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Distributed Architecture for Intelligent Robotic Assembly 

 Part III: 

 Design of the Invariant Object Recognition System 

Mario Pena-Cabrera and Ismael Lopez-Juarez

1. Introduction 

In previous chapter it has been described the overall architecture for multimo-

dal learning in the robotic assembly domain (Lopez-Juarez & Rios Cabrera, 

2006). The acquisition of assembly skills by robots is greatly supported by the 

effective use of contact force sensing and object recognition. In this chapter we 

will describe the robot’s ability to invariantly recognise assembly parts at dif-

ferent scale, rotation and orientation within the work space. The chapter shows 

a methodology for on-line recognition and classification of pieces in robotic as-

sembly tasks and its application into an intelligent manufacturing cell. The 

performance of industrial robots working in unstructured environments can 

be improved using visual perception and learning techniques. In this sense, 

the described technique for object recognition is accomplished using an Artifi-

cial Neural Network (ANN) architecture which receives a descriptive vector 

called CFD&POSE as the input. This vector represents an innovative method-

ology for classification and identification of pieces in robotic tasks, every stage 

of the methodology is described and the proposed algorithms explained. The 

vector compresses 3D object data from assembly parts and it is invariant to 

scale, rotation and orientation, and it also supports a wide range of illumina-

tion levels. The approach in combination with the fast learning capability of 

ART networks indicates the suitability for industrial robot applications as it is 

demonstrated through experimental results. 

Robotics field has grown considerably with new technologies, industrial ro-

bots today, needs sensorial capabilities to achieve non-structured and more 

sophisticated tasks; vision systems as a sensorial mode for robots have a grow-

ing demand requiring more complex and faster image processing functions in 

order to implement more sophisticated industrial applications, like assembly 

automation.

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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In this sense, vision recognition systems must be capable of perceiving and de-

tecting images and objects, as close as the human vision does; this fact has en-

couraged research activity to design artificial vision systems based on the neu-

ral morphology of the biological human vision system. Now scientists 

understand better about how computational neural structures and artificial vi-

sion systems must be designed following neural paradigms, mathematical 

models and computational architectures. When a system involves these as-

pects, it can be referred to as a “Neuro-Vision System” (Gupta and Knopf, 

1993), (Peña, 2004), which can be defined as an artificial machine with ability 

to see our environment and provide visual formatted information for real time 

applications.

It has been shown by psychological and clinical studies that visual object rec-

ognition involves a large activity area on the cerebral cortex when objects are 

seen the first time and the region’s activity is reduced when familiar objects are 

perceived (Gupta and Knopf, 1993). New objects can also be learned quickly if 

certain clues are given to the learner. Following this psychological evidence a 

novel architecture was designed. The architecture is firstly trained with clues 

representing different objects that the robot is likely to encounter within the 

working space to form its initial knowledge base. This information then trig-

gers the on-line learning subsystem based on an Artificial Neural Network 

(ANN), the new image vector descriptors override initial clues, and the robot 

learns to identify familiar objects and to learn new ones. 

The above ideas suggested that it was possible to get fast and reliable informa-

tion from a simple but focused analysis of what an object might show. The 

very important aspects of the scene (we have called “clues”), can be used later 

to retrieve memorized aspects of the object without having to recall detailed 

features. By using neural networks it is possible to learn manipulative skills 

which can be used by an industrial manipulator (Lopez-Juarez and M. How-

arth, 2000). In someway we humans do that process once an object has been 

seen and learned for the first time. 

The chapter describes a methodology for on-line object recognition, based on 

artificial neural networks for identification and classification purposes. Robust 

algorithms for perimeter, centroid calculations, object functions and pose esti-

mation are presented.
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2. Related work 

Intelligent manufacturing cells using robots with sensorial capabilities are be-

ing investigated using Artificial Intelligence techniques like ANN’s and Fuzzy 

Logic among others, since mathematical and control models are simplified. 

Acquiring information from multiple sensors in manufacturing systems pro-

vides robustness and self-adaptation capabilities, hence improving the per-

formance in industrial robot applications. A few researchers have applied neu-

ral networks to assembly operations with manipulators and force feedback. 

(Vijaykumar Gullapalli, 1994), used BackPropagation (BP) and Reinforcement 

Learning(RL) to control a Zebra robot, its neural controller was based on the 

location error reduction beginning from a known location, (Enric Cervera, 

1997), employed Self-Organization Map (SOM) and RL to control a Zebra ro-

bot, the location of  the destination piece was unknown, (Martin Howarth, 

1998), utilized BP and RL to control a SCARA robot, without knowing the loca-

tion of assembly, (Lopez-Juarez, 2000), implemented FuzzyARTMAP to con-

trol a PUMA robot also with an unknown location. All of the above authors 

considered only constraint motion control during assembly; however, to com-

plete the autonomy of the assembly system a machine vision system has also 

to be considered. Additionally, a new concept was introduced in 1988 called 

“Robotic Fixtureless Assembly” (RFA) (Hoska, 1998), that eliminates the need 

of using complex and rigid fixtures, which involves new technical challenges, 

but allows very potential solutions. Studies of RFA of flexible parts with a dy-

namic model of two robots which does not require measurements of the part 

deflections have been done (W. Ngyuen and J.K. Mills, 1996). (Plut, 1996), and 

(Bone, 1997), presented a grasp planning strategy for RFA. The goal of RFA is 

to replace these fixtures with sensor-guided robots which can work within 

RFA workcells. The development of such vision-guided robots equipped with 

programmable grippers might permit holding a wide range of part shapes 

without tool changing. Using Artificial Neural Networks, an integrated intelli-

gent vision-guided system can be achieved as it is shown by (Langley et al., 

2003). This job can be achieved by using 2D computer vision in different man-

ner so that 3D invariant object recognition and POSE calculation might be used 

for aligning parts in assembly tasks if an –“adequate descriptor vector”- is 

used and interfaced in real time to a robot. Many authors had come with de-

scriptor vectors and image transformations, used as general methods for com-

puter vision applications in order to extract invariant features from shapes. 
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(Alberto S. Aguado et al., 2002), developed a new formulation and methodol-

ogy for including invariance in general form of the Hough transform, (Chin-

Hsiung et al., 2001),  designed a technique for computing shape moments 

based on the quadtree representation of images, (P. J. Best and N. McKay, 

1992), describe a method for registration of 3D shapes in minutes, (A. Torralba 

and A. Oliva, 2002), present a method to infer the scale of the scene by recog-

nizing properties of the scene structure for depth estimation, (Freeman, 1961), 

introduced the first approach for representing digital curves using chain codes, 

and showing classical methods for processing chains (Freeman, 1974), (E. 

Bribiesca, 1999), developed  a new chain code for shapes composed of regular 

cells, which has recently evolved even to represent 3D paths and knots. 

Some authors use multiple cameras or multiple views to extract information, 

performs invariant object recognition and determine object’s position and mo-

tion, (Stephen A. Underwood, 1975), developed a visual learning system using 

multiple views which requires deterministic description of the object’s surfaces 

like measurements and interconnections, (Yong-Sheng Chen et al., 2001), pro-

pose a method to estimate the three dimensional ego-motion of an observer 

moving in a static environment, (Hiroshi Murase and Shree K. Nayar, 1995), 

have worked in visual learning and recognition of 3D objects from appearance, 

(E. Gonzalez-Galvan et al., 1997), developed a procedure for precision measure 

in 3D rigid-body positioning using camera-space manipulation for assembly. 

(Dickmanns, 1998), and (Nagel, 1997), have shown solutions to facilitate the 

use of vision for real world-interaction, (Hager et al., 1995), and (Papaniko-

lopoulos et al., 1993), use markers on the object to simplify detection and track-

ing of cues.

Some other authors have contributed with techniques for invariant pattern 

classification, like classical methods as the universal axis of Lin, and invariant 

moments of (Hu, 1962), or artificial intelligence techniques, as used by (Cem 

Yüceer and Kemal Oflazer, 1993), which describes an hybrid pattern classifica-

tion system based on a pattern pre-processor and an ANN invariant to rota-

tion, scaling and translation, (Stavros J. and Paulo Lisboa, 1992), developed a 

method to reduce and control the number of weights of a third order network 

using moment classifiers and (Shingchern D. You and G. Ford, 1994), proposed 

a network for invariant object recognition of objects in binary images. Applica-

tions of guided vision used for assembly are well illustrated by (Gary M. Bone 

and David Capson, 2003), which developed a vision-guide fixtureless assem-

bly system using a 2D computer vision for robust grasping and a 3D computer 
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vision to align parts prior to mating, and (Stefan Jörg et al., 2000), designing a 

flexible robot-assembly system using a multi-sensory approach and force 

feedback in the assembly of moving components. 

3. Invariant Object Recognition 

Recognising an object using a vision system involves a lot of calculations and 

mathematical processes which have to be implemented and tested in order to 

be used in a real application. In this way, vision systems and solid state tech-

nologies has been evolved at the same time, the more faster and sophisticated 

computers had come with the more complex and better vision systems devel-

oped as well as more sophisticated algorithms implementation had became a 

reality.

Basic ideas were established with approximated representations, architectures 

and algorithms, which motivated the development of this research area. A 

general solution to the recognition problem does not exist (J. L. Mundy, 1998). 

Most classical methods to object recognition use shape analysis and metric fea-

ture extraction from digitized images to reach the goal. Recent research, points 

to use artificial intelligence techniques to look for invariant recognition solu-

tions using vision. In this way artificial neural networks are a well representa-

tive technique to this purpose 

3.1 Learning 

For a better understanding of the recognition problem, it is convenient to ex-

plore how humans make the recognition process, sometimes in an automatic 

manner and many times in short periods of time, as it is the case of a projected 

image in the retina which can be rotated, moved or even scaled when the ob-

ject or eyes are moved. Humans can recognize an object within a complex 

scene with overlapped objects. 

Most recognition techniques uses indirect mapping between objects and retinal 

images, there is a set of object representations in long term memory which 

have been associated with object physical representations, and information is 

not just a copy of a pattern of retinal stimulus but a set of features representa-

tive of the object with invariant properties, so the object can be recognized 

from different views. There must be a criteria to decide which is the best object 

representation within the long term memory when an input object representa-
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tion is not exactly the same to the one already memorized. It is difficult to 

know when the perception process ends and when the recognition process be-

gins.

Human visual process can execute a universal set of routines with simple sub-

processes operating with object sketches even in 2 ½ dimensions (S. Ulman, 

1984),  this activities might involve: contour scanning, region filling and area 

marking to obtain as the output, basic features from the most important issues 

of a visual scene as shapes and its spatial relation, this goes to the process of 

object recognition by way of its parts grouping reconstruction, because objects 

can be overlapped or occluded. Assuming that memorized parts corresponds 

to previous visual learning processes, a shape can be addressed and recon-

structed with a huge part list, so recognition can be achieved using only the 

visible parts within the scene. 

3.2 Memory and Recall 

There are at least two different processes to storage information in the long 

term memory. The first process is to store a list of situations about the objects 

including information on how many parts are grouped together, its size, cate-

gory names and so on. The other process is to store the codification of object 

appearance. There is evidence that the time a person takes to decide if two 3D 

objects have the same shape is a linear function of its orientation difference 

(R.N. Shepard and S. Hurwitz, 1984). This information might be understood as 

the humans falls in a continuous and smooth rotation mental process which is 

achieved until the orientation input shape, matches the correct canonical orien-

tation of shape already stored. 

A person cannot see an object in a single view from an arbitrary view angle, in 

fact, first the object is visualized with a canonic orientation to be rotated to the 

specific orientation, this suggests the idea that long term memory image repre-

sentations are oriented to a primitive and primary observation stored as ca-

nonical shapes, which is an important point to our research inspiration. 

3.3 Design considerations and techniques 

In order to design and implement a vision system and use the appropriate 

techniques in the visual process, three aspects might be considered: 
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• Vision is a computational process 

• Obtained description of object is a function of the observer 

• Not used information within the scene has to be eliminated 

Because vision is a complex process different vision levels are established for 

better methodology directions: 

• Low level processing.- pixel direct working is done in this level to 

 extract properties as: edges, gradients, textures, grey levels, etc. 

• Medium level processing.- elements of low level are grouped here to 

 obtain lines, regions of interest in order to use segmentation tech

 niques. 

• High level processing.- it is oriented to interpretation of lower levels  

 Information using models and previous knowledge. It has to deal 

 with recognition and looks for consistency on feature primitive in

 formation interpretation.  

Representation is a formal system to specify features of what is seen with a vi-

sion system, two aspects are important: 

a) the model representation, is the structure used to model the representation 

b) the recognition process is the way the model and representation are used 

for recognition. 

These aspects have to be generic, time and space efficient, rotation, translation 

and scaled invariant, and conform robustness and noise and incomplete in-

formation tolerance. High level vision systems can be classified in: 

• Model based vision systems.- use a geometrical representation and 

 recognition is based on correspondence. 

• Knowledge based vision systems.- use a symbolic representation 

 and recognition is based on inferences. 

Model based vision systems use predefined geometrical methods to recognize the 

objects whose description has been obtained from images, its principal com-

ponents are: feature extraction, modelling, and matching and can use 2D or 3D 
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models. Because of its robustness and fast processing, manufacturing applica-

tions mostly use binary images, becoming the quantization process an impor-

tant factor because all parametric calculations and description are derived 

from it. Shape based human recognition takes the information about perimeter 

as fundamental instead of regions, most 2D models used in real implementa-

tions are model and recognition object oriented as a function of its image rep-

resentation as a 2D matrix array. 

Knowledge based vision systems use proposal models for representation; they 

have a collection set of them representing knowledge about objects and their 

relationship. Recognition is achieved by way of inferences, from image data 

and domain knowledge, object identity is obtained, its principal components 

are:

a) feature extraction, important attributes of the image are obtained to be in-

tegrated in a symbolic image 

b) knowledge representation, is constructed with a learning process being 

stored in the primitive knowledge data base 

c) inference, a deductive process is achieved from the symbolic image and 

primitive knowledge data base to get the object identity and location. 

4. Visual behaviour 

The problems of modelling and understanding visual behaviour and their se-

mantics are often regarded as computationally ill-defined. Cognitive under-

standing cannot adequately explain why we associate particular meanings 

with observed behaviours. Interpretation of visual behaviour can rely on sim-

ple mappings from recognized patterns of motion to semantics, but human ac-

tivity is complex, the same behaviour may have several different meanings 

depending upon the scene and task context. Behaviour interpretation often 

also requires real-time performance if it is to be correct in the relevant dynamic 

context, by real time, it is not necessary implied that all computation must be 

performed at full video frame-rate, as long as the interpretation of behaviour 

proceeds within some required time constraint, (Shaogang et. al., 2002). 

Considering that it is estimated that 60% of sensory information in humans is 

provided by the visual pathway (Kronauer, 1985), and the biological vision 
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concerning the pathway is a massively parallel architecture using basic hierar-

chical information processing (Uhr, 1980), it seems logical to look for an alter-

native approach with less computational power to better emulate the human 

visual system and it is given by connectionist models of the human cognitive 

process, such idea has to be considered to develop machine vision system ap-

plications today, as robotic assembly vision guided manufacturing processes. 

4.1 Inspiring Ideas

Sensorial capabilities are naturally used by 

humans and other life animals everyday; 

providing with sensorial capabilities to a 

machine is an interesting and actual chal-

lenge which means an open research area 

today. Figure 1, shows a baby grasping an 

object, even for him this is a natural way to 

achieve such a task with controlled move-

ments and pointing to grasp targets by way 

of having real time visual information.

 Figure 1. Human grasping action.

Visual information happens to be the 60% 

 of the sensorial information coming in 

from human environment (Kronauer, 1985) 

and is mainly used for grasping objects; es-

timate his 3D position or assembly parts 

(figure 2). 

 Figure 2. Grasp, 3D position and as

 sembly actions in humans. 

The same action achieved by a robot machine implies different disciplines in-

tegration and a robust hardware and software implementation (figure 3). 
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Sensorial capabilities real time acquired information deals with different sen-

sors, hardware architectures and communication and control approaches and 

configurations in order to achieve the task. Knowledge can be built either em-

pirically or by hand as suggested by (Towell and Shavlik, 1994). Empirical 

knowledge can be thought of as giving examples on how to react to certain 

stimuli without any explanation and hand-built knowledge, where the knowl-

edge is acquired by only giving explanations but without examples. It was de-

termined that in robotic systems, a suitable strategy should include a combina-

tion of both methods. Furthermore, this idea is supported by psychological 

evidence that suggests that theory and examples interact closely during hu-

man learning, (Feldman, 1993).

Figure 3. Grasping action with a robot. 

Learning in natural cognitive systems, including our own, follows a sequential 

process as it is demonstrated in our daily life. Events are learnt incrementally, 

for instance, during childhood when we start making new friends, we also 

learn more faces and this process continues through life. This learning is also 

stable because the learning of new faces does not disrupt our previous knowl-

edge. These premises are the core for the development of Connectionist Models 

of the Human Brain and are supported by Psychology, Biology and Computer 

Sciences. Psychological studies suggest the sequential learning of events at dif-

ferent stages or “storage levels” termed as Sensory Memory (SM), Short Term 

Memory (STM) and Long Term Memory (LTM). 
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4.2 Artificial Neural Networks   

There are different types of ANN, for this research a Fuzzy ARTMAP network 

is used, ART stands for Adaptive Resonance Theory, which is a well estab-

lished associative brain and competitive model introduced as a theory of the 

human cognitive processing developed by Stephen Grossberg at Boston Uni-

versity. Grossberg resumed the situations mentioned above in what he called 

the Stability-Plasticity Dilemma suggesting that connectionist models should be 

able to adaptively switch between its plastic and stable modes. That is, a sys-

tem should exhibit plasticity to accommodate new information regarding un-

familiar events. But also, it should remain in a stable condition if familiar or ir-

relevant information is being presented. These features suggested the use of 

this network because of its incremental knowledge capabilities and stability, 

but mostly because of the fast recognition and clustering responses. 

Grossberg identified the problem as due to basic properties of associative 

learning and lateral inhibition. An analysis of this instability, together with 

data of categorisation, conditioning, and attention led to the introduction of 

the ART model that stabilises the memory of self-organising feature maps in 

response to an arbitrary stream of input patterns (S. Grossberg, 1976). The core 

principles of this theory and how Short Term Memory (STM) and Long Term 

Memory (LTM) interact during network processes of activation, associative 

learning and recall were published in the scientific literature back in the 60's.

The theory has evolved in a series of real-time architectures for unsupervised 

learning, the ART-1 algorithm for binary input patterns (G. Carpenter, 1987), 

supervised learning is also possible through ARTMAP (G. Carpenter, 1991), 

that uses two ART-1 modules that can be trained to learn the correspondence 

between input patterns and desired output classes. Different model variations 

have been developed to date based on the original ART-1 algorithm, ART-2, 

ART-2a, ART-3, Gaussian ART, EMAP, ViewNET, Fusion ARTMAP, 

LaminART just to mention but a few. 

5. Manufacturing

5.1 Intelligent manufacturing systems 

Different sensors have been used in manufacturing systems to achieve specific 

tasks such as robot guiding, soldering, sorting, quality control and inspection. 
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Integration of new architectures and methods using sensorial modalities in 

manufacturing cells like vision, force-sensing and voice recognition becomes 

an open research field today. 

Most automated systems integrators and designers had pushed hard to get 

faster and more accurate industrial robot systems but sensorial capabilities 

have not been developed completely to provide the required flexibility and 

autonomy for manufacturing tasks. 

Basic requirements within an industrial production environment have to be 

satisfied to guarantee an acceptable manufacturing process; some factors are 

the tool or work-piece position uncertainty, which is achieved by using expen-

sive structured manufacturing cells. Other factors are the force-torque and in-

teraction evaluation with the task environment. By using self-adaptive robots 

with sensorial capabilities and skill learning on-line, great flexibility and 

adaptability is given to manufactured processes, so the idea of giving ma-

chines capabilities like humans in learning and execution tasks becomes real, 

(L.Wu, 1996). 

These ideas points to use in manufacturing applications today, what is called 

Intelligent Manufacturing Systems, and can be thought as a high technology set 

of tool devices arranged within a working close ambient called manufacturing 

cell, and having an efficient collective team work, to achieve an autonomous 

manufacturing process with on line reprogramming facilities and having a 

manufactured product as it output. Such an intelligent system then, becomes a 

self-adapting and self-learning system (figure 4). 

5.2. Assembly 

The success of assembly operations using industrial robots is currently based 

on the accuracy of the robot itself and the precise knowledge of the environ-

ment, i.e., information about the geometry of the assembly parts and their lo-

calisation in the workspace. Robot manipulators operate in real world situa-

tions with a high degree of uncertainty and require sensing systems to 

compensate from potential errors during operations. Uncertainties come from 

a wide variety of sources such as robot positioning errors, gear backlash, arm 

deflection, ageing of mechanisms and disturbances. Controlling all the above 

aspects would certainly be a very difficult task; therefore a simpler approach is 

preferred like using vision-guided robots for aligning parts in assembly tasks. 
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Figure 4. Intelligent Manufacturing System 

6. Vision system 

Machine Vision systems are mainly used today in applications as inspection, 

quality control and assembly tasks, they have been adopted now as a neces-

sary technology in modern automated industries based in functional parame-

ters and can be seen as a technology which is connecting cameras with com-

puters for real-time interpretation of industrial behaviour images to acquire 

manufacturing applications. In this chapter a novel method to this purpose is 

presented and several tests were carried out to assess a vision-guided assem-

bly process using aluminium pegs with different cross-sectional geometry, 

they are named: circular, squared and radiused-square (termed radi-

used-square because it was a square peg with one corner rounded). These 

components are shown in Figure 5 as well as the peg-in-hole operation in Fig-

ure 6. The diameter of the circular peg was 25 mm and the side of the square 

peg was also 25 mm. The dimensions of the non-symmetric part, the radi-

used-square, was the same as the squared peg with one corner rounded to a 

radius of 12.5 mm. Clearances between pegs and mating pairs were 0.1 mm, 

chamfers were at 45 degrees with 5 mm width. The assembly was ended when 

3/4 of the body of the peg were inside the hole. This represented 140 motion 

steps in the -Z assembly direction. 

Male

Component 
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Figure 5. Assembly Components 

Figure 6. Peg-in-hole operation 

In our experiments, the robot grasps pieces from a conveyor belt and performs 

an assembly task using a force-sensing system described in (Corona-Castuera 

& Lopez-Juarez, 2006), the vision system obtains an image to recognize and 

calculates the object’s pose estimation and sends the information to the robot.

6.1 Vision workspace 

The vision system was implemented with a high speed camera CCD/B&W, 

PULNIX 6710, with 640x480 resolution and a PC dedicated computer, the  

Radiused-Square Circular Square

15

25

1515

2512.5R 0

Units in mm
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camera movements above the X-Y plane was implemented with a computer 

controlled 2D positioning electro-mechanical system (figure 7). 

Figure 7. Vision workspace. Overview and 2D close up of positioning system 

The vision system interaction schedule is working in a distributed systems as 

described in (Lopez-Juarez & Rios-Cabrera, 2006) linked to a robotic assembly 

module and a custom interface with a camera positioning system configured 

as a monocular dynamic system. 



 Manufacturing the Future: Concepts, Technologies & Visions 416

The vision system can get visual information from the manufacturing system 

workspace. To achieve an assembly task, the robotic assembly system sends 

commands to the vision system as follows: 

$SENDINF#1 Send Information of Zone 1:

zone 1 is the place where the robot grasps the male components. The robot can 

locate different pieces and their characteristics. 

$SENDINF#2 Send information of zone 2:

zone 2 is the place where the robot is performing the assembly task. The as-

sembly system can request information about the female component such as 

position and shape. 

$RESEND#X Resend information of zone X:

This command will be useful when the information received by the assembly 

system coming from the vision system is incorrect, due to an error in the check 

sum or any other error.

The communication protocol is as follows: 

The response from the vision system is a function of the request command 

from the assembly system, which coordinates the activities of the intelligent 

manufacturing cell (Corona-Castuera & Lopez-Juarez, 2004). 

6.2 Invariant Object Recognition Methodology 

The proposed methodology for invariant object recognition is based on the use 

of canonic shapes within what we have called the Primitive Knowledge Base 

(PKB). This PKB is conformed at training stage, once having embedded this 

knowledge, the idea is to improve and refine it on-line, which compares fa-

vourably with Gestalt principles such as grouping, proximity, similarity and 

simplicity. To illustrate the methodology, it will be useful to consider the as-

sembly components used during experiments. The 2D representation of the 

working assembly pieces is shown in figure 8. 

Command# Zone Type C-Sum 
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Figure 8. Assembly pieces 

These canonical shapes serve as “clues” inserted initially in the PKB which ini-

tialise the grouping process (clustering). The knowledge is acquired by pre-

senting multiple instances of the object such as those shown in figure 9 where 

an example of the circular shape and some of the possible views are illustrated. 

The following step is to code the object’s information to get a descriptor vector,

so that its description be invariant to location, scaling and rotation, the algo-

rithm is explained in the following section. 

Figure 9. Multiple instances of the circular shape. 

Having such a descriptor vector, an ANN can be trained to conform the de-

scriptor vector families which can be generated on-line with the vision system. 
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6.3 Methodology 

CFD&POSE methodology steps are: 

• Fast acquisition of working visual scene 

• Find the region of interest (ROI) 

• Calculate the histogram of the image. 

• Search for pieces 

• Centroid calculation

• Piece orientation 

• Calculate boundary object function (BOF) 

• Descriptor vector generation and normalization (CFD&POSE). 

• Information processing in the neural network 

6.3.1 Fast acquisition of working visual scene 

Image acquisition is carried out by the vision workspace configuration de-

scribed previously, comprised with a CCD/B&W digital camera, frame grabber 

and custom visual C++ based software acquisition. 

6.3.2 Finding the region of interest 

It is desirable first to segment the region of the whole scene to have only the 

workpieces Region of Interest (ROI). There are two defined regions of interest in 

the manufacturing cell: 

• the assembly workspace (zone 1) 

• the identification/grasping  workspace (zone 2). 

The camera has to be positioned in the vision zone requested by the robot. The 

2D positioning system, which uses feedback vision using a searching algo-

rithm, employs two LED’s within the scene as a calibration reference in order 

to reach the exact position of the camera vision system (figure 10). The original 

image is 480 x 640 pixels, 8-bit greyscale resolution. Image conditioning is car-

ried out avoiding the processing of small objects and finding the initial posi-

tion of the desired zone. The quantized grey level value of the LEDs in the im-

age, is greater than or equal to a specific gray level value GL regardless of the 

amount of light in the zone. With this process, most of the objects that can con-

fuse the system are rejected. Then the ROI is first extracted by using the 2D 

histogram information and initial position reference. 
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Figure 10. Zone 1 vision workspace 

To determine which are the more approximated white blobs within the image, 

it has to be considered the mark using the following criteria: 

• colour GL > 245 

• 25  Perimeter  35 pixels (i.e., LED measured size) 

• Distance between LED’s, must be constant (50 mm ± 3 mm). 

In the initial position search, only the objects that fulfil all mentioned charac-

teristics are processed, all others are rejected. In this way, initial position is 

found and ROI is defined as it is shown in figure 10. 

6.3.3 Image histogram process

An algorithm using 1D and 2D image histograms is used in order to provide 

the system of illumination invariance within some specific range. From these 

histograms, threshold values are used for image segmentation of the back-

ground and the pieces within the ROI eliminating the noise that may appear. 

This dynamic threshold value calculation allows independent light conditions 

operation of the system. The 1D histogram normally has the aspect shown in 

figure 11. 
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The 2 peaks in the histogram represent the background and the pieces in the 

image. After the histogram calculation, an image binarization is performed us-

ing a threshold operator. 
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Figure 11. Histogram of the region of interest (ROI). 

6.3.4 Search for pieces 

For searching purposes, the system calculates the perimeter obtaining: 

• number of points around a piece 

• group of points coordinates X&Y, corresponding to the perimeter of the 

  piece measured clockwise 

• boundaries of the piece 2D Bounding Box (2D-BB) 

The perimeter calculation for every piece in the ROI is performed after the bi-

narization. Search is always accomplished from left to right and from top to 

bottom. Once a white pixel is found, all the perimeter is calculated with a 

search function (figure 12).

Background 

Assembly pieces



Distributed Architecture for Intelligent Robotic Assembly, Part III: Design…    421 

Figure 12. Perimeter calculation of a workpiece 

The next definitions are useful to understand the algorithm: 

• A nearer pixel to the boundary is any pixel surrounded mostly by black 

  pixels in connectivity eight. 

• A farther pixel to the boundary is any pixel that is not surrounded by black 

  pixels in connectivity eight. 

• The highest and lowest coordinates are the ones that create a rectangle 

  (Boundary Box). 

The search algorithm executes the following procedures once it has found a 

white pixel: 

1. Searches for the nearer pixel to the boundary that has not been already lo-

cated.

2. Assigns the label of actual pixel to the nearer pixel to the boundary re-

cently found. 

3. Paints the last pixel as a visited pixel. 

4. If the new coordinates are higher than the last higher coordinates, it is as-

signed the new values to the higher coordinates. 

5. If the new coordinates are lower than the last lower coordinates, it is as-

signed the new values to the lower coordinates. 

6.  Steps 1 to 5 are repeated until the procedure begins to the initial point, or 

no other nearer pixel to the boundary is found. 
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This technique will surround any irregular shape, and will not process useless 

pixels of the image, therefore this is a fast algorithm that can perform online 

classification, and can be classified as linear: 

O (N * 8*4)

where N is the size of the perimeter, and 8 & 4 are the number of comparisons 

the algorithm needs to find the pixel farer to the boundary, the main difference 

with the traditional algorithm consist of making the sweep in an uncertain 

area which is always larger than the figure, this turns the algorithm into: 

O(N*M)

N*M, is the size of the Boundary Box in use, and it does not obtain the coordi-

nates of the perimeter in the desired order. 

6.3.5 Centroid calculation

The proposed procedure for centroid calculation is performed at the same time 

that the coordinates of the perimeter are calculated without using the N*M

pixels box, (Boundary Box).

The coordinates of the centroid (Xc, Yc) are calculated with the following pro-

cedure:

1. If a new pixel is found and it has not been added, the value of i, j coordi-

nates from pixel to the left is added, until a new black or visited pixel is 

found.

2. While a new pixel is found repeat step 1. 

Figure 13 demonstrates how the sum is made from right to left as indicated by 

the black arrows. 

The equation (1) is used for centroid calculation in binarized images: 
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Figure 13. Centroid calculation 

Where A is the area or number of pixels that composes the piece. 

6.3.6 Piece orientation 

The projected shadow by the pieces is used to obtain its orientation. Within the 

shadow, the largest straight line is used to calculate the orientation angle of the 

piece using the slope of this line, see figure 14. 

The negative image of the shadow is obtained becoming a white object, from 

which, the perimeter is calculated and also the two most distant points (x1 y1,

x2 y2) are determined. 

Figure 14. Shadow for the orientation 
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These points define the largest straight line, the equation for the distance be-

tween 2 points is used to verify if it is the largest straight line, and also if it 

contains the centroid using equation (2). 

YC – y1 = m(XC – x1) (2)

The slope is obtained using equation (3): 
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6.3.7 Boundary Object Function (BOF) 

The Boundary Object Function (BOF), is the function that describes a specific 

piece and it will vary according to the shape. This is illustrated in figure 15.

Figure 15. BOF a) circle, b) square, c) radiused-square
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The centroid, the coordinates of the perimeter and the distance from the cen-

troid to the perimeter points are used to calculate the BOF. 

With the coordinates P1 (X1, Y1) and P2 (X2, Y2), equation (4) is applied: 

2
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6.3.8 Descriptive vector generation and normalization 

Once the information has been processed, a descriptive vector is generated. 

This vector is the input to the neural network. The descriptive vector is called 

CFD&POSE and it is conformed by: 
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where:

- Di is the distance from the centroid to the object’s perimeter point. 

- XC, YC, are the coordinates of the centroid. 

- φ, is the orientation angle. 

- Z is the height of the object. 

- ID is a code number related to the geometry of the components. 

6.3.9 Information processing in the neural network 

The vision system extends the BOF data vectors to 180, plus 4 more data vec-

tors, centroid (Xc, Yc), orientation, height and ID as showed to conform the de-

scriptor vector which is the input to the FuzzyARTMAP neural network. : 

Data

1-180

Centroid

181-182

Orientation

183

Height

184

ID

185
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7. Experimental Results 

7.1 Training and recognition on-line 

In order to test the architecture, experimental work was carried out with the 

distributed manufacturing sytem using the vision system, to achieve the task 

and to test the robustness of the ANN, the Fuzzy ARTMAP Neural Network 

was trained first with 2808 different patterns corresponding to the described 

working pieces and the  learning capability was analyzed. Results regarding 

the percentage of recognition and the number of generated neurons are shown 

in figure 16. The graph shows how the system learned all patterns in three ep-

ochs, creating only 32 neurons to classify 2808 patterns. 
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Figure 16. Learning of the neural network 

The average time for training was 4.42 ms, whereas for testing was 1.0 ms. 

Later a normalization procedure was applied to the descriptor vector 

CFD&POSE so that  the experimental work employed only 216 patterns corre-

sponding to 72 square, 72 circle and 72 radiused-square components of the 

same size. The orientation values were 0, 45, 90, 135, 180, 215, 270 and 315 de-

grees. With these training patterns set, the system was able to classify correctly 
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100% of the pieces presented on-line even if they were not of the same size, 

orientation or locations and for different light conditions. The pieces used to 

train the neural network are shown in figure 17 and figure 18 which show dif-

ferent graphs corresponding to different descriptor vectors for different posi-

tions, sizes and illumination conditions of these components. 

Figure 17. Workpieces used to create the initial knowledge base 

Figure 18. workpieces used to test the system. a) circle, b) square, c) radiused-square 

several tests with different geometry, positions and light conditions, were carried out 

on-line.
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The normalization of the BOF is done using the maximum value divisor of the dis-

tance vector method. This method allows having very similar patterns as input 

vectors to the neural network, getting a significant improvement in the opera-

tion system. Figure 19 shows the generated similar patterns using totally dif-

ferent size, location and orientation conditions for working pieces. 

Figure 19.           a) Squares                                         b) Similar Patterns 

7.2 Assembly cycles in the distributed manufacturing system 

In order to test the methodology within the distributed manufacturing system, 

a complete robotic assembly operation was carried out and the results are 

given in Table 1. The table shows the results for 18 assembly cycles using the 

vision system and the assembly system of the cell. This table contains informa-

tion regarding the type of piece in use, presence or absence of chamfer, total 

operational time (object recognition, grasping, moving the part from pick up 

place to assembly point and assembly), the calculated error based on the cen-

troid and rotation angle of the pieces for zone 1 and the offset error in zone 2. 

Finally, in the last column, the type of geometry recognized on-line by the neu-

ral network is provided. The vision system provides the robot with the capa-

bility to approach 2 zones: 

Zone 1:   assembly workpiece (male) area of vision, where the robot picks up 

 the piece after having POSE information of the object, then it grasps 

 the piece and takes it to zone 2. 
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Zone 2:  peg-in-hole assembly (female) area of vision, here the visually 

 guided robot approaches the zone where the female component is 

 located to achieve the assembly task and releasing the control of the 

 operation to the SIEM assembly system (Corona-Castuera & Lopez-

 Juarez, 2006). 

POSE 1  means the location estimation of a workpiece within the zone 1, and 

POSE 2 means the location estimation within the zone 2 of the work

 piece/counterpart. 

Grasp testing (zone 1) was accomplished for each geometry; every one was 

placed three times within the vision area, incrementing 10 degrees its orienta-

tion and changing the locations in four defined poses. In the zone 2, the loca-

tion of the female component was fixed, hence the angle. However, It is impor-

tant to mention that the POSE was unknown to the assembly controller.

ZONE 1 Zone 1 Error ZONE 2 Zone 2 Error #
IN P Ch 

TC

(min)

TA

(s) Xmm Ymm RZ° Xmm Ymm RZ° Xmm Ymm Xmm Ymm NC

1 S Y 1:15 32.5 62.4 144.1 10 0.2 -1.3 0 84.6 102.1 0.3 -1 Y 

2 S Y 1:15 30.4 62.4 45.7 12 1.8 0.2 2 85.6 101.1 -0.7 0 Y 

3 S Y 1:15 31.8 178.7 47.7 23 0.9 -0.8 3 84.7 100.9 0.2 0.2 Y 

4 R Y 1:11 30.1 181.6 147 29 -0.3 -0.7 -1 84.7 100.6 0.2 0.5 Y 

5 R Y 1:14 29.4 62.4 145.1 36 0.2 -0.3 -4 84.9 100.7 0 0.4 Y 

6 R Y 1:19 29.6 67.3 44.8 48 3.1 -0.7 -2 85.3 101.6 -0.4 -0.5 Y 

7 C Y 1:15 29.6 180.6 49.6 57 1 1.1 -3 84.6 102.4 0.3 -1.3 Y 

8 C Y 1:13 30.2 180.6 148 77 -0.7 0.3 7 84.3 101 0.6 0.1 Y 

9 C Y 1:14 30.2 61.5 146 79 -0.7 0.6 -1 83.9 101.6 1 -0.5 Y 

10 S N 1:18 29.9 63.4 45.7 83 -0.8 0.2 -7 85.4 100.5 -0.5 0.6 Y 

11 S N 1:19 30.4 179.6 48.6 104 0 0.1 4 83.2 100.8 1.7 0.3 Y 

12 S N 1:22 34.6 180.6 147 104 -0.7 -0.7 -6 83.2 101.8 1.7 -0.7 Y 

13 R N 1:22 38.3 61.5 146 119 -0.7 0.6 -1 84.8 102.8 0.1 -1.7 Y 

14 R N 1:22 36.8 63.4 43.8 126 -0.8 1.7 -4 83.6 101.8 1.6 -0.7 Y 

15 R N 1:24 36.6 179.6 47.7 138 0 -0.8 -2 83.2 101.7 1.7 -0.6 Y 

16 C N 1:17 30.5 182.6 149 150 1.3 1.3 0 83.7 101.2 1.2 -0.1 Y 

17 C N 1:15 28.3 63.4 146 155 1.2 0.6 -5 84.6 100.7 0.3 0.4 Y 

18 C N 1:15 29.7 64.4 47.7 174 0.2 2.2 4 83.9 101.1 1 0 Y 

Table 1. 18 assembly cycles using the vision system and the assembly system (Eight-

een different assembly cycles, where IN= Insertion, P=piece, Ch=chamfer present, 

TC=Assembly cycle time, TA= Insertion time, NC=correct neural classification, 

S=square, R=radiused-square, C=circle, N=no and Y=yes). 
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The first 9 assembly cycles were done with female chamfered components and 

the last 9 with chamferless components. 

The average time of the total cycle is 1:50.6 minutes and the minimum time is 

1:46 minutes, the longest time is: 1:58 minutes. 

The average of the error made in both zones is: 0.8625 mm, the minimum is: 0 

mm while the maximum is 3.4 mm. 

The average of the error angle is: 4.27 ° , the minimum is: 0° and the maximum 

is 9°. 

The figure 20, shows eighteen different X and Y points where the robot might 

reach the male component showed as error X(mm) and error Y(mm).

Figure 20. Positional error referenced to real centroid in male component 

In the assembly area the robot gets vision guided capabilities to approach the 

zone to the centre of the workpiece/counterpart, the figure 22 shows eighteen 

different X and Y points where the robot might reach the female and releases 

control to force/sensing system.

The 18 assembly cycles were done successfully. The figures 20, 21 y 22 show 

that all the poses given by the vision system are inside the error limits in both 

areas: zone 1 and zone 2. This permitted to have a 100% of success in the total 

assembly cycle operation 

Figure 21 shows the angle error for orientation grasping purpose
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Figure 21. Rotational error for orientation grasp 

Figure 22. Positional error referenced to real centroid in female component. 
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8. Conclusions and future work 

A novel methodology for fast object recognition and POSE estimation for as-

sembly components in a distributed manufacturing system has been described. 

Experimental results show the methodology. Issues regarding image process-

ing, centroid and perimeter calculation are illustrated. The methodology was 

tested on a distributed manufacturing system using an industrial manipulator 

to perform  assembly operations. Results show the feasibility of the method to 

send grasping and morphologic information (coordinates and classification 

characteristics) to the robot in real-time. A robust positioning system that cor-

rected errors due to wheel sliding was implemented using visual feedback in-

formation. The overall methodology was implemented and integrated in a 

manufacturing cell showing real performance of industrial processes. Accurate 

recognition of assembly components and workpieces identification was suc-

cessfully carried out by using a FuzzyARTMAP neural network model. The 

performance of this model was satisfactory with recognition times lower than 

5 ms and identification rates of 100%. Experimental measurements showed ±3 

millimeter of precision error in the information sent to the robot. The orienta-

tion angle error for the pieces was up to ±9 degrees, which was still good 

enough for the robot to grasp the pieces. Future work is envisaged using the 

intelligent distributed manufacturing system with multimodal and fusion sen-

sor capabilities using the methodology presented in this work. Current work 

addresses the use of ANN’s for assembly and object recognition separately; 

however work is oriented towards the use of the same neural controller in a 

hierarchical form for all other different sensorial modalities (Lopez-Juarez & 

Rios-Cabrera, 2006). 
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