
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


12

A Reference Control Architecture for Service 
Robots as applied to a Climbing Vehicle 

Francisco Ortiz, Diego Alonso, Juan Pastor, Bárbara Álvarez 
 and Andrés Iborra 

Division of Electronics Engineering & Systems - Universidad Politécnica de Cartagena 
Spain

1. Introduction  

Recent progress in mechatronics, perception and computing is opening up a number of new 
application domains for robotics, improving the way in which robots perform actions that 
release the human from dangerous or risky tasks. Nowadays, the field of service robotics is 
in continuous development, covering more and more application domains, from home to 
industry, and offering more and more capabilities in a reliable and user-friendly way. One 
of the new environments where robots are starting to appear is in the shipyard. Developing 
robots for working in shipyards is very challenging because of both the difficulty of the 
missions that robots should perform as well as the lack of robotic culture in this kind of 
industrial facility. 
The authors’ research group, the DSIE (Division of Electronics Engineering & Systems) at the 
Technical University of Cartagena, has a considerable experience in the development of 
software applications for teleoperated service robots, mainly for nuclear power plants 
(Iborra et al., 2003) and in shipyards industry (Fernández et al., 2004). The work presented in 
this chapter has been carried out in the context of the EFTCoR project (Environmental 
Friendly and Cost-Effective Technology for Coating Removal) (EFTCoR, 2005). The EFTCoR 
project sought to develop a solution for ships’ hulls cleaning and for the retrieval and 
confinement of the oxide, paint and sea adherences resulting from the cleaning operations. 
For this purpose, several robots were designed, one of which being a climbing vehicle 
capable of positioning a grit-blasting tool onto ships’ hulls. This chapter describes our 
experience in the development of the climbing robot and the software architecture designed 
for its control unit, ACROSET (Control Architecture for Service Teleoperated Robots). 
Software architecture is one of the key elements of any robotic system. As technology 
evolves, it is possible to build systems that are capable of carrying out more complex tasks 
in more complex environments. But the new robot capabilities demand a great variety of 
components, both hardware and software, that must interact in diverse ways. Such 
components must be structured in a way that (1) the robot achieves its global functionality 
and (2) the system could be easily maintained and updated. The way in which components 
are organised is described by the architecture of the system. The importance of considering 
system architecture to handle the inherent complexity of robotic systems is well known 
(Coste-Manière & Simmons, 2000): overall system complexity can be reduced by dividing it O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Bioinspiration and Robotics: Walking and Climbing Robots, Book edited by: Maki K. Habib
ISBN 978-3-902613-15-8, pp. 544, I-Tech, Vienna, Austria, EU, September 2007



Bioinspiration and Robotics: Walking and Climbing Robots 188

into smaller components with well defined abstraction levels and interfaces. The definition 
of a good architectural framework allows rapid development of systems, maintenance, 
scalability and reuse of a large variety of components, with concomitant savings in time and 
money. 
As said before, the objectives of this chapter are twofold: to present the climbing vehicle 
(Lázaro) and the architectural framework used for designing its control unit (ACROSET). 
This chapter is structured in eight sections. Section two exposes the challenges and special 
requirements imposed by shipyards to design robots for cleaning ships’ hulls. It also 
includes discussion on the state of the art on climbing robots for ship cleaning and the issues 
that, in our opinion, can be improved. Our contribution, the Lázaro robot, is described in 
section three, where two versions of this climbing vehicle are presented. In section four, the 
importance of software architecture for the development and maintenance of a robot is 
discussed, including a brief description of the latest frameworks for robotics and the 
possible contribution of ACROSET to the state of the art. The main characteristics, 
subsystems, components and design guidelines of ACROSET are presented in section five. 
The following section explains how this architectural framework has been used to develop 
the control unit of the climbing robots, and towards the end the chapter, some tests, results, 
lessons learned and conclusions are presented. 

2. Challenges and Requirements to Design a Climbing Robot for Ship Hull 
Cleaning

2.1 Identifying the Problem 

Main ship maintenance operations consist of periodical (every 4-5 years) removal of sea 
adherences and hull coating and subsequent hull re-painting afterwards. This process is 
carried out to preserve the hull integrity, guarantee sailing conditions, and to maintain a 
smooth surface, thereby minimizing fuel consumption, reducing operation costs and 
atmospheric pollution. Other maintenance operations are scheduled or even delayed to be 
done while the hull cleaning and re-painting operations are performed. Present technology 
for hull cleaning (Smith, 1999), mainly open-air grit-blasting or sand-blasting (see Figure 1), 
is very pollutant and environmentally unsound because residues of the process are thrown 
directly to the sea; for this reason it is progressively being forbidden in the most sensitive 
countries with a clear trend to being reduced in the rest until being definitively forbidden. In 
order to avoid residues emissions, grit blasting is being partially substituted by ultra-high 
pressure water blasting (Goldie - b, 1999). These systems avoid the pre-water cleaning 
required for hull desalinization as used with grit blasting; but, as reported by paint 
suppliers and ship owners, they do not show as good a performance and quality surface 
preparation as grit blasting systems achieve. This fact is causing that more and more ship 
owner move to shipyards where the open grit blasting is still allowed (Middle East, Far East, 
Korea and China), with loss of ship repair work in European yards (where open grit blasting 
is being prohibited). 
Regardless of the technology used (grit or water) cleaning operations can be classified into 
two types: full blasting and spotting. Full blasting is the cleaning of a small number of very 
large areas (ultimately only one area consisting of the whole hull), while spotting is the 
cleaning of a very large number of very small areas (spots) scattered along the hull. 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 189

Figure 1. Present method for hull blasting: a dangerous manual task 

In most cases the operations are carried out by hand. Different circumstances, such as very 
complex work environment inside the docks, vessels of many different shapes and size (see 
Figure 2), etc. make it difficult to automate maintenance operations. Despite these problems, 
several robotic solutions exist using both grit and water technologies. Solutions using grit 
based technology are usually restricted to full blasting in vertical surfaces by means of 
heavy turbines supported and positioned by large cranes. Water based solutions are lighter 
and can be positioned by relatively small vehicles. These vehicles can reach all hull areas 
(vertical and shaped) and perform full blasting and spotting. However, until now, water 
blasting has been more expensive and has not achieved the performance and quality of 
surface preparation that grit blasting systems offer. 

Figure 2. Different requirements for the cleaning devices: bow, bottoms and vertical surfaces 

The paragraphs above show the context in which the EFTCoR project emerges. The EFTCoR 
project (EFTCoR, 2002) is part of the European Industry current effort to introduce 
environmentally friendly ship maintenance. Partners of the project are companies, shipyards 
and research institutions from different European countries. This project addressed the 
development of a family of robots for grit-blasting, whose mission was to retrieve and 
confine the paint, oxide and adherences from ship hulls and recycle the blasting material. 
Our research group had the responsibility of developing the robotic devices.  

2.2 Requirements of the Application Domain 

The use of robotic devices in shipyards is difficult due to the characteristics of the working 
environment and the nature of the maintenance operations that have to be carried out. First 
of all, robotic devices for hull cleaning should achieve the following requirements: 
• The blasting material should provide the required surface quality (SA 2½) for painting 

afterwards.



Bioinspiration and Robotics: Walking and Climbing Robots 190

• Dust emissions should be eliminated or dramatically reduced.  
• The cost and performance should be as good as that obtained with the manual operation. 
Besides these general requirements, the application domain exhibits other characteristics 
that make the development of a single general-purpose robotic system capable of 
performing all the difficult tasks. This is due to: 
• The dimensions and shapes of hulls are very different from one ship to another. 
• The different areas of a given hull (bow, bottoms and vertical surfaces as Figure 2 

shows) impose very different working conditions for robotic devices.  
• The differences between the working areas that exist in different shipyards (see Figure 

2) require the development of different solutions. 
• The operational differences between full blasting and spotting. Full blasting demands 

devices capable of positioning large cleaning heads along large hull surfaces, while 
spotting (cleaning of isolated but very numerous points and small surfaces) demands 
devices capable of precise positioning and a very fast a small cleaning head. 

• The possibility of considering other hull maintenance operations like fresh water 
washing and painting. 

• The different cultures and business priorities of the different shipyards.
Table 1 summarises, as an example, the main requirements of two different shipyards 
(shipyards names are not shown for confidentiality) to show the differences of the 
requirements for the development of the EFTCoR systems. 

Requirement Shipyard 1 Shipyard 2 

Cost
No more than current costs 
including pay-offs 

Equal or better than the operative costs 
obtained with conventional blasting. Cost 
with abrasives should be drastically 
decreased. 

Performance 

5 m2/man-hour. 
Efficiency of the nozzle 10 
m2/hour. 

Environmental constraints. 
Reduction to dust emissions (at 
least 70%) 

The amount of used abrasive to dispose 
should be reduced drastically. 

Working area 

Synchrolift.
Ships very densely positioned. 
Removal of obstacles in working 
area supposes an organizational 
problem.

Very large dry docks, but available space 
limited.

Adaptable to full blasting 
and spot blasting  

Spot work makes up 80% of the 
work. 

Spot makes up 35% of the work and 48% of 
the blasting business. 

Surface praparation SA 2 1/2 (ISO 8501-1) SA 2 1/2 (ISO 8501-1) 

Adaptable to different hull 
maintenance operations 

Water washing, painting Water washing, painting 

Adaptable to different 
types of hull and to 
different areas of the hull 

125 m length 
25 m depth 
23 m breadth 
Adaptable to all hulls and to all 
surfaces 

Very large tankers 

Usability Easy to operate Easy to operate 

Possibility of automation Yes Yes 

Others On line control of quality Easy to transport and assemble 

Table 1. Shipyards global requirements 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 191

2.3 State of the Art of Climbing Robots for Ships Cleaning 

This section presents the most relevant climbing robots for hull cleaning. All of them use 
ultra-high pressure water. To our knowledge, there are no commercial climbing robots that 
use grit as an abrasive. Ultra-high pressure water blasting technology uses a head which 
contains a number of small rotating nozzles which send out water at ultra-high pressure, 
between 700 and 2500 bar. Unlike the open-air grit blasting cleaning system, ultra-high 
pressure water systems normally have a vacuum system for retrieving, filtering, separating 
and storing the residues produced during the cleaning process. The head with the cleaning 
tool, which is usually teleoperated, is normally fixed to the hull by means of permanent 
magnets.
Figure 3 shows an excerpt of the cleaning systems that currently uses ultra-high water 
pressure. Figure 3-a shows the cleaning operation done manually by human operators while 
the rest of the pictures illustrate some of the cleaning robots currently available in the 
marketplace. Among them, the most effective and widely used is the Ultrastrip M3500, a
system developed by Ultrastrip Systems (Ultrastrip, 2007) (see Figure 3 c and d). This 
teleoperated vehicle is built in aluminium and titanium and is fixed to the hull surface by 
combining a magnetic head and a vacuum system. Table 2 shows the main technical 
features of the Ultrastrip M3500 system. 
It is also worth mentioning the Hydro-Crawler system developed by Dans 
Vandteknik (Hydro-Crawler, 2006) (see Figure 3 e and f); the HydroCat system of Flow 
International Corporation (Flowcorp, 2005) (see Figure 3-b); and the Octopus system of 
Cybernetix (Octopus, 2005) (see Figure 3 g and h). 

Technical Specifications 

Maximum working pressure (bar) 3000 

Working speed (mm/s) 510 

Weight (Kg) 222 

Cleaning head width (mm) 380 

Clearing ratio (m2/h) 46 a 268 

Dimensions: height x width x length 
(mm)

560 x 690 x 1710 

Control Teleoperated/Joystick

Table 2. Technical specifications of ULTRASTRIP M3500 



Bioinspiration and Robotics: Walking and Climbing Robots 192

a) Manual tools b) Flow HydroCat 

c) Ultrastrip d) Ultrastrip working 

e) Hydro-Crawler f) Hydro-Crawler working 

g) Octopus h) Operating Octopus 

Figure 3. Ultra-high pressure water cleaning systems 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 193

2.4 Possible Contributions to the State of the Art 

All the systems presented in this section are more or less similar in the sense that all of them 
use a vehicle with permanent magnets or vacuum devices to adhere to the hull of the ship 
and have a cleaning head that uses ultra-high pressure water technology to remove the 
paint, oxide and sea adherences from it. 
The major disadvantage of all these vehicles and cleaning systems is the quality of the 
surface once the cleaning operation has been performed. Ultra-high pressure water blasting 
offers a surface quality of SA 1½ (ISO 8501-1), which is lower than the quality obtained 
using abrasives, e.g. grit, which achieves SA 2½, which in turn affects the paint adherence. 
The best known and most efficient of water-based systems, the mentioned Ultrastrip, 
presents a cost that prevents its use in most of the shipyards in Southern Europe.
The EFTCoR project tries to solve these problems by developing a family of low-cost 
systems to perform the cleaning operations in the different parts of the hull while achieving 
the adequate surface quality. One of the systems developed in the EFTCoR project was a 
climbing vehicle using abrasive (grit) for blasting instead of hydro-blasting to fulfil the 
requirements of surface quality imposed by the shipyards.  

3. The Lázaro vehicle in the context of the EFTCoR Project 

3.1 The EFTCoR devices

The requirements of cleaning operations in shipyards as exposed in section 2 show the 
difficulty of designing a general purpose system, or even defining a common body of 
general requirements that could be applied to all systems. For this reason, the EFTCoR 
project proposes different solutions for the different problems:  
• Teleoperated or semi-automated cranes 

• For full blasting: a primary positioning system to position heavy burdens (turbines 
projecting grit) along large surfaces (the whole ship hull). This primary system is a 
special crane adapted to carry turbines or the secondary system (see Figure 4). 

• For spotting, a secondary positioning system, which can be mounted on the 
primary, is capable of positioning a light cleaning head with the precision required 
to move quickly from one spot to another over small surfaces (4 to 10 m2) (Figure 
4).

Figure 4. Primary system (special crane), secondary system (XYZ table) and tool 



Bioinspiration and Robotics: Walking and Climbing Robots 194

• Climbing vehicles (see Figure 5 and Figure 6), provided with a cleaning head, and that 
have been developed to reach those areas that were unreachable with a reasonable 
combination of primary and secondary positioning systems. The vehicle can be used all 
over the ship hull and can perform spotting tasks and full blasting. Although the 
performance for full blasting is considerably lower than that of using a turbine 
supported by a crane (primary system plus tool configuration), it represents a global 
solution suitable for all shapes that can be chosen depending on the shipyards’ global 
requirements for a given job. 

Two different versions of the vehicle will be presented: an experimental version (Lázaro I), 
where the execution platform is an on-board embedded PC and a pre-industrial version 
(Lázaro II) based on commercial motor drivers by SIEMENS. 

3.2 Lázaro I: Experimental Prototype 

The objectives of this prototype were (1) to build a vehicle capable of moving along the hull 
with a grit tool, (2) to test the execution platform and (3) to serve as a first and simple 
example of the application of ACROSET.  
The mechanical structure of the vehicle is presented in Figure 5. It is a caterpillar vehicle 
capable of climbing along a hull thanks to permanent magnets that holds a grit-nozzle. The 
vehicle can be driven by a human operator and also performs some autonomous tasks, such 
as obstacle avoidance and simple pre-programmed sequences. The execution platform is an 
on-board embedded PC with a PC/104 expansion bus. It is based on an Intel, ultra low 
voltage Celeron microprocessor. The PC/104 bus is a widely used industrial standard with 
many advantages, such as vibration-resistance, modularity, mechanical robustness, low 
power consumption, etc., so it is an excellent bus for embedded systems. The expansion 
system is formed by an analog and digital I/O board featuring 8 analog inputs, 4 analog 
outputs, 3 timer/counter and 24 general purpose digital lines, and a PCMCIA expansion 
interface.

Figure 5. Lázaro I, CAD model and built prototype

The Lázaro I robot has two servomotors for controlling the wheels and one more for the 
orientation of the nozzle. The control of each servomotor is performed with the help of 
incremental encoders. Besides this, the robot also has a ring of bumpers and infrared sensors 
to stop in case it nears an obstacle or collides with one. The control algorithm is quite simple 
and it is performed by the software in the embedded PC. The chosen operating system is 
Real-Time Linux (Barbanov, 1997), which allows the possibility of having a real-time 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 195

application running while retaining all the power of a Linux distribution (though with some 
restrictions) underneath. This executing platform has been chosen in order to have as much 
flexibility as possible in the test and modification of the software architecture, including 
variations in control strategies, number of control threads, etc. 

3.3 Lázaro II: Pre-industrial Prototype 

Once Lázaro I had accomplished its objectives, an industrial enhanced version, the Lázaro II, 
was developed using as many COTS as possible in order to design a robust hardware and 
software platform (see Figure 6). Although the flexibility of this second prototype is lower 
than Lázaro I, it fulfills the industrial requirements of the partners. 

Figure 6. Lazaro II and portable control unit with enough space to place the robot inside 

The Lázaro II has two servomotors from SIEMENS, two collision sensors and two 
inclinometers. The control and power units are placed outside the vehicle as Figure 6 shows. 
The control unit is formed by a SIEMENS programmable controller (PLC) and two drivers 
for the motors. It can be remotely operated by a human operator for spotting individual 
areas of the hull and it can also perform semi-autonomous full-blasting with the supervision 
of the operator. The cleaning head is formed by a nozzle for throwing grit and a vacuum 
bell to absorb all the residues.  

NAVANTIA - Cartagena 

Blasting
method

Full
(m2/hour) 

Spot  
(m2/hour) 

Manual 25 17,5   

Lazaro
II

24  22,3  

E
ff

ic
ie

n
cy

 

Cranes 180  35  

Table 3. Comparison between performance of manual cleaning and automatic cleaning  

The performance of each operation can be consulted in Table 3. This table shows the data 
corresponding to the shipyard where the tests were performed, Navantia-Cartagena. It 



Bioinspiration and Robotics: Walking and Climbing Robots 196

compares the data available in the shipyard with measurements made by the development 
team in several tests. In our opinion these results could be extrapolated and applied to most 
shipyards. Table 3 compares the efficiency corresponding to full and spot blasting 
operations performed manually, with those where the Lazaro II and the EFTCoR cranes 
were used. In the worst cases, efficiency has been maintained and in some cases it has been 
increased. Even in the cases when efficiency or total execution is similar to the manual 
operation, the advantage of having a residues retrieving and recycling system supposes a 
strategic advance due to the clear trend of European regulations forbidding environmentally 
costly practices. 

4. Architectural Frameworks for Robotic Systems Development 

As mentioned before, robotic systems comprise hardware and software elements that 
interact in complex and diverse ways. Architecture handles the inherent complexity of 
robotic systems by dividing it into smaller components with well defined abstraction levels 
and interfaces. When trying to define the software architecture for the EFTCoR devices, 
some requirements must be kept in mind:  
• High variability of functionality and physical characteristics.
• Different combinations of vehicles, manipulators and tools. 
• A large variety of execution infrastructures, including different kinds of processors, 

communication links and human machine interfaces. 
• A large variety of sensors and actuators. 
• Different kinds of control algorithms, from very simple reactive actions to extremely 

complex navigation strategies. 
• Different degrees of autonomy, from operator-driven systems to semi-autonomous 

robots.
These requirements are common in the service robotics domain as they cover a broad range 
of mechanisms that carry out different activities in hostile environments. Usually, these 
systems perform a small number of highly specialized tasks. Considering all the sources of 
variability mentioned above, it is very difficult to design a single architecture flexible 
enough to deal with such heterogeneity. However, despite all these differences, such robotic 
systems have many common requirements in their definition and many common 
components, both logical and physical, in their implementation. Therefore, it should be 
possible to simplify the development of service robots by defining a flexible and extensible 
architectural framework to design systems with different requirements but sharing some 
characteristics. For the purposes of the EFTCoR project we considered that such an 
architectural framework should be devised according the following design goals: 
• The framework should not impose a concrete architecture, but allow defining different 

architectures (different interactions and constraints) depending on the concrete 
application requirements.  

• It should be possible to reuse components in systems with different architectures. This 
implies that a clear distinction should exist between the components and their 
interaction patterns. 

• The implementation of components may be software or hardware; it is highly advisable 
that such components are COTS components. 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 197

• It should be possible to integrate “intelligence,” or to interoperate with “intelligent 
systems”. 

Other robotic-framework developers, such as (Brooks et al, 2005), offer a more complete list 
of requirements, but for our purposes those listed above are enough. 

4.1 State of the Art of Robotic Component Frameworks  

There have been numerous efforts to provide developers with component frameworks to 
ease the development of robotic systems. Among these frameworks it is possible to 
highlight the following: OROCOS (Bruyninckx et al., 2002), CLARAty (Volpe et al., 2001), 
MCA (Scholl et al., 2001), ORCA (Brooks et al., 2005), CARMEN (Montemerlo et al., 2003) 
and PLAYER (Vaughan et al., 2003). All of them make very valuable contributions that 
simplify the development of these systems.  
CLARAty (Coupled Layer Architecture for Robotic Autonomy) gives a very valuable global 
solution that considers low and high level issues (from architectural design to 
implementation), in a way that intelligent elements can be integrated where required. To 
our knowledge, the main drawback of CLARAty is that it is limited to the use of object-
oriented technology. Object assembly depends upon the object implementation, not merely 
upon the object interface, significantly restricting the way in which object can be used as 
components, as it is explained in the following section.  
The frameworks OROCOS, MCA and ORCA are component-oriented although their 
components rely on object-oriented technologies. As such, designers manage components as 
design units instead of objects. In addition, OROCOS proposes architecture-neutral 
components, similar to a library of components to build motion controllers, and MCA 
proposes a common software platform with different modules that can be organized and 
compiled to generate the robot control unit. However, OROCOS and MCA overly depend 
on a given infrastructure (specifically Linux and C++ language). In general, the component 
approach involves choosing both a given component model and a certain execution 
infrastructure linked to such a model. This implies that components are not exchangeable 
from one framework to another. ORCA relies on a middleware to broaden the number of 
execution platforms and programming languages. In the field of mobile robots, CARMEN 
and Player provide repositories of components and an infrastructure where such 
components can be deployed. They have recently been linked to the C++ language and 
Linux operating system. 

4.2 Object technology versus components 

When it comes to implementing a software architecture neither the object-oriented 
paradigm nor the modularity achieved by packaging functionality are usually enough to 
successfully achieve the objectives listed above. An object cannot be seen as a real 
component because the required services are not part of the specification of the object, rather 
they are scattered through the object implementation (Luckham, 1995). Component-Based 
Software Engineering (CBD) (Szyperski, 2002) aims at shifting the emphasis in system 
development from programming to composing, building software systems from a mixture 
of off-the-shelf and custom-built components. A component-oriented approach must 
assume: 
• The system is built by composing and linking components using connectors. 



Bioinspiration and Robotics: Walking and Climbing Robots 198

• A component is defined in terms of its interfaces, which include both the required and 
provided services. These interfaces are the only way in which components can 
communicate with each other. 

• Components should be interchangeable and can also be distributed among different 
computation units. Connectors mediate between components while at the same time 
hiding the communications that components make between themselves, for our 
purposes this leads us to consider connectors as a special type of component. 

Most CBD approaches consider that components should be binaries units of deployment. 
However, we prefer to consider that they could be binaries units, but also design units, 
provided that they (1) encapsulate behaviour and data; (2) provide and require 
functionalities by means of ports; and (3) are subject to composition. Perhaps the main 
contribution of a component based paradigm is that it effectively allows the reuse of the 
same components across different architectures, even if they interact in different ways 
(using different connectors).  

4.3 Possible contributions to the state of the art 

Current component frameworks for robotic applications generally impose a concrete 
programming language and execution platform. The use of a middleware layer allows some 
of these frameworks to broaden the number of potential execution platforms, but again, in 
some situations, the middleware itself may not be compatible with the application 
requirements. In fact, this was one of the problems we faced when developing the EFTCoR 
family of robots. It would be preferable to be able to define components that are 
independent of both system architecture and execution platform, but that can 
simultaneously be (1) used to define different architectures and (2) be translated into 
concrete components executable in a given platform. This is the idea behind the 
architectural framework that we defined and implemented for the specification and 
development of the control software of EFTCoR devices, ACROSET (Control Architecture 
for Teleoperated Service Robots). 
ACROSET relies on the abstract concepts of component, port and connector, offering a way 
to reuse the same components in very different systems by separating the components from 
their interaction patterns. ACROSET provides a common framework of abstract components 
which can be implemented in different ways (integrating software and hardware 
components, and even COTS), and running in different execution platforms, in order to 
develop teleoperated robots with very diverse behaviours. The abstract components could 
be instantiated to concrete components, implementing them as a combination of C++ 
objects, PLC function blocks, Ada packages or interfaces to COTS components (hardware or 
software), without having to be linked to a given infrastructure. In that sense, ACROSET can 
be defined as an abstract component framework which is platform independent. 
However, although the capacity offered by ACROSET for describing the robotic systems 
architecture is valuable, the manual translation of the ACROSET abstract components into 
concrete, platform specific components is a difficult and error prone task. So, ACROSET will 
only show its full potential if we are able to find a way to automatically translate abstract 
components into concrete components. The adoption of the MDE (Model Driven 
Engineering) (Kent, 2002) approach is a key step to achieving this goal. This approach is in 
concordance with the current trends in software development, e.g. the OMG’s (Object 
Management Group, www.omg.org) initiative MDA (Model Driven Approach) is a very 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 199

promising alternative to the traditional software development because it proposes model 
transformation as the central idea of the proposal and the separation between specification 
and implementation as its major claim. Using the MDE approach allow us to use the 
ACROSET abstract components to specify the architecture of different robots, while 
automatic model transformation will keep them synchronised with the implementation. 
Moreover, it is desirable (and in our opinion possible) to define different transformations to 
obtain implementation components according to the most suitable robotic frameworks. 

5. ACROSET: Reference Control Architectural Framework for Teleoperated 
Service Robots 

ACROSET comprises a reference architecture and an abstract component framework which 
allows the definition of different architectures in a platform-independent way. In addition, it 
proposes a set of subsystems to organize the functionality of the whole system. These 
subsystems were defined following the ABD method (Bachmann et al., 2001), which helps in 
choosing an architectural option to fulfil the given requirements. The subsystems defined by 
ACROSET (shown in Figure 7) are the following: 
• The Coordination, Control and Abstraction Subsystem (CCAS). 
• The Intelligence Subsystem (IS). 
• User Interface Subsystem (UIS). 
• Safety, Management and Configuration Subsystem (SMCS). 
A detailed explanation of these subsystems can be found in (Álvarez et al, 2006). In this 
section we will try to give an overview of them, especially of the CCAS. 

Figure 7. An overview of ACROSET subsystems



Bioinspiration and Robotics: Walking and Climbing Robots 200

The CCAS subsystem abstracts and encapsulates the functionality of the system’s physical 
devices. This subsystem breaks down into a hierarchy of control components that model the 
different control loops inside a robot. The (abstract) components can be finally implemented 
in either software or hardware, but all the components of the CCAS and their relationships 
are independent of the final implementation. Thus, as section 6 will show, the same 
(abstract) architecture can be reused in different platforms.  
The Intelligence Subsystem (IS) allows the integration of components that perform (semi-) 
autonomous operations and act as another user of the CCAS functionality. The CCAS is well 
suited for operator-driven systems and systems where the reactive or autonomous 
behaviour responds to simple rules that can be added to CCAS. However, there are systems 
where the autonomous behaviour is anything but simple. In such cases, the intelligent 
component needs to integrate more information than that which is embedded in a given 
component. The approach adopted in ACROSET is to superimpose “intelligent” 
autonomous behaviour and operator-driven behaviour, and to provide the means to 
integrate both and resolve the potential conflicts by means of “arbitration” components 
(which can also be considered complex connectors). This separation between intelligence 
and functionality enhances the modifiability and adaptability of the system to new missions 
and behaviours, but compel us to define a subsystem that mediates between the intelligence 
subsystems and functionality provided by CCAS, the UIS. 
The User Interface Subsystem (UIS) is intended to interpret, combine and arbitrate between 
orders that may come simultaneously from different users of the CCAS. These users can be 
human operators or the “intelligent subsystems” of the IS. The CCAS does not concern itself 
with the source of the order. In the simplest systems, the UIS simply separates the control 
logic from the user interfaces facilitating the addition and the change of man-machine 
interfaces. In the most complex cases the UIS includes special components, that we call 
arbitrators, which merge commands coming from several sources following different 
strategies (to select the right source depending on the control mode, merge behaviours, etc.) 
and provide a unique command to the CCAS components that remain unchanged.  
The Safety, Management and Configuration Subsystem (SMCS) manages and configures the 
application and separates the functionality per se from the monitoring of such functionality. 
The SMCS is connected directly to CCAS without the mediation of the UIS. 

5.1 Components of the CCAS 

The Coordination, Control and Abstraction Subsystem (CCAS) comprises a set of 
components that encapsulate the functionality of the control unit of a robot. They are 
defined in four levels of granularity: 
• Hardware Abstraction Layer. 
• SCs: Simple Controllers. 
• MCs: Mechanisms Controllers. 
• RCs: Robot Controllers. 
A very simple CCAS is shown in Fig. 8. The notation used makes explicit the components, 
ports and connectors and it is inspired by the 4 views of Hofmeister (Hofmeister et al., 2000) 
and ROOM (Selic et al., 1994). 
The simplest components modelled by ACROSET are sensors and actuators, which are 
encapsulated in the Hardware Abstraction Layer. This layer abstracts the main 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 201

characteristics of the hardware of the robot and exposes a set of ports and interfaces to the 
rest of the components of the CCAS so they can easily use the hardware of the robot. 
SC components model the control over a single actuator and offer, through the use of the 
Strategy pattern (Gamma et al., 1995), the possibility of changing the control algorithm at 
run-time; for instance, the strategy of a given joint may be a traditional control (PID) or may 
be changed for a fuzzy logic strategy. SCs usually need to accomplish hard real-time 
requirements and are therefore generally implemented in hardware. In this case, the 
software SC component acts as a mere proxy of the hardware one.  
MC components model the control over a whole mechanism (vehicle, manipulator or end 
effectors). MCs are logical entities composed of an aggregation of SCs and a Coordinator, 
which is responsible for coordinating the SCs. The coordination strategy is also an 
interchangeable part of the MC. For instance, if the MC controls a manipulator its strategy 
may be a particular solution for its inverse kinematics. Although ACROSET defines MCs as 
relational aggregates, they can actually become a component (hardware or software) when 
the architecture is instantiated to develop a concrete system. In fact, it is common that most 
of the functionality of a MC is provided by a commercial motion control card. When COTS 
are used the implementation should bridge the abstract interfaces of the abstract MC to the 
actual interfaces of the concrete COTS. Besides, it could be necessary some re-engineering 
depending on the limitations of the COTS interface. 

Figure  8.  MC and SC over 1 actuator and N sensors 

Finally, the architecture defines the RC (Robot Controller) component. RCs model the 
control over a whole robot, for example, a robot composed of a vehicle with a manipulator 
and several interchangeable tools. RCs are an aggregation of MCs and a global coordinator. 
In general, RCs are complex components that comprises hardware and software 
components and can expose a wide variety of interfaces, depending on the complexity of the 
controlled system.  
Although the CCAS seems to follow a classical hierarchical organization, several innovative 
concepts have been incorporated, which mainly contribute to increasing the flexibility of the 

 strConfig

+ / MUC_Control~

Coordinator

+ / MUC_DataOut

MC

+ / SC_Control~+ / SC_DataOut

<
<

d
a

ta
>

<
<

d
a

ta
>

<
<

c
o

n
tr

o

l

+ / sensorDataIn~ + / actuatorControl

+ / devDataIn~

+ / sensorDataOut + / actuatorControl~

+ / devControl

<<data>> <<control>>

ActuatorSensor
n 1

Strategy

1

SC
n



Bioinspiration and Robotics: Walking and Climbing Robots 202

implementation and the reuse of the adopted approach. The use of components, ports and 
connectors allow the change of the interaction infrastructure and protocols, and facilitates 
the distribution of the control application in different processing nodes. These changes may 
imply the modification of ports and connectors but not the modification of components once 
implemented, which increases their reuse. 

6. Developing the Control Architecture for Lázaro using ACROSET 

This section presents the abstract architecture of the Lázaro climbing vehicles and the two 
platform-specific implementations done for both (see sections 3.2 and 3.3). In this way, this 
section illustrates the flexibility offered by ACROSET since, although the software and 
hardware platforms are quite different, both vehicles share almost the same architecture, 
which is shown in Fig. 9 and Fig. 10 (only the CCAS subsystem is depicted).  

Figure 9. Components of CCAS for Lázaro I control unit 

The Lazaro I architecture can be seen in Fig.9. Two different MCs have been included: one to 
control the vehicle and another to control the manipulator. The first contains one SC to 
control each of the electrical motors that move the vehicle. The manipulator MC coordinates 
two SCs, one for each manipulator axis. The CCAS also includes an SC for controlling the 
electro-valve associated with the blasting nozzle. 
The Lazaro II architecture can be seen in Fig. 10. The vehicle controller is modelled by a MC. 
It contains two SCs to control each of the electrical motors that move the vehicle. The 
manipulator MC coordinates two SCs, one for each manipulator axis. The vehicle uses a tool 
that consists of an enclosed nozzle for making the blasting and a vacuum belt for recovering 
the residues. In this case there is not a manipulator. 
Both architectures share the abstract components corresponding to the vehicle and blasting 
tool, although as is shown in the following sections the concrete components are completely 
different. The RC coordinator is slightly more complex in the case of Lazaro I, since it has to 
take into account the manipulator. 
Though it is not shown in Fig.9 nor in Fig. 10, the architecture of both versions of Lázaro 
include an IS that provides two “intelligent behaviours”: obstacle avoidance and execution 
of pre-programmed sequences of motions. The components of the IS that implement these 

<<control>>

eValve
1

RC_Control~

Coordinator

RC_DataOut

SC_Control~

strCon
 Strategy

<<data>>

switch
1

 manipul:MC

1

1

blastTool:SC
1

<<data>>

2
encoder

 Axis:SC 2

Coordinator 1

 vehicle:MC 1

 wheel:SC 2

 Coordinator 1

<<data>> <<control>>

eMotor encoder
2 2

<<control>>

eMotor
2

RC



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 203

behaviours obtain the information they need from the vehicle sensors and generate 
commands to the CCAS. Integration between these commands and the operator commands 
is resolved by an arbitrator in the UIS. 

Figure 10. Components of CCAS for Lázaro II control unit 

6.1 Lázaro I Implementation of the Architecture 

The implementation of the CCAS for the Lázaro I was carried out in the Ada’95 
programming language following the object-oriented paradigm. Components, ports and 
connectors have to be translated into classes and objects. An example of component 
implementation is presented below in Figure 11. The Motor_SUC class contains the ports 
showed in Figure 11 with stereotypes «InPort» and «OutPort», to get data (Data) or produce 
control (Ctrl) and to configure the SC (Config). Ports belong to the component and they are 
created and destroyed with it, they therefore have a composite relation. 
The operations offered by the control ports match with the events sent by other components 
to the SC. Besides ports, class Motor_SUC contains the interchangeable ControlStrategy object 
(the control algorithm). The rest of components of the instantiation of ACROSET for Lázaro 
I have been built in a similar manner, extending their interfaces to the needs of the system. 
Notice that the SC interface remains similar in every component thanks to the method 
processCommand(), which processes any incoming event in its particular control inport. The 
implementation of processCommand() is different for each SC, MC and RC. 
To end the Ada-95 interpretation of the architecture, the objects previously identified are 
mapped onto an execution architecture, where concurrent tasks (threads), task interfaces 
and interconnections are defined. The driving forces behind the decisions for designing the 
execution architecture view are performance, distribution requirements and the runtime 
platform, which includes the underlying hardware and software platforms. Too many 
threads in a system can unnecessarily increase its complexity because of greater inter-task 
communication and synchronisation needs, and can increase the overhead of the system 
because of additional context switching. The system designer has to make tradeoffs between 
introducing enough threads to simplify and clarify the design while keeping their overall 
number low so as not to overload the system. 

RC_Control~

Coordinator

RC_DataOut

SC_Control~

strCo

 vehicle:MC 1

wheel:SC 2

Coordinator1

<<data>> <<control

eMotorencoder
2 2

<<control

1

 Strategy

<<data>

>

switch
1

1

blastTool:SC
1

RC

eValve



Bioinspiration and Robotics: Walking and Climbing Robots 204

Figure 11. Implementation of a Motor SUC 

6.2 Lázaro II Implementation of the Architecture. 

In response to the special industrial requirements of the EFTCoR project, the system has 
been implemented using a PLC (SIMATIC S7-300 series) and a Field-Bus (PROFIBUS-DP) as 
shown in Fig. 12-a. The development environment is STEP 7 (SIEMENS, 2002). Each SC, MC 
and RC has been translated to PLC Function Blocks (FBs) (SIEMENS, 2002) as shown in Fig. 
12-b. With the option of FB instantiation in SIMATIC S7-300 series, it is possible to program 
the PLC with a philosophy that is close to the object-oriented paradigm (each FB acts as a 
class which can be instantiated). For instance, a generic axis controller (SC) has been defined 
to create two instances, the controllers (SCs) for every wheel, although in this case, both 
wheels are identical, the SC can be adapted to different wheels or axes simply by changing 
the associated DB (PLC Data Blocks). 
Compared to the implementation of Lázaro I, it is clear that the translation of abstract 
component of ACROSET into concrete components in Lázaro II is totally different. It is 
important to state that even though the execution platform was so distinct from Lázaro I the 
design of the architecture for the second prototype was executed very rapidly starting as it 
did with the architecture of Lázaro I.  The most difficult process was the translation of the 
mentioned ACROSET abstract components into concrete, platform specific components 
because it had to be carried out manually. For that very reason, we are currently researching 
an approach using Model-Driven Engineering (MDE) (Schmidt, 2006) in order to obtain 
transformations from model to text (code) that could lead to automated code generation, as 
it is explained in section 7.2. 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 205

Figure 12. (a) Hardware architecture                  (b)   SC (Motor Controller) implemented as a 
FB  

7. Conclusions, Lessons Learned and Future Research 

7.1 Conclusions and Lessons Learned 

In this chapter we have described our experiences using an architectural framework in the 
development of robotic applications, with discussion of the importance of system 
architecture to handle the inherent complexity of robotic systems. Among the robots 
developed in the EFTCoR project, two versions of the climbing vehicle Lázaro have been 
described, starting from the special requirements of the shipyards to develop cleaning 
systems that can free human operators from those dangerous tasks, and, at the same time, 
minimizing the emissions of pollutants into the environment.  
Among the many lessons learned in the development of such software architectures and 
frameworks it is important to highlight two in particular: (1) it is not feasible (at least not for 
us) to define a software architecture sufficiently generic to be adapted to the entire target 
domain, and therefore (2) it is more useful to follow approaches that allow developers to 
reuse components in different architectures. This is just what Component Based 
Development (CBD) and component frameworks propose. 
Current component frameworks for robotic applications generally impose a concrete 
programming language and execution platform that may or may not appropriate for any 
given application, as described in section 4 . It would be desirable to be able to define 
components that are independent of both system architecture and execution platforms, and 
this is the idea behind ACROSET abstract components. ACROSET, as an abstract component 
framework, tries to overcome the difficulties found in the state of the art: (1) limitations of 
object-oriented technology; and (2) lack of portability of components from one framework to 
another.
ACROSET as a reference architecture guides the developer in the process of building a 
concrete architecture, guarantying that quality requirements are fulfilled as well as being 

(1) PG/PC 

(2) Field-Bus 

(3) Operator Panel 

(4) PLC 

(5) Sensors (6) Driver 

(7)         Motors 



Bioinspiration and Robotics: Walking and Climbing Robots 206

flexible enough to combine different components inside these subsystems. In addition it 
does not restrict the level of granularity that must be reached in every implementation. 
With regard to the implementation of the architecture into different execution platform, 
section six demonstrated the way in which a similar definition of abstract components for 
two prototypes can be translated into very different implementations. ACROSET 
components are defined at a high enough level of abstraction to allow different 
implementations on different execution platforms, programming languages or 
hardware/software partitions (software objects, PLC function blocks, hardware 
components, COTS, etc). It is even relatively easy to distribute some software components to 
different processing nodes keeping the same conceptual model of the architecture, by 
simply changing the connectors between such components. 

7.2 Future Research 

Although the capacity offered by ACROSET for describing the robotic systems architecture 
has been very valuable, the translation of the ACROSET abstract components into concrete, 
platform specific components has been a difficult and error prone task. Therefore, after this 
experience, we believe that an approach like ACROSET will only show its full potential if a 
way of automatically translating abstract components into concrete components is found. 
The adoption of the Model-Driven Engineering (MDE) (Schmidt, 2006) approach is a key 
step to achieve this goal. 
Currently, a MDE approach to developing the software architecture of robotic systems 
based on the abstract components proposed by ACROSET is being adopted. The tools and 
standards developed by the OMG allow us to design the architecture of a robot at a high 
level of abstraction and in a platform-independent way, and to successively transform these 
models until we obtain a textual representation (code generation), ready for compilation. By 
designing different transformations it will also be possible to map the ACROSET 
components to different robotic frameworks when needed. Although this work is still at an 
early stage, the results we have already obtained are more than promising. 

8. References 

Álvarez B.; Sánchez P.; Pastor J.A.; & Ortiz F. (2006). An Architectural Framework for 
Modeling Teleoperated Service Robots, ROBOTICA - International Journal of 
Information, Education and Research in Robotics and Artificial Intelligence ISSN 0263-
5747, Cambridge University Press. Vol. 24, No. 04, pp. 411-418. July 2006. 

Barbanov, M. (1997). A Linux-based Real-Time Operating System. PhD thesis, New Mexico 
Institute of Mining and Technology, June 1997. 

Bézivin, J. (2005). On the Unification Power of Models. Journal of Software and Systems 
Modeling, Vol. 4, No. 2, pp. 171–188. doi: 10.1007/s10270-005-0079-0. 

Brooks, A.; Kaupp, T.; Makarenko, A., Williams, S. & Oreback, A. (2005). Towards 
Component-Based Robotics. IEEE/RSJ International Conference on Intelligent Robots 
and Systems., pp 163- 168, Aug. 2005. 

Bruyninckx, H.; Konincks, B. & Soetens, P. (2002). A Software Framework for Advanced 
Motion Control, Dpt. of Mechanical Engineering, K.U. Leuven. OROCOS project 
inside EURON. Belgium. 



A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle 207

Coste-Manière, E. & Simmons, R. (2000). Architecture, the Backbone of Robotic System, 
Proceedings of the 2000 IEEE International Conference on Robotics & Automation, pp. 
505-513, April 2000, San Francisco, USA. 

EFTCoR (2002) Environmentally Friendly and Cost-Effective Technology for Coating 
Removal (EFTCOR). Fifth Framework Programme, European Community, 
Subprogram Growth ref. GRD2-2001-50004, (Oct 2002). 

EFTCoR (2005) EFTCoR Offcial Site. http://www.eftcor.com 
Iborra, A.; Pastor, J.A.; Álvarez, B.; Fernández, C. & Fernández-Meroño, J.M. (2003). Robots 

in Radioactive Environments. IEEE Robotics & Automation Magazine. Vol 10, No. 4,
 pp.12-22. Dec. 2003. 

Fernández, C.; Iborra, A.; Álvarez, B.; Pastor, J.A.; Sánchez, P.; Fernández-Meroño, J.M. & 
Ortega, N. (2005). Co-operative Robots for Hull Blasting in European Shiprepair 
Industry. IEEE Robotics & Automation Magazine, Nov. 2004. ISSN: 1070-9932 

Flowcorp (2006) http://www.flowcorp.com 
Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J. (1995). Design patterns : elements of 

reusable object-oriented software. Ed. Addison-Wesley Proffesional, 1995. ISBN: 0-201-
63361-2

Goldie, B. (a) (1999) A comparative look at dry blast units for vertical surfaces, PCE, Jul 1999. 
Goldie, B. (b) (1999) Comparing robotic units made to clean vertical surfaces with UHP 

waterjetting, PCE, Sep 1999. 
Hofmeister, C.; Nord, R. & Soni, D. (2000). Applied software architecture. Ed. Addison-Wesley, 

2000. ISBN: 0-201-32571-3. 
Hydro-Crawler (2006) http://www.dansk-vandteknik.dk/e_hydro-crawler.htm
Luckham, D.; Vera, J. & Meldal, S. (1995). Three Concepts of System Architecture. Technical 

Report: CSL-TR-95-674. Stanford University, CA, USA. 
Montemerlo, N.; Roy, N. & Thrun, S. (2003). Perspectives on standardization in mobile robot 

programming: The Carnegie Mellon Navigation (CARMEN) toolkit. In IEEE/RSJ 
Intl. Workshop on Intelligent Robots and Systems, 2003. 

Octopus (2005) http:// www.cybernetix.fr 
OMG (2007), Object Management Group, Unified Modeling Language (UML) 

Superstructure Specification v2.1.1, formal/2007-02-05, 2007.  
Schmidt, D. (2006): Model-Driven Engineering. IEEE Computer, Vol. 39, No. 2, IEEE 

Computer Society. ISSN 0018-9162. doi: 10.1109/MC.2006.58. 
Scholl, K.U. Albiez, J. & Gassmann, B. (2001) MCA: An Expandable Modular Controller 

Architecture, Karlsruhe University, 3rd Real-Time Linux Workshop, Milano, Italy 
Sendall, S. & Kozaczynski, W. (2003). Model Transformation: The Heart and Soul of Model-

Driven Software Development. IEEE Software, Vol. 20, No. 5, pp. 42-45, IEEE 
Computer Society. ISSN 0740-7459. doi: 10.1109/MS.2003.1231150. 

Shaw, M. & Garlan B. (1996). Software Architecture : Perspective on a emerging discipline. Ed. 
Prentice Hall, 1996. ISBN 0-131-82957-2. 

SIEMENS (2002). SIMATIC - Working with STEP 7 5.2. ref. 6ES7810-4CA06-8BA0. 
www.siemens.com.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Professional, 2002. ISBN 0-201-17888-5. 

Ultrastrip (2007) http://www.ecospheretech.com/htm/e_rov.htm



Bioinspiration and Robotics: Walking and Climbing Robots 208

Vaughan, R.; Gerkey, B. & Howard, A. (2003). On device abstractions for portable, reusable 
robot code. In Proc. of the IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems 
(IROS), 2003. 

Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; & Das, H. (2001). The CLARAty 
architecture for robotic autonomy. In IEEE Proceedings of the 2001 Aerospace 
Conference, Vol. 1, pp 121-132, 2001 Montana, USA. 



Bioinspiration and Robotics Walking and Climbing Robots

Edited by Maki K. Habib

ISBN 978-3-902613-15-8

Hard cover, 544 pages

Publisher I-Tech Education and Publishing

Published online 01, September, 2007

Published in print edition September, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Nature has always been a source of inspiration and ideas for the robotics community. New solutions and

technologies are required and hence this book is coming out to address and deal with the main challenges

facing walking and climbing robots, and contributes with innovative solutions, designs, technologies and

techniques. This book reports on the state of the art research and development findings and results. The

content of the book has been structured into 5 technical research sections with total of 30 chapters written by

well recognized researchers worldwide.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Francisco Ortiz, Diego Alonso, Juan Pastor, Barbara Alvarez and Andres Iborra (2007). A Reference Control

Architecture for Service Robots as applied to a Climbing Vehicle, Bioinspiration and Robotics Walking and

Climbing Robots, Maki K. Habib (Ed.), ISBN: 978-3-902613-15-8, InTech, Available from:

http://www.intechopen.com/books/bioinspiration_and_robotics_walking_and_climbing_robots/a_reference_con

trol_architecture_for_service_robots_as_applied_to_a_climbing_vehicle



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


