
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


801 

 
28 

 
 

An Autonomous Decentralized Supply Chain 

 Planning and Scheduling System 
 

 

Tatsushi Nishi 

 

1. Introduction 

For manufacturing industries, the integration of  business processes from cus-

tomer-order management to delivery 㧔Supply Chain Management㧕 has 

widely been received much attention from the viewpoints of agile and lean 

manufacturing.  Supply chain planning concerns broad activities ranging net-

work-wide inventory management, forecasting, transportation, distribution 

planning, production planning and scheduling, and so on (Jeremy, 2001; 

Simon et al., 2000). Various supply chain models and solution approaches have 

been extensively studied in previous literature (Vidal & Goetschalckx, 1997). 

These models are often divided into the following three categories: 
 

1. Integration of production planning among several companies (Mckay et 

al., 2001) 

2. Integration of production planning of multi-sites in a company (Bok et al., 

2000) 

3. Integration of production planning and distribution at a site from the pro-

curement of raw materials, transportation to the distribution of intermedi-

ate or final products to the customers (Rupp et al., 2000).  
 

The purpose of this work is to address an autonomous decentralized systems 

approach for integrated optimization of planning and scheduling for multi-

stage production processes at a site with respect to material requirement plan-

ning, production scheduling and distribution planning. One conventional ap-

proach that has been used for planning and scheduling is a hierarchical de-

composition scheme (Bitran & Hax, 1977).  Planning concerns decisions about 

the amount of products to be produced over a given time so as to maximize 

the total profit.  Scheduling involves decisions relating to the timing and se-

quencing of operations in the production processes so as to satisfy the produc-

tion goal that is determined by the planning system. Tan (2001) developed a 

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



 Manufacturing the Future: Concepts, Technologies & Visions 802

hierarchical supply chain planning approach and a method of performance 

management. 

Since in the hierarchical approach, there is practically no feedback loop from 

the scheduling system to the planning system, the decision made by the 

scheduling system does not affect the decision at the planning stage; however, 

the decision made by the planning system must be treated as a constraint by 

the scheduling system. Therefore, it becomes difficult to derive a production 

plan taking the precise schedules into account for the hierarchical systems. It is 

necessary to integrate the scheduling system and the planning system for 

global optimization of the supply chain (Wei, 2000). 

A simultaneous multi-period planning and scheduling model has been pro-

posed by Birewar & Grossmann (1990) where the scheduling decisions are in-

corporated at the planning level. It has been demonstrated that the planning 

profit is significantly increased when planning and scheduling decisions are 

optimized simultaneously. The disadvantage of their approach is that the 

planning and sequencing model is restricted to a certain class of simple prob-

lems, because an extremely large number of binary variables are needed to 

solve integrated planning and scheduling problems. Moreover, it is requested 

that the models of subsystems comprising an SCM system need to be flexible 

to deal with the dynamically changing environment in a practical SCM. The in-

tegrated large-scale models, however, often become increasingly complex. As 

a result, it becomes very difficult to execute the new addition of constraints 

and/or the modifications of the performance criterion so as to cope with un-

foreseen circumstances. 

SCM systems must satisfy new requirements for scalability, adaptability, and 

extendibility to adapt to various changes. If the decisions taken at each subsys-

tem are made individually while aiming to optimize the entire SCM system, it 

is easy for each subsystem to modify its own model in response to various re-

quirement changes. Distributed planning and scheduling systems have been 

proposed as an architecture for next-generation manufacturing systems 

(NGMS). These architectures are often referred to as multi-agent systems, 

wherein each agent creates each plan locally within the shop floor and each 

agent autonomously resolves conflicts among plans of other agents in a dis-

tributed environment. 

Hasebe et al. (1994) proposed an autonomous decentralized scheduling system 

that has no supervisory system controlling the entire plant with regard to cre-

ating schedules for multi-stage production processes. The system comprises a 



An Autonomous Decentralized Supply Chain Planning and Scheduling System   803 

database for the entire plant and some scheduling subsystems belonging to the 

respective production stages. Each subsystem independently generates a 

schedule for its own production stage without considering the schedules of the 

other production stages. However, a schedule obtained by simply combining 

the schedules of all production stages is impracticable in most cases. Therefore, 

the scheduling subsystem contacts the subsystems of the other production 

stages and obtains the schedule information of those stages to generate a new 

schedule.  Schedules are generated at each stage and data are exchanged 

among the subsystems until a feasible schedule for the entire plant is derived. 

The effectiveness of the autonomous decentralized scheduling system for 

flowshop and jobshop problems is discussed by Hasebe et al. (1994). 

An autonomous decentralized supply chain optimization system comprising 

three subsystems: material requirement planning subsystem, scheduling sub-

system and distribution planning subsystem has been developed.  A near-

optimal plan for the entire supply chain is derived through the repeated opti-

mizing at each subsystem and exchanging data among the subsystems. In Sec-

tion 2 we briefly review distributed planning and scheduling approaches. 

Supply chain planning problem is stated in Section 3. The model structure and 

the optimization algorithm of the autonomous decentralized system are devel-

oped in Section 4. In Section 5 we compare the proposed method with a con-

ventional planning method for a multi-stage production process. Section 6 

summarizes conclusion and future works. 

2. Distributed planning and scheduling 

There have been several distributed planning and scheduling approaches un-

der the international research program called Intelligent Manufacturing Sys-

tems (IMS). For example, the biological-oriented manufacturing system (BMS) 

is an evolutionary approach that contains DNA-type information and BN-type 

information acquired at each subsystem (Ohkuma & Ueda, 1996).  For the 

holonic manufacturing system (HMS), intelligent agents called “holons” have 

a physical component as well as software for production planning and sched-

uling. A hierarchical structure is adopted to reduce complexity and to increase 

modularity (Gou et al., 1998; Fisher, 1999). 

These distributed planning and scheduling approaches can be classified into 

hierarchical, non-heterogeneous, and heterogeneous algorithms according to 

the structure of the distributed systems (Tharumarajah & Bemelman, 1997). 
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Distributed Asynchronous Scheduling (DAS) is organized by three hierarchi-

cal agents: operational, tactical, and strategic agents. The constraints are 

propagated by the message passing through DAS schedulers (Burke & Prosser, 

1990). The non-heterogeneous structure is used as a combination of distributed 

agents and the conflict coordinator when the coordination between the subsys-

tems cannot be resolved. Maturana & Norrie (1997) addressed a mediator ar-

chitecture where coordination of subsystems is dynamically achieved by em-

ploying the virtual systems created as needed for coordination. On the other 

hand, a heterogeneous structure resolves all conflicts among the subsystems 

without any other subsystems. Smith (1980) proposed a contract net protocol 

where each heterogeneous agent negotiates with another by receiving and 

awarding bids. 

The algorithms of distributed planning and scheduling approaches can be 

classified into non-exhaustive or exhaustive approaches according to the con-

flict resolution and coordination method. In the non-exhaustive algorithm, the 

number of attempts at coordination is limited to the number of trials required 

for obtaining a feasible solution without consuming computational expenses 

(Shaw, 1987). The exhaustive algorithm is founded on the iterative-search 

based coordination method for obtaining a near-optimal solution, though the 

solution may only produce a locally optimal solution. The approach employed 

in this paper is an exhaustive approach with a heterogeneous structure having 

no supervisory system. The supply chain planning problem for a single-stage 

production system can be decomposed into a material requirement planning 

subproblem, a scheduling subproblem and a distribution planning subprob-

lem following the principle of Lagrangian decomposition and coordination 

approach based on the mathematical programming method (Nishi et al., 2003). 

This method has been applied to planning and scheduling methods in many 

previous studies (Gupta et al., 1999; Gou et al., 1998; Hoitomt et al., 1993). 

The autonomous decentralized approach features the characteristic that each 

subsystem has an optimization function for each subsystem based on the idea 

of decomposition and coordination. Most of the conventional distributed ap-

proaches have a hierarchical structure, where a supervisory system or a coor-

dinator makes a decision by using the information obtained by the subsystem. 

Even though the decisions are created by each subsystem, it is still necessary to 

use some protocols for coordination. For conventional systems, it is necessary 

to reconstruct these protocols when the new constraints or the performance 

criterion is modified. By adopting the structure of the proposed system, the 
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proposed approach has a plenty of flexibility to accommodate various changes 

such as modification of constraints or performance criteria in each subsystem. 

In the following section, the supply chain optimization problem is stated. 

Then, the mathematical formulation of the problems is described. 

 

3. Supply chain planning problem 

The multi-stage flowshop production process is divided into multiple produc-

tion stages by taking into account the technical and/or managerial relation-

ships in the plant shown in Figure 1. In this study, we assume that the plant 

satisfies the following conditions. 

 
1. Total planning period is divided into a set of time periods.  For each time 

period, the lower and the upper bound of the production demand of pro-

ducts are given.  If the amount of delivery is lower than the lower bound, 

some penalty must be paid to the customer. 

 

2. Transportation time and transportation cost from supplier of raw material 

to the plant, and from the plant to customers are negligible. 

 

3. The lead-time at the supplier of raw material is negligible.  However, the 

ordered raw material arrives at the production process only on a pre-

specified date. 

 

4. Production site has flowshop production line. Each production stage con-

sists of a single batch machine. The amount of product per batch and the 

production time depend on the product type of the job, but they are fixed 

for each product. 

 

5. Changeover costs at each stage depend on the product type of the opera-

tion executed successively. 

 

6. The capacity of the storage space for raw materials and final products is 

restricted. Therefore, the amount of storage of each raw material or final 

product must be lower than its upper bound.  The storage cost is propor-

tional to the amount of stored material and the stored period. 
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Figure 1. Supply chain for a multi-stage production processes 

 

The supply chain optimization problem for a multi-stage production process is 

stated as: 
 

The time horizon of planning and scheduling, the lower and upper bound of 

demand for products, the price of raw materials, inventory holding cost for 

raw materials, inventory holding cost for final products, the revenue of final 

product to customer, penalty cost for violating the lower of demand, process-

ing time of operations for each products, changeover cost are given, the prob-

lem is to determine the arrival time and the amount of each raw material to 

storage space for each raw material, the production sequence of operations 

and their starting times at each production stage, the delivery time and the 

amount of each product to customers from the storage space for final products 

to optimize the objective function consisting of material cost, inventory hold-

ing cost for raw materials, sequence dependent changeover cost at the produc-

tion stage, inventory holding cost for final products, production cost, penalty 

of production shortage. 

To solve the above supply chain optimization problem, an autonomous decen-

tralized supply chain optimization system is developed.  The details of the 

proposed system are explained in the following section. 

4. Autonomous decentralized supply chain planning and scheduling 
system 

Supply chain optimization problems naturally involve the coordination of 

production, distribution, suppliers of raw material, and customers.  Clearly, 

each of these sections has its own characteristic decision variables and an ob-

jective function relating to other sections. To achieve an efficient supply chain 
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management, a plan must be developed under the environment which each 

section is allowed to make independent decisions to its operation so as to op-

timize its own objective function while satisfying constraints of other sections. 

(Androulakis & Reklaitis, 1999). Taking this consideration into account, an 

autonomous decentralized supply chain optimization system for multi-stage 

production processes is developed. The supply chain planning problem is de-

composed into a material requirement planning subproblem, a scheduling 

subproblem and a distribution planning subproblem when the material bal-

ancing constraints are relaxed following the principle of Lagrangian relaxation 

method (Nishi et al., 2003). Each subproblem is solved by the subsystem. 

4.1 System structure 

The structure of the system is shown in Figure 2. The total system consists of a 

database for the entire plant, a material requirement planning subsystem 

(MRP) and some scheduling subsystems (SS) for respective production stage, 

and a distribution planning subsystem (DP). The purpose of the MRP subsys-

tem is to decide the material order plan so as to minimize the sum of the mate-

rial costs and inventory holding costs of raw materials. The SS subsystem de-

termines the production sequence of operations and the starting times of 

operations so as to minimize the changeover costs and due date penalties. The 

purpose of the DP subsystem is to decide the delivery plan of each product so 

as to maximize the profit including inventory costs for final products. The 

model structure of the decentralized supply chain optimization system is 

shown in Figure 3.  
 
 

 

Figure 2. System structure of autonomous decentralized supply chain planning and scheduling 
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Each sub-system has own local decision variables and an objective function. 

The decision variable and the objective function at each sub-system are also 

denoted in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Model structure of the autonomous decentralized supply chain planning 

and scheduling system 
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4.2 Material requirement planning subsystem 

Material requirement planning subsystem determines the timing and amount 

of raw material arrived at the production process in each time period. trM ,  

represents the amount of raw material r  arrived at the start of time period t , 

trC ,  represents the amount of inventory for raw material r  at the end of time 

period t , and MRP

tiP,  represents the production amount of product  i  in time pe-

riod t  which is calculated by MRP subsystem. trY ,  denotes the 0-1 variables in-

dicating whether material r  is arriving at the start of time period t  or not. 

Therefore, the optimization problem at the MRP subsystem is formulated as 

the following mixed integer linear programming problem (MILP). 
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tr tr ti
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where, 

- rI :  set of products produced from material r , 

- rm : maximum number of the arrivals of raw material r  in the total time 

  horizon,  
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- trp , :  price of the unit amount of raw material r  from supplier to the pro

  duction process at the start of time period t ,  

- 
SS

tiP, : amount of product i  produced in time period t , which is obtained 

  from the SS subsystem,  

- tiPN , : penalty for infeasibility of the schedule between  MRP

tiP,  and SS

tiP, , 

- trq , :  inventory holding cost of unit amount of raw material r for the dura

  tion of time period t , 

- rU :  set of products produced from material r , 

- ρ  :  weighting factor of the penalty for violating the schedule derived at 

  MRP subsystem and SS subsystem. 

4.3 Scheduling subsystems 

In this section, the scheduling algorithm of the SS subsystem is explained. The 

flowshop scheduling problem for the SS subsystem is formulated as: 
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Where 

- 
kCh  is the sequence dependent changeover cost at stage k , 

- 
k

is  is the processing time of job i  at stage k . 

 

The second and third terms in Eq. (8) indicate the penalty for the infeasibility 

of the schedule of SS subsystem with MRP subsystem, and with DP subsystem 

respectively. Eq. (9) indicates the sequence constraints of operations. The 

number of jobs for each product is not fixed in advance. Thus, at first, jobs are 

created by using the production data: DP

tiP,  obtained from DP subsystem. The 

number of jobs for each product i  is calculated by ∑ l

DP

ti VP /, , where  lV  is the 

volume of the unit at the production stage l . The due date of each product is 

calculated so that the production amount of each product satisfies its due date. 

The earliest starting time of each job is calculated by MRP

tiP,  in the same manner.  
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The above procedure makes it possible to adopt the conventional algorithms 

for solving the scheduling problem. In this paper, the simulated annealing 

method is used to solve the scheduling problem at each stage. 

A scheduling subsystem belonging to each production stage generates a near-

optimal schedule for respective production stage in the following steps: 
 

1. Preparation of an initial data 

The scheduling subsystem contacts the database for the entire plant and 

obtains the demand data, such as product name. By using these data, each 

scheduling subsystem generates the list of jobs to be scheduled. Each job 

has its earliest starting time and due date. Each job is divided into several 

operations for each production stage. For each operation, the absolute lat-

est ending time of job j  for stage k , represented by ALET: k

jF  is calcu-

lated. Here, ALET is the ending time for the stage calculated under the 

condition that the job arrived at the plant is processed without any wai-

ting time at each stage. ALET means the desired due date for each opera-

tion at each production stage. 

 

2. Generation of an initial schedule 

Each scheduling subsystem independently generates a schedule of its own 

production stage without considering the schedules of other stages. 

 

3. Data exchange among the subsystems 

The scheduling subsystem contacts the DP subsystem and MRP subsys-

tem, and obtains DP

tiP, : the production amount of products which is desir-

able for DP subsystem and MRP

tiP, : the production amount of products 

which is desirable for MRP subsystem. By using these data, each schedul-

ing subsystem modifies the list of jobs to be scheduled.  Each job is di-

vided into several operations for each production stage. 

The scheduling subsystem belonging to production stage contacts the 

other scheduling subsystems and exchanges the following data. 
 

a) The tentative earliest starting time (TEST) for each job j : k

je  

   The ending time of job j  at the immediately preceding produc

  tion stage 

b) The tentative latest ending time (TLET) for each job j :  k

jf  

  The starting time of job j   at the immediately following produc

  tion stage 
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Figure 4 illustrates the situation of scheduling for SS subsystem of produc-

tion stage 2 on the condition that the schedules of the production stage 1 

and stage 3 are fixed.  TEST and TLET of job A at the production stage 2 

are shown respectively. It is assumed that every job has the path from 

stage 1 through stage 3. TEST of job A at stage 2 indicates the ending time 

of job A at stage 1, and TLET of job A at stage 2 indicates the starting time 

of job A at stage 3. If the starting time of job A at stage 2 is earlier than 

TEST or the ending time of job A at stage 2 is later than TLET, the sched-

ule is infeasible. Therefore, penalty of violating the feasibility of schedule 

is embedded in the objective function in the optimization at each schedul-

ing subsystem for respective production stage. 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Tentative earliest starting time (TEST), tentative latest ending time 

(TLET) and absolute latest ending time (ALET) 
 

4. Optimization of the schedule for each SS subsystem 

Using the data obtained at step 3), the scheduling subsystem optimizes 

the production sequence of operations for that production stage. In order 

to include tardiness penalties in the objective function at every production 

stage, tardiness from ALET is embedded in the objective function.  The 

scheduling problem for each scheduling subsystem is shown in Eq. (10).  

The term having weighting factor   corresponds to the penalty for violat-

ing the precedence constraints with the preceding production stage and 

the following production stage respectively. 
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s.t. Eq. (9) 

 

where,  

- 
k

jt  is the starting time of operation for job j at stage  k . 

 
The optimization problem (SS- k ) for each SS subsystem is solved by using 

Simulated Annealing (SA) method combined with a neighbourhood search al-

gorithm (Nishi et al., 2000b). The outline of the scheduling algorithm is com-

posed of the following steps. 

 

a) Generate an initial production sequence of operations and calculate the 

starting times of operations, and calculate the objective function. 

b) Select an operation randomly and insert the selected operation into a 

randomly selected position, thereby change the processing order of op-

erations. 

c) For a newly generated production sequence, calculate the starting times 

of operations by the forward simulation and calculate the objective 

function. And then decide whether the newly generated schedule is 

adopted or not by using the criterion of simulated annealing method. 

d) Repeat the procedure (b) to (c) for a predetermined number of times 

( SN ) at the same temperature parameter ( SAT ), then the temperature pa-

rameter is reduced SASA TT η←  , where η  is annealing ratio. Then repeat 

(b) to (d) for a predetermined number of times ( AN ). 

 
A production schedule with a minimum objective function is regarded as the 

current optimal sequence. From the results of production sequence obtained 

by the simulated annealing method, the starting times of operations are calcu-

lated and the production amount of each products in each time period SS

tiP,  is 

calculated by using the schedule generated by the simulated annealing 

method. In the proposed system, any scheduling model and any optimization 

algorithm can be adopted in the scheduling subsystem. Therefore, the pro-

posed system can easily applicable to many types of scheduling problems such 

as jobshop problem (Hasebe et al., 1994), flowshop problem with intermediate 

storage constraints (Nishi et al., 2000c) by changing the algorithm of starting 

time calculation. 
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4.4 Distribution planning subsystem 

When the lower and upper bound of the amount of production demand for 

the duration of group-time periods: min

,miS , max

,miS  are given at each group-time 

periods (week, or month), the DP subsystem determines the delivery plan 

to customers so as to maximize the profit taking the inventory cost and the 

penalties of product shortage. Thus, the optimization problem at the 

DPsubsystem is formulated as follows: 
 

(DP) min[∑ ∑ ∑ −++
ti ti mi

mimi
DP
titititi IPIh

, , ,
,,,,,, ςν  

∑ ∑+−
ti ti

tititi PNS
, ,

,,, ρµ ] 
(11)

 

),(,,1,, tiSPII ti

DP

tititi ∀∀−+= −  (12)

 

∑
∈

− −≥
kTt

timimi SSI
'

',
min
,,    ),( mi ∀∀         (13)

SS
ti

DP
titi PPPN ,,, −≥    ),( ti ∀∀          (14)

 

max
,, titi II ≤    ),( ti ∀∀    (15)

 

∑
∈

≤
mTt

miti SS max
,, ),( mi ∀∀  (16)

0,,,, ,,,,, ≥−
titi

DP
timiti PNSPII   ),,( tmi ∀∀∀  (17)

where, 
 

- ti,µ : revenue of product i  sold in time period t , 

- tih , : inventory cost for holding unit amount of final product i  for the  

 duration of time period t , 

- tiI , : inventory level of final product i  at the end of time period t , 

- 
−

miI , : amount of shortage of final product i  in group-time periods m , 

- tiS , : amount of final product i  delivered in time period t , 

- mT : set of group-time periods m , 

- ti,ν : production cost of product i  in time period t . 
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Eq. (11) is the objective function of DP subsystem which is the sum of the 

inventory holding cost for final products, production costs, penalty for 

product shortage, revenue of products and penalty for violating the con-

straints with SS subsystem. Eq. (12) indicates a material balance equation 

around the storage space for final product.  Eq. (13) indicates the con-

straints on the minimum demand. Eq. (14) indicates the penalty value for 

violating the constraints imposed by the scheduling subsystem. Eq. (15) 

shows the capacity constraints of holding the final products in the storage 

space. Eq. (16) denotes the constraint of maximum amount of delivery to 

customer. Eq. (17) indicates the non-negative value constraints of all the 

decision variables. 

4.5 Overall optimization algorithm 

The total subsystem derives a feasible schedule by the following steps. 
 

Step 1.  Preparation of the initial data. 

Each subsystem contacts the database and obtains the data and 

initializes the weighting factor of the penalty term, e.g. 0←ρ . 

Step 2.  Generation of an initial solution.  

Each subsystem independently generates a solution without con-

sidering the other subsystems. 

Step 3.  Exchanging the data. 

Each subsystem contacts the other sub-systems and exchanges the 

amount of product data: MRP

tiP , , SS

tiP , , DP

tiP , . 

Step 4.  Judging whether the optimization at each subsystem is skipped or not. 

To avoid cyclic generation of same solutions, each subsystem skips 

Step 5 with a predetermined probability (see Hasebe et al., 1994). 

Step 5.  Optimization at each subsystem. 

By using the data obtained at step 3, each subsystem executes the 

optimization of each subproblem. 

Step 6.  Judging the convergence. 

When the solutions of all subsystems satisfy both of the following 

conditions, all of the subsystems stop the calculation, and the de-

rived solution is regarded as the final solution. 

- The solution generated at Step 5 is the same as that generated at 

Step 5 in the previous iteration. 
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- The value of the penalty function embedded in the objective 

function is equal to zero. 

Step 7.  Updating the weighting factor. 

If the value of penalty function is positive, the derived solution is 

infeasible. Therefore, in order to reduce the degree of infeasibility, 

the weighting factor of the penalty term is increased. The value of 

weighting factor for penalty is updated by ρρρ ∆+←   at each it-

eration. Then return to Step 3. The incremental value ρ∆  is a con-

stant. If the value of ρ∆  is larger, the performance index of solu-

tion derived by the proposed system becomes worse, on the other 

hand, the total computation time becomes shorter. On the con-

trary, if the value of ρ∆  is smaller, the total computation time is 

increased while the value of performance index has been im-

proved. Our numerical studies show that when ρ∆  is less than 

0.5, the computation time becomes exponentially larger even 

though the performance is not so improved. From these results, 

we have determined 5.0=∆ρ  as shown in Table 8. 

 

By taking the above algorithm, it is easy for the proposed system to intro-

duce the parallel processing system using multiple computers in which 

each subsystem execute its optimization concurrently. Figure 5 is a diagram 

showing the data exchange algorithm of the proposed system. Each square 

in Figure 5 illustrates steps of the data exchange algorithm in the iteration 

of the optimization at the subsystem and each arrow represents the flow of 

data. The total number of the processors required for solving the supply 

chain optimization problem is 5 processors for 3-stage production proc-

esses. The dotted arrow indicates the data of the production amount of 

each product in each time period determined by the MRP subsystem and 

DP subsystem. The thick arrow indicates the tentative earliest starting time 

(TEST) and tentative latest starting time (TLET) which are exchanged a-

mong the SS subsystems. In each iteration step, the data of the amount of 

products in each time period calculated in each subsystem are transmitted. 

Then, the data of TEST and TLST are exchanged. Therefore, jobs are gener-

ated at each iteration in the proposed system. While repeating the data ex-

change among each subsystem, the number of jobs and the starting time of 

operations are gradually satisfied with the constraints among each subsys-

tem. 
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Figure 5. Data exchange algorithm 

5. Computational results  

The proposed scheduling system is applied to a supply chain optimization 

problem. The MRP subsystem and the DP subsystem is solved by a commer-

cial MILP solver (CPLEX8.0 iLOG©). The algorithm used in the scheduling 

subsystem is coded by C++ language. Pentium IV (2.0AGHz) processor is used 

for computation. 

5.1 Example problem 

A batch plant treated in the example problem consists of three production sta-

ges shown in Figure 6.  In this example, it is assumed that the production 

paths of all jobs are the same, meaning the each job is processed at stages 1 

through 3. In this plant, four kinds of products are produced by each of two 

kinds of raw materials. Product A or B is produced from material 1, and prod-

uct C and D is produced from material 2.  The total planning horizon is 12 

days, and it is divided into 12 time periods in the MRP subsystem and in the 

DP subsystem. The shipping of raw material for each material is available only 

two times in 4 days (1, 4, 7, 10). For each product, the lower bound and the 

upper bound of the production demand for each 4 days are given as the ag-
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gregated value for each product. Thus, the delivery date can be decided by the 

DP subsystem. The plant is operated 24 hours/day.  The available space for in-

ventory for raw material and final products are restricted. The tables 1 to 8 

show the data and parameters used in the example problem. 

 

 

 

Raw material 1

for A, B

A

B

C

D
Storage space

for raw material
Storage  space

for final products 

Stage2 Stage3Stage1
Raw material 2

for C, D

Raw material 1

for A, B

A

B

C

D
Storage space

for raw material
Storage  space

for final products 

Stage2 Stage3Stage1
Raw material 2

for C, D

 
Figure 6. 3-stage production process for the example problem 
 

 

J/T 1 2 3 4 5 6 7 8 9 10 11 12 

A 1.90 2.00 1.80 1.95 2.00 1.95 2.10 2.00 1.80 1.90 2.20 2.30 

B 2.20 2.30 2.15 2.15 2.25 2.30 2.15 2.20 2.35 2.40 2.25 2.50 

C 2.00 2.20 2.20 3.20 3.25 2.25 1.10 1.25 2.05 2.10 1.35 2.30 

D 2.20 2.50 2.20 2.50 1.30 2.20 3.50 1.20 2.20 3.70 2.60 2.40 

Table 1. Revenue of products at each time period 

 

J T: 1 - 4 T: 5 - 8 T: 9 - 12 

A 0.45 0.45 0.45 

B 0.45 0.45 0.45 

C 0.60 0.60 0.60 

D 0.60 0.60 0.60 

Table 2. Production costs 

 

J T: 1 - 4 T: 5 - 8 T: 9 - 12 

A 100 200 100 

B 100 200 400 

C 200 300 300 

D 100 100 400 

Table 3. Minimum demand data 
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J T: 1 - 4 T: 5 - 8 T: 9 - 12 

A 1100 900 1200 

B 1200 1400 1100 

C 2200 2500 2000 

D 1000 800 1000 

Table 4. Maximum demand data 
 
 

 
Stage 
 

From/to A B C D 

A 0 10 10 10 
B 40 0 10 10 
C 40 40 0 10 

1 

D 40 40 40 40 
A 0 0 30 30 
B 0 0 30 30 
C 30 30 0 0 

2 

D 30 30 0 0 
A 0 30 20 10 
B 10 0 30 20 
C 20 10 0 30 

3 

D 30 20 10 0 

Table 5. Sequence dependent changeover cost data 

 
 

J/T 1 2 3 4 5 6 7 8 9 10 11 12 

A 1.90 2.00 1.80 1.95 2.00 1.95 2.10 2.00 1.80 1.90 2.20 2.30 

B 2.20 2.30 2.15 2.15 2.25 2.30 2.15 2.20 2.35 2.40 2.25 2.50 

C 2.00 2.20 2.20 3.20 3.25 2.25 1.10 1.25 2.05 2.10 1.35 2.30 

D 2.20 2.50 2.20 2.50 1.30 2.20 3.50 1.20 2.20 3.70 2.60 2.40 

Table 6. Price and data of raw material 

 

 

 A B C D 

Stage 1 4 5 2 5 

Stage 2 5 5 2 4 

Stage 3 3 5 4 4 

Table 7. Processing time data 
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Other data 

Unit Volume (V1): 100, Cmax : 3000 ,  Imax: 300, Mmax:4000 
Inventory holding cost for raw material: 0.001 
Inventory holding cost for final product: 0.2 
Penalty of product shortage: 4.0 

Parameters for simulated annealing 

Annealing times ( AN ): 400 

Search times ( SN ): 200 

Annealing Ratio: 0.97 

Initial temperature: initial performance *0.1  

Parameters for the proposed system 

Skipping probability: 0.2% 

Increment of weighting factor ( ρ∆ ):  0.5 

Table 8.Parameters used for computation 

5.2 Results of coordination 

 

 
 
Figure 7. Intermediate result after 10 times of data exchange 
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Figure 7 shows an intermediate result obtained after ten times data exchange. 

This result is infeasible because several jobs at stage 3 are finished later than 

the scheduling horizon (Day 12).This is because the DP subsystem individually 

tries to generate a distribution planning so that the amount of delivery amount 

to the customer is maximized. Therefore, the planning result is also infeasible 

because the amount of production at stage 3 in each time period is not equiva-

lent to the amount of the product delivery. Moreover, several operations at 

stage 2 are finished later than the starting times of operations at stage 3.  

Figure 8 shows the final schedule obtained after 23 times of data exchanges.  A 

feasible schedule is obtained by the proposed system. The transitions of the 

performance index in 23 times of iterations are shown in Figure 9.  
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Figure 8. Final result after 23 times of data exchange 

 

As the number of iteration increases, the value of penalty function decreases 

and it becomes close to zero. This indicates that the proposed system gradually 

generates a feasible solution by increasing the value of weighting factor of the 

penalty for violating the material balancing constraints although only the local 

information is used to optimize the objective function for each subsystem. 
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Figure 9. The transitions of the performance index 

5.3 Comparison of the proposed system and the conventional system 

In order to evaluate the performance of the proposed system, a hierarchical 

planning and scheduling system considering the entire plant is also developed.  

The planning problem (HP) is formulated as MILP problem by using the mid-

term-planning model proposed by McDonald & Karimi (1997). 
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where， 

- tH : amount of time available in the time period t , 

- mT : set of group-time period m , 

- tV : batch size of the machine at the production stage l . 
 

For the hierarchical approach, the solution of the HP problem is transferred to 

the scheduling subsystem as the production request. The jobs are created by 

using the production amount: tiP ,  calculated in the planning system. The sche-

duling system obtains the amount of inventory for raw material, due dates for 

each job. And then the scheduling system is executed. For the scheduling 

system used in the hierarchical approach, a schedule considering the entire 

production stages is successively generated improving an initial schedule. The 

simulated annealing method is adopted so that the solution is not trapped in a 

local optimal. 

Ten times of calculations are made with different seed numbers for generating 

random numbers in the simulated annealing method to compare the perform-

ance of the proposed system. The results of the performance index for the pro-

posed system (DSCM1) and the hierarchical planning and scheduling system 

(CONV) are shown in Table 10. The average computation time for deriving a 

feasible schedule of the proposed algorithm is 198 seconds. The performance 

of the DSCM1 is lower than that of the hierarchical system (CONV). This is be-

cause some of the solutions of the schedule generated by each subsystem have 

been entirely different from that derived by other subsystem, which makes 

convergence of the proposed algorithm difficult. Thereby, the final solution of 

the proposed system has been trapped into a bad local optimum. In order to 

improve the efficiency of the proposed method, the capacity constraints for 
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each month are embedded into the DP subproblem. By adding the capacity 

constraints to DP subproblem, the number of generating meaningless solutions 

violating the constraints with the SS subsystem has been reduced. The results 

of computation for the improved method (DSCM2) are shown in Table 10.  The 

profit of DSCM2 is successfully improved compared with that of DSCM1 

without sacrificing the computational expenses. For DSCM2, the changeover 

cost is lower than that of CONV, though the profit for final products is higher 

than CONV.  This is because both the changeover costs and the profit of the 

product greatly depend on the production schedule, and it is very difficult for 

CONV to determine the precise production schedule at the production plan-

ning level. It is demonstrated that the total profit of proposed system (DSCM2) 

is higher than that of the conventional system (CONV). The proposed system 

can generate a better solution than the conventional system even though only 

local information is used to generate the solution of each subsystem. 

6. Conclusion and future work 

An autonomous decentralized supply chain optimization system for multi-

stage production processes has been proposed.  The novel aspect of this paper 

is that we provide a novel distributed optimization system for a supply chain 

planning problem for multi-stage production processes comprising a material 

requirement planning (MRP) subsystem, scheduling subsystems for each pro-

duction stage, and a distribution planning (DP) subsystem. 
 

 
 

Methods DSCM1 DSCM2 CONV 

Number of data exchange 18 21 1 

Profit [-] 7,533 9,538 9,418 

Number of jobs [-] 66 66 62 

Total revenue [-] 14,353 15,759 15,460 

Costs of raw material [-] 1,540 1,688 1,677 

Inventory cost for raw materials [-] 18 21 26 

Inventory holding cost for final products [-] 504 720 360 

Production cost [-] 2,970 3,006 2,790 

Penalty of product shortage [-] 1320 360 400 

Sequence dependent changeover cost [-] 468 426 1,030 

Table 10. Comparison of the autonomous decentralized supply chain planning 

system (DSCM) and the conventional system (CONV) 
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Each subsystem includes an optimization function and repeats the generation 

of solutions for each subproblem and data exchange among the subsystems. 

The total system derives a feasible solution by gradually increasing the weight-

ing factor for violating the infeasibility of the solution through repeated opti-

mization at each subsystem and data exchanges among the subsystems. The 

data exchanged among the subsystems are tentative production amount of 

each product at each time period that is desirable for each subsystem. By 

adopting such a structure, it is easy to modify the subsystem when a new con-

straint is added or when performance evaluation criteria changes. Thus, the 

system can flexibly accommodate various unforeseen changes. he proposed 

system is successfully applied to a multi-stage supply chain optimization prob-

lem.  The results demonstrate that feasible solutions could be obtained by the 

numerical examples. The performances of the proposed system are compared 

with those of the schedule derived by the conventional system. It has been 

shown that the proposed system can generate a better solution than the con-

ventional system without sacrificing flexibility and computational resources. 

Future work should be investigated on how to optimize the entire supply 

chain under several uncertainties. 

7. Nomenclature 

- trC , :  amount of inventory of raw material r at the end of time period t, 

- 
max

,trC :  maximum amount of inventory for raw material r at the end of time 

   period t, 

- 
kCh :  sequence dependent changeover cost at stage k, 

- 
k

je :  tentative earliest starting time of job i at stage k, 

- 
k

jf :  tentative latest ending time of job i at stage k, 

- 
k

jF :  absolute latest ending time of job j  at stage k , 

- tih , :  inventory cost for holding unit amount of final product i for the du-

   ration of time period t, 

- tiI , :  inventory level of final product i at the end of time period t, 

- 
max

,tiI :  maximum amount of inventory for final product i at the end of time 

  period t, 

- 
−

miI , :  amount of shortage of inventory for final product i in group-time 

   periods m, 

- K :  sufficiently large positive number, 



 Manufacturing the Future: Concepts, Technologies & Visions 826

- rm :  maximum number of the arrival of raw material r , 

- trM , :  amount of raw material r arrived from supplier at the start of time 

   period t, 

- AN :  annealing time for simulated annealing, 

- SN :  search times at the same temperature for simulated annealing, 

- trp , :  price of the unit amount of raw material r from supplier to the plant 

   at the start of time period t, 

- 
MRP

tiP,  tentative amount of production of product i in time period t, which 

   is derived at MRP subsystem, 

- 
DP

tiP , :  tentative amount of production of product i in time period t, which 

   is derived at DP subsystem, 

- 
SS

tiP , :  tentative amount of production of product i in time period t, which 

   is derived at DP subsystem, 

- tiPN , : difference of production amount of product i in time period t, 

- trq , :  inventory holding cost of unit amount of raw material r for the 

    duration of time period t, 

- 
k

is :  processing time of operation for job j  at stage k , 

- tiS , :  amount of final product i delivered in time period t, 

- 
k

jt :  starting time of operation for job j  at stage k , 

- mT :  set of time in group-time periods m, 

- 
availableT  periods of time when the material arrival is available, 

- SAT :  annealing temperature for simulated annealing method, 

- TEST tentative earliest starting time, 

- TLET tentative latest ending time, rU : set of products produced  

-   from material r , 

- lV :  batch size of the machine at the production stage l, 

- trY , :  binary variable indicating whether material r is arrived at the start 

   of time period t or not. 

Greek Letters 

- η :  annealing ratio ( temperature reduction factor), 

- ti,µ :  revenue of of product i sold in time period t, 

- ti,ν :  production cost of product i in time period t, 

- ρ :  penalty parameter,  

- mi,ς :  penalty for unit amount of shortage of product in group-time 

-    periods m , 
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