inertia moments of the module’s platforms. 
Environmental factors such as the wind or other elements may bias the robot, and their 
influence is barely predictable. Such disturbances can cause considerable deviations in the 
real movement of the robot than expected. 

Drawing up and using efficient methods of finding out the causes of such deviations, as well 
as of avoiding such causes, represent an appropriate way of enhancing the walking robot’s 
proficiency and this at lower power costs. 
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Fig. 10. Kinematics scheme of walking modular robot 

Working out and complete enough mathematical pattern for studying the movement of a 
walking robot is interesting, both as regards the structure of its control system and verifying 
the simplifying principles and hypotheses, that the control program’s algorithms rely on. 
The static stability issue is solved by calculating the positions of each foot against the axes 
system, attached to the platform, and whose origin is in the latter’s gravity center (Waldron 
K.J. 1985). 

The static stability of the gait is a problem which appears on the quadrupedal walking robot 
movement.  

When a leg  is in the transfer phase, the vertical projection of the gravity center of the 
hardening structure may be outside of the support polygon, i.e. support triangle. It is the 

case of the walking robot made by two modules. The gait 3 × 3 (Song S.M. & Waldron K.J., 
1989), (Hirose S., 1991) of the six legged walking robot, made by three modules, is static 
stable (Fig. 10). S. Hirose defined the stability margins that are the limits distances between 
the vertical projection of the gravity center and the sides of the support triangle. To provide 
the static stability of the quadrupedal walking robots two methods are used: 

• the waved gait, 

• the swinging gait. 

In the first case, before a leg is lifted up the terrain, all leg are moved so that the robot 
platform to be displaced in the opposite side to the leg that will be lifted. In this way, the 
vertical projection of the gravity center moved along a zigzag line. 

In the second case, before a leg is lifted, this is extended and the diagonal-opposite leg is 
compressed.  

So, the robot platform has a swinging movement, and the vertical projection of the gravity 
center also has a zigzag displacement. This gait can not be used if the robot load must be 
hold in horizontal position. 

The length of the step does not influence the limits of the static stability of the walking robot 
because the mass of a leg is more less than mass of the platform. 

A walking robot, which moves under dynamical stability condition can attain higher 
velocities and can make steps with a greater length and a greater height. But, the central 
platform of the robot cannot be maintained in the horizontal position because it tilted to the 
foot which is lifted off the terrain. The size of the maximum inclination angle depends to the 
forward speed of the walking robot. 
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The stability problem is very important at the moving of the quadrupedal walking robots. 
When a foot is lifted off the terrain and the other legs supporting the robot’s platform are in 
contact with the terrain. If the vertical projection G  of the gravity center G of the legged 
robot is outside of the supporting polygon (triangle P1 P2 P3, Fig. 11), and the cruising speed 
is greater than a certain limit, the movement of the robot happens under condition of the 
dynamical stability. When the leg (4) is lifted off the terrain, the walking robot rotates 
around of the straight line which passing through the support points P2 and P3.

Fig. 11. The overturning movement of the walking robot 

The magnitude of the forward speed did not influence the rotational motion of the robot 
around the straight line P2P3. This rotational motion can be investigated with the Lagrange’s 
equation (Appel P. 1908): 
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The kinetic and potential energies of the hardening configuration of the robot have the 
forms

2
)(

2
2 α

+= IAGmT , )sin1( α−= AGgmP ,  (11) 

and the generalized force is 

α−= cosAGgmQ .    (12) 

where m denotes the mass of the entire robot, I is the moment of inertia of the robot 
structure with respect to the axis passed by G and AG is the distance between the gravity 

center G and the rotational axis P2P3 (α > π/2) (Fig. 11). 

Substituting the (11) and (12) into (10), it results 
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Because the moment of inertia of a body is proportional with its mass, the angular 

acceleration α  does not dependent on the mass m.

The quadrupedal walking robot in question, which moved so that the step size is 0.2 m, with 
forward average speed equal to 3.63 m/s (13 km/h approximate) has the maximum 
inclination of the platform equal to 0.174533. This forward speed is very great for the usual 
applications of the walking robots. As a result, the movement of the legged robots is made 
under condition of the static stability. The conventional quadrupedal walking robots have 
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rather sluggish gaits for walking, but are unable to move smoothly and quickly like animal 
beings.

6. Optimization of Kinematic Dimension of Displacement Systems of Walking Robots 

For the walking robot to get high shift performances on an as different terrain 
configurations as possible, and for increasing the robot’s mobility and stability, under such 
circumstances, it is required a very careful survey on the trajectory’s control, which involves 
both to determine the coordinates of the feet’s leaning points, as related to the robot’s body, 
and the calculation of the platform’s location during the walking, as against a set system of 
coordinates in the field.  

These performances are closely connected with the shift system’s structure and the 
dimensions of the compound elements. For simplifying its mounding, it is accepted the 
existence of a point-shaped contact between the foot and the leaning area. 

The shift system mechanism of any walking robot is built so that he could achieve a 
multitude of the toes’ trajectories. These courses may change according to the ground 
surface, at every step. Choosing a certain trajectory depends on the topography of the 
surface that the robot is moving on. As one could already notice, during time, the shift 
mechanism is the most important part of the walking robot and it has one or several degrees 
of freedom, contingent of the kinematics chain that its structure relies on. 

Considering the fact that the energy source is fixed on the robot’s platform, the dimensions 
of the legs mechanism’s elements are calculated using a multicritical optimization 
proceeding, which includes several restrictions. The objective function (Fox R. 1973), 
(Goldberg D. 1999), (Coley D. 1999)  may express: 

• the mechanical work needed for shifting the platform by one step ; 

• the maximum driving force needed for the leg mechanism; 

• the maximum power required for shifting, and so on. 

These objective functions can be considered separately or simultaneously. The minimization 
of the mechanical work consumed for defeating of the friction forces can be considered in 
the legs mechanisms’ synthesis also by a multicritical optimization. 

The kinematics dimensions of the shift system mechanism elements are obtained as a result 
of several considerations and calculation taking into account the degree of freedom, the 
energy consumption, the efficiency, the kinematics performances, the potential distribution, 
the operation field and the movement regulating algorithm. 

There are two possibilities in order to decrease the energy consumption of a walking robot. 
One of then is to optimize the shifting system of the robot. That could be performing by the 
kinetostatic synthesis of the leg mechanism with minimization of energy consumption 
during a stepping cycle. 

A second possibility to decrease the energy consumption is the static balancing of the leg 
mechanism [Ebert-Uphoff I. & Gosellin C.M. 1998), (Ion I., Simionescu I. & Ungureanu M. 
2001), (Simionescu I. & Ion I.2001 ).  

The energy consumption is especially depended on the moving law of the platform, which 
has the biggest mass.  

The simplest constructional solution for the leg mechanisms of the walking robot uses the 
revolute pairs only. The linear hydraulic motor has only a prismatic pair (Fig. 12). This 
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mechanism consists of two plane kinematics chains. One of these kinematics chains is 
composed by the links (1), (2) and (3), and operated in the horizontal plane. The other 
kinematics chain operated in the vertical plane and is formed by the elements (4), (5), (6), (7),
(8) and (9). The lengths of the elements (6) and (7), i.e. the distances IH and HP respectively, 
are calculated in terms of the size of the field in which the P point of the low end of the leg is 
displaced. The magnitudes of the driving forces Fd2 between the piston (5) and the cylinder 
(4) and Fd1 between the piston (8) and the cylinder (9) are calculated with the following 
relations:
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The mi, XGi and YGi represent the mass and the coordinates of gravity centre of element (i)
respectively.

The mechanical work of the driving forces 1dF  and 2dF , performed in the T time when the 

robot platform advances with a step by one single leg, has the form: 
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Fig. 12. Mechanism of leg 
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The minimization of the mechanical work of the driving forces is done with constrains 
which are limiting the magnitudes of the transmission angles of the forces in the leg 
mechanism, namely: 

;0min1 ≥δ−Ψ=R ;0max2 ≥Ψ−δ=R    (17) 

;0min3 ≥δ−Θ=R ;0max4 ≥Θ−δ=R    (18) 

and the magnitude of the Θ angle between the vectors HI  and HP . This angle depends on 
the maximum height of the obstacle over which the walking robot can passes over, and on 
the maximum depth of the hallows which it may be stepped over: 
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The Ψ angle is measured between the vectors GI  and GE . The dimensions HI, HP, LP, HG, 

IJ, JH, α and β of the elements and the coordinates XE, YE XI, YI, of the fixed points E and I
are considered as the unknowns of the synthesis problem. 

The necessary power for acting the leg mechanism is calculated by the relation 
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The maximum power value is minimized in the presence of the constrains (17), (18) and (19). 

7. Static Balancing of Displacement Systems of Walking Robots 

The walking robots represent a special category of robots, characterized by having the 
power source embarked on the platform. This weight of this source is an important part of 
the total charge that the walking machine can be transported. That is the reason why the 
walking system must be designed so that the mechanical work necessary for displacement, 
or the highest power necessary to act it, should be minimal. The major energy consumption 
of a walking machine is divided into three different categories: 

• the energy consumed for generating forces required to sustain the platform in 
gravitational field; in other word, this is the energy consumed to compensate the 
potential energy variation; 
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• the energy consumed by leg mechanism actuators, for the walking robot 
displacement in acceleration and deceleration phases; 

• the energy lost by friction forces and moments in kinematics pairs. 

The magnitude of reaction forces in kinematics pairs and the actuator forces depend on the 
load distribution on the legs. For slow speed, joint gravitational loads are significantly larger 
than inertial loads; by eliminating gravitational loads, the dynamic performances are 
improved.

Therefore, the power consumption to sustain the walking machine platform in the 
gravitational field can be reduced by using the balancing elastic systems and by optimum 
design of the leg mechanisms. The potential energy of the walking machine is constant or 
has a little variation, if the static balance is achieved. The balancing elastic system consist of 
by rigid and linear elastic elements.  

7.1 Synthesis of Static Balancing Elastic Systems 

The most usual constructions of the leg mechanisms have three degree of freedom. The 
proper leg mechanism is a plane one and has two degree of freedom (Fig. 13). This 
mechanism is articulated to the platform and it may be rotated around a vertical axis. To 
reduce the power consumption by robot driving system it is necessary to use two balancing 
elastic systems. One must be set between links (2) and (3), and the other - between links (3)

and (4). Because the link (3) is not fixed, the second balancing elastic system can not be set. 
Therefore, the leg mechanism schematized in Fig. 13 can be balanced partially only (Streit, 
D.,A. & Gilmore, B.,J. , 1989). 

It is well known and demonstrated that the weight force of an element which rotate around 
a horizontal fixed axis can be exactly balanced by the elastic force of a linear helical spring 
(Simionescu I. & Moise V. 1999). The spring is jointed between a point belonging to the 
element and a fixed one. The major disadvantage of this simple solution is that the spring 
has a zero undeformed length. In practice, the zero free length is very difficult to achieve or 
even impossible. The opposite assertions are theoretically conjectures only. A zero free 
length elastic device comprised a compression helical spring. In the construction of this 
device, some difficulties arise, because the compression spring, corresponding to the 
calculated feature, must be prevented from buckling. A very easy constructive solution, 
which the above mentioned disadvantage is removed, consists in assembly two parallel 
helical springs, as show in Fig. 13. The equilibrium of forces which act on the link (3) is 
expressed by following equation: 

(m BC cosϕ3i − m7F XF − m8I XI − m2 XG2)g − Fs7 BF sin 

(ϕ3i − ψ1i + α1) − Fs8 BI sin(ϕ3i − ψ2i + α2) = 0, 12,1=i ,   (21) 

where:

m is the mass of distributed load on leg in the support phase, including the mass of the link 
(2) and the masses of linear helical springs (7) and (8), concentrated at the points H and J
respectively;

m7F and m8I  are the masses of springs (7) and (8), concentrated at the points F and I
respectively;
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The equations (21), which are written for twelve distinct values of the position angles ϕ3i, are 
solved with respect to following unknowns: x3F, y3F, x3I, y3I, XH, YH, XJ, YJ, F07, F08, l07, l08. The 
undeformed lengths l07 and l08 of the springs given with acceptable values from 
constructional point of view. 

The masses m, m1, m2, m7, m8 of elements and springs, and the position of the gravity center 
G2 are assumed as knows. In fact, the problem is solved in an iterative manner, because at 
the start of the design, the masses of springs are unknowns. 

The angles ϕ3i must be chosen so that, in the positions which correspond to the support 
phase, the loading of the leg is full, and in the positions which correspond to the transfer 
phase, the loading is null. The static balancing is achieved theoretical exactly in the positions 

defined by angles ϕ33i, 12,1=i . Between these positions, the unbalancing is very small and 

may be neglected. 

If a total statically balancing is desired, a more complicated leg structure is necessary to 
used. In the mechanism leg schematized in Fig. 14, the two active pairs are superposed in B.

The second balancing elastic system is set between the elements (2) and (5). 

The equilibrium equation of forces which act on the elements (3) and (5) respectively are: 

BC(R34Y cosϕ3i − R34X sinϕ3i) + (m7F XF + m8I XI + m3 XG3)g + Fs7 BF sin(ϕ3i − ϕ7i + α1) + Fs8 BI
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U = g[m4(XG4 − XD) − m(XP − XD)];
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Fig. 13.  Elastic system for the discrete partial static balancing of the leg mechanism 

Fig.14  Elastic system for the discrete total static balancing of the leg mechanism 

V = g[m6(XG6 − XD) − (m4 − m6 − m)(XE − XD)];

W = YD(XC −XE) −YC(XD − XE) − YE(XC − XD);

R56X = − R34X; R56Y = (m4 + m6 − m)g − R34Y.

The magnitudes of the angles ϕ3i and ϕ5i are calculated as functions on the position of the 
point P. The variation fields of these, in support and transfer phase, must not be intersected. 
In the support phase, the point P of the leg is on the terrain. In the return phase, the leg is 
not on the terrain, and the distributed load on the leg is zero. The not intersecting condition 

can be easy realized for the variation fields of angle ϕ3. If the working positions of link (4)
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are chosen in proximity of vertical line, the driving force or moment in the pair C is much 
less than the driving force from the pair B. This is workable by the adequately motions 
planning. In this manner, the diminishing of energy consumed for the walking machine 
displacement can be made by using the partial balancing of leg mechanism only.  

The static balancing is exactly theoretic realized in twelve positions of the link (3),

accordingly to the angle values ϕ3i, i = 12,1 , only. Due to continuity reasons, the 

unbalancing magnitude between these positions is negligible.  

In order to realize the theoretic exactly static balancing of the leg mechanism, for all 
positions throughout in the work field, it is necessary to use the cam mechanisms. In Fig. 15 
is shown a elastic system for continuous balancing, consist of a helical spring (7), jointed on 
the link (3) and the follower (8), which slides along the link (2). The cam which acted the 
follower, by the agency of role (9), is fixed on the link (3). The parametrical equations of 
directrices curves of the cam active surface are: 
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The ordinate YD of point D and its derivative 
3d

d

ϕ
DY are calculated as solutions of following 

differential equation which expressed the equilibrium condition of force system which are 
taken into consideration: 

g(BC m + m3BG3+ BF m7F) cosϕ3 + Fs7 BF sin(ϕ3 − ψ) + YD R93 sinα = 0,  (22) 

where the reaction force R93 between cam (3) and role (9) has the expression: 
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The mass m7 of the helical spring (7) is assumed as concentrated in joints H and F, m7F and 
m7H respectively. The masses m, m1, m2, m3 and m4 of the bodies, dimensions BF, BC, DH and 
helical spring characteristics F07, l07 and, k7 are considered knows. 

Fig.15. Elastic system for the continuous partial static balancing of the leg mechanism  
VARIANT I 

Fig.16. Elastic system for the continuous partial, static balancing of the leg mechanism 
VARIANT II 

The initial conditions, which are necessary to integrate the differential equation (22) are 
considered in a convenient mode, adequate to a known equilibrium position. 

In Fig. 16 is schematized another elastic system for continuous balancing. The balancing 
helical spring (7) is jointed with an end to the follower (8) at the point F, and with the other 
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one to link (2), at point H. The cam is fixed to the link (2). The follower (8) slid along the link 
(3). The parametrical equations of directrice curves of the cam active surface are: 
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8.  Design of Foot Sole for Walking Robots 

The feet of the walking robots must be build so that the robots are able to move with smooth 
and quick gait. If the fact soles were not shaped to fit with the terrain surface, then the foot 
would not be able to apply necessary driving forces and the resulting gait were not uniform. 
In a simplified form, the leg of a legged walking anthropomorphous robot is build of three 
parts (Fig. 17), namely thigh (1), shank (2) and foot (3). All of the joint axes are parallel with 
the support plane of the land. The legged robot foot soles have curved front and rear ends, 
corresponding to the toes tip and to the heel respectively. If the position of the axis of the 
pair A is defined with respect to the fixed coordinate axes system fastened on the support 
plane, the leg mechanism has a degree of freedom in the support phase and three degree of 
freedom in the transfer phase. Therefore, the angles 1 and 2 and the distance S, which 
define the positions of the leg elements, can not be calculated only in term of the coordinates 
XA, YA. In other words, an unknown must. 

be specified irrespective of the coordinates of the center of the pair A. In consequence, the 
foot (3) always may step on the land with the flat surface of the sole. The robot body may be 
moved with respect to the terrain without the changing of foot (3) position. This walking 
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possibility is not similarly with human walking and may be achieved only if the velocity 
and acceleration of the robot body is small. In general, the foot can be support on the land 
both with the flat surface and the curved front and rear ends. The plane surface of the sole 
and the cylindrical surface of the front end are tangent along of the generatrix R with respect 
to the mobile coordinate axes system is given by the coordinates x3R and y3R. The size of the 
flat surface of the foot, i.e. the position of the generatrix R, is determined from statically 
stability conditions in the rest state of the robot. The directrix curve of the cylindrical surface 
of the front end is defined by the parametrical equations 

x3 = x3( ), y3 = y3( )

Fig. 17. Kinematics scheme of the an anthropomorphous leg 

with respect to the mobile coordinate axes system attached to this element. 

The generatrix in which the plane surface of the foot is tangent with the cylindrical surface 
of the front end is positioned by the parameter 0:

x3R = x3( 0), y3R = y3( 0).

8.1. Kinematics Analysis of the Leg Mechanism 

In the support phase, when the flat surface of the foot is in contact with the terrain (Fig. 
18.a), the analysis equations are: 

XA + AB cos 1 + BC cos 2 – S = 0; 

YA + AB sin 1 + BC sin 2 – x3R = 0.  (24) 

The system is indeterminate because contains three unknowns, namely 1, 2 and S. In 
order to solve it, the value of an unknown must be imposed, for example the angle 1. It is 
considered as known the position of the pair axis A. In this hypothesis, the solutions of the 
system (24) are: 
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or
BC

ABYx AR 13
2
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arcsin
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2
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The coordinates of the tangent point R have the expressions: 

Fig. 18. The leg in the support phase 
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In the end of the support phase, when the contact of the foot with the land is made along the 
generatrix which passes through the P point (Fig. 18.b), the analysis equations are: 

YA + AB sinϕ1 + BC sinϕ2 + CP sin(ϕ3 + u) = YP;

XA + AB cosϕ1 + BC cosϕ2 + CP cos(ϕ3 + u) = XP;
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because it is assumed that the foot sole do not slipped on the land surface. 
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The equations (25) are solved with respect to the unknowns 2, 3 and P. in term of the 
coordinates XA, YA and the angle 1.

By differentiation with respect to the time of the equations (25), result the velocity 

transmission functions: 
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Further on, by differentiation the equations (26) result the acceleration transmission 
functions:
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8.2. Forces Distribution in the Leg Mechanism 

The goal of the forces analysis in the leg mechanism is the determination of the conditions of 
the static stability of the feet and of the whole robot. The leg mechanism is plane, and the 
reaction forces from the pairs are within the motion plane. The pressure on the contact 
surface or generatrix is assumed to be equally distributed. From the equilibrium equations 
of the forces which act on the leg mechanism elements (Fig. 19), the reaction forces from 
pairs A, B and C and the modulus and the origin of the normal reaction N are calculated. If 
the position of the origin of normal reaction force N results outside of the support surface, 
the foot overturns and walking robot lose its static stability. To avoid this phenomenon it is 
enforce that the origin of the normal reaction force to fill a certain position, definite by the 
distance d. In this case, a driving moment in the pair A, applied between the body (0) and 
the thigh (1) is added. This moment is the sixth unknown quantity of the forces distribution 
problem.

Taking into consideration the particularities of the contact between terrain and foot, the leg 
mechanism is analyzed in the following way: 

• first: it is solved the equations (27), which define the equilibrium of the forces 
acting on the elements (1) and (2),

• second: it is solved the equations (28), which express the equilibrium of the forces 
acting on the foot (3).

The particularities consist in the fact that the foot (3) is supported or rolled without sliding 
on terrain.

As a result, the reaction force acting to the foot (3) has two components, namely N  along 

the normal on the support plane and T  holds in the support plane. The rolled without the 
front or rear end of the foot slide if T < N only, where  is the frictional coefficient between 
foot and terrain.  

The forces analysis is made in two situations. 

1. The foot is supported with his flat surface on the terrain (Fig. 19.a). 

The equations of the forces analysis which act on the links (1) and (2) are: 

QX + Fi1X – R12X + R01X = 0; 

QY + Fi1Y – m1 g – R12Y + R01Y = 0; 

M01 + (Fi1Y – m1 g)(XG1 – XB) – Fi1X (YG1 – YB) + R01X(YA – YB) + R01Y(XB – XA) + Mi1 = 0; 

Fi2X + R12X + R32X = 0;                 (27) 

Fi2Y – m2 g + R12Y + R32Y = 0; 

(Fi2Y – m2 g)(XG2 – XB) – F12X (YG2 – YB) + R32Y(XC – XB) – R32X (YC – YB) + Mi2 = 0, 

where M01 = 0.  

jQiQQ yx +=  is the direct acting load on the leg in the center of the pair A;

FijX = - mj 2
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The equations (4) are simultaneous solved with respect to the unknowns R01X, R01Y, R12X,
R12Y, R32X and R32Y.
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The reaction force jRiRR ijYijXij +=  acts from the link (i) to the link (j).

Equations which expressing the equilibrium of the forces which act on the foot (3) are: 

T – R32X = 0; 

N – R32Y – m3 g = 0;    (28) 

N d + T YC – m3 g (XG3 – XC) = 0, 

Fig. 19. Forces distribution in the leg mechanism 

These equations are solved with respect to the unknowns N, T and d. If T > N, the foot 
slipped on the terrain. In this case, the input moment M01  0 must be applied to the thigh 
(1). The magnitude of this moment is calculated by solving of the equations (27), where R32X

< N. The sets of equations (27) and (28) are solved iteratively, until the difference between 
two successive iterations decreases under a certain limit. 

2. The foot is supported with his front end on the terrain (Fig. 19.b)

The foot (3) may be in this position if a driving moment is applied in pair C, between links 
(2) and (3). The reaction forces from pair A and B are the solutions of the equations (29): 

QX + Fi1X – R12X + R01X = 0; 

QY + Fi1Y – m1 g – R12Y + R01Y = 0; 

M01 + (Fi1Y – m1 g)(XG1 – XB) – Fi1X (YG1 – YB) + R01X(YA – YB) + R01Y(XB – XA) + Mi1 = 0; 

Fi2X + R12X + R32X = 0;     (29) 

Fi2Y – m2 g + R12Y + R32Y = 0; 

(Fi2Y – m2 g)(XG2 – XB) – F12X (YG2 – YB) + R32Y(XC – XB) – R32X (YC – YB) + Mi2 – M23 = 0, 
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where M01 = M23 = 0. 

The unknowns of these equations are R01X, R01Y, R12X, R12Y, R32X and R32Y.

Equilibrium of the forces which act on the foot (3) is expressed by equations (30): 

T – R32X + Fi3X = 0; 

N – R32Y – m3 g + Fi3Y = 0;    (30) 

M23 + Mi3 + N (XP – XC) + T YC + (Fi3Y– m3 g) (XG3 – XC) – Fi3X(YG3 – YC) = 0. 

Solutions of these equations are N, T and M23. If T > N, the foot slipped on the terrain and 
the robot overturns. 

8.3. Optimum Design of the Foot 

The bottom surface of the foot of a walking robot may have various shapes. These surfaces 
differ by the size of the flat surface and the forms of the front and rear cylindrical surfaces. 
The most adequate form of the bottom surface of the foot, i.e. the expressions of the 
directrices of the front and rear cylindrical surfaces, is determined by optimization of some 
parameters. The objective function (Fox R. 1973), (Goldberg D. 1999), (Coley D. 1999), which 
is minimized in the optimization process may expressed: 

• maximum angular velocity or 
t2
3

2

d

d ϕ
;

• the maximum driving forces or moments; 

• etc.

The unknowns which respect to the objective function is minimized are: 

• the lengths AB and BC of the links (1) and (2),

• the coordinate x3R, y3R of the point R;

• the coefficients from the equations of the directrices curves of the surfaces of the 
front and rear ends. 

The minimization of the objective function is performed in the presence of constrains which 
expressed:

• the directrix curves of the front and rear ends are tangent to the flat surface of the 
foot sole, 

• the ordinate y3R and y3T of the points R and T respectively in which the directrix 
curves are tangent to the flat surfaces are limit by the minimum flat surface of the 
foot, to provide the static stability of the robot which rest. 

9. Conclusions 

The walking robots are used to unconventional displacement of the technological loads over 
the unarranged terrains. The modular constructions of the walking robots led to a more 
suppleness and very good adaptation to any terrain surface. The displacement is carried out 
at the very most circumstances and with a minimum expenditure of energy if the leg 
mechanisms are designed in accordance with the above prescriptions 
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