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A Complete Family of Kinematically-Simple Joint Layouts: 
Layout Models, Associated Displacement  

Problem Solutions and Applications 
 
 

Scott Nokleby and Ron Podhorodeski 
 

1. Introduction       

Podhorodeski and Pittens (1992, 1994) and Podhorodeski (1992) defined a ki-
nematically-simple (KS) layout as a manipulator layout that incorporates a 
spherical group of joints at the wrist with a main-arm comprised of success-
fully parallel or perpendicular joints with no unnecessary offsets or link 
lengths between joints.  Having a spherical group of joints within the layouts 
ensures, as demonstrated by Pieper (1968), that a closed-form solution for the 
inverse displacement problem exists.   
Using the notation of possible joint axes directions shown in Figure 1 and ar-
guments of kinematic equivalency and mobility of the layouts, Podhorodeski 
and Pittens (1992, 1994) showed that there are only five unique, revolute-only, 
main-arm joint layouts representative of all layouts belonging to the KS family. 
These layouts have joint directions CBE, CAE, BCE, BEF, and AEF and are de-
noted KS 1 to 5 in Figure 2.  
 
 

 
 

Figure 1. Possible Joint Directions for the KS Family of Layouts 

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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KS 1 - CBE KS 2 - CAE 

 
KS 3 - BCE 

 
KS 4 - BEF 

 
KS 5 - AEF 

 
KS 6 - CCE 

 
KS 7 - BBE 

 
KS 8 - CED 

 
KS 9 - ACE 

 
KS 10 - ACF 

 
KS 11 - CFD 

 
KS 12 - BCF 

 
KS 13 - CED   

Figure 2. KS Family of Joint Layouts 

 
Podhorodeski (1992) extended the work of Podhorodeski and Pittens (1992, 
1994) to include prismatic joints in the layouts.  Podhorodeski (1992) con-
cluded that there are 17 layouts belonging to the KS family: five layouts com-
prised of three revolute joints; nine layouts comprised of two revolute joints 
and one prismatic joint; two layouts comprised of one revolute joint and two 
prismatic joints; and one layout comprised of three prismatic joints.  However, 
four of the layouts comprised of two revolute joints and one prismatic joint 
(layouts he denotes AAE, AAF, ABF, and BAE) are not kinematically simple, 
by the definition set out in this chapter, due to an unnecessary offset existing 
between the second and third joints.  
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Yang et al. (2001) used the concepts developed by Podhorodeski and Pittens 
(1992, 1994) to attempt to generate all unique KS layouts comprised of two 
revolute joints and one prismatic joint.  The authors identified eight layouts.  
Of these eight layouts, five layouts (the layouts they denote CAE, CAF, CBF, 
CFE, and CCE) are not kinematically simple, as defined in this chapter, in that 
they incorporate unnecessary offsets and one layout (the layout they denote 
CBE) is not capable of spatial motion.   
The purpose of this chapter is to clarify which joint layouts comprised of a 
combination of revolute and/or prismatic joints belong to the KS family.  The 
chapter first identifies all layouts belonging to the KS family.  Zero-
displacement diagrams and Denavit and Hartenberg (D&H) parameters (1955) 
used to model the layouts are presented.  The complete forward and inverse 
displacement solutions for the KS family of layouts are shown.  The applica-
tion of the KS family of joint layouts and the application of the presented for-
ward and inverse displacement solutions to both serial and parallel manipula-
tors is discussed.   
 

2. The Kinematically-Simple Family of Joint Layouts 

The possible layouts can be divided into four groups: layouts with three revo-
lute joints; layouts with two revolute joints and one prismatic joint; layouts 
with one revolute joint and two prismatic joints; and layouts with three pris-
matic joints.  
 

2.1 Layouts with Three Revolute Joints 

Using arguments of kinematic equivalency and motion capability, Podhorode-
ski and Pittens (1992, 1994) identified five unique KS layouts representative of 
all layouts comprised of three revolute joints.  Referring to Figure 1, the joint 
directions for these layouts can be represented by the axes directions CBE, 
CAE, BCE, BEF, and AEF, and are illustrated as KS 1 to 5 in Figure 2, respec-
tively.  
Fundamentally degenerate layouts occur when either the three axes of the 
main arm intersect to form a spherical group (see Figure 3a) or when the axis 
of the final revolute joint intersects the spherical group at the wrist (see Figure 
3b), i.e., the axis of the third joint is in the D direction of Figure 1.  Note that for 
any KS layout, if the third joint is a revolute joint, the axis of the joint cannot 
intersect the spherical group at the wrist or the layout will be incapable of fully 
spatial motion.  
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(a) Layout CBF 

 
(b) Layout CBD 

 

Figure 3. Examples of the Two Types of Degenerate Revolute-Revolute-Revolute Lay-
outs 

2.2 Layouts with Two Revolute Joints and One Prismatic Joint 

Layouts consisting of two revolute joints and one prismatic joint can take on 
three forms: prismatic-revolute-revolute; revolute-revolute-prismatic; and 
revolute-prismatic-revolute. 
 

2.2.1 Prismatic-Revolute-Revolute Layouts 

For a prismatic-revolute-revolute layout to belong to the KS family, either the 
two revolute joints will be perpendicular to one another or the two revolute 
joints will be parallel to one another.  If the two revolute joints are perpendicu-
lar to one another, then the two axes must intersect to form a pointer, other-
wise an unnecessary offset would exist between the two joints and the layout 
would not be kinematically simple.  The prismatic-pointer layout can be repre-
sented by the axes directions CCE and is illustrated as KS 6 in Figure 2.  
For the case where the two revolute joints are parallel to one another, in order 
to achieve full spatial motion, the axes of the revolute joints must also be paral-
lel to the axis of the prismatic joint.  If the axes of the revolute joints were per-
pendicular to the axis of the prismatic joint, the main-arm's ability to move the 
centre of the spherical group would be restricted to motion in a plane, i.e., 
fundamentally degenerate.  In addition, a necessary link length must exist be-
tween the two revolute joints.  The axes for this layout can be represented with 
the directions BBE and the layout is illustrated as KS 7 in Figure 2.  
 

2.2.2 Revolute-Revolute-Prismatic Layouts 

For a revolute-revolute-prismatic layout to belong to the KS family, either the 
two revolute joints will be perpendicular to one another or the two revolute 
joints will be parallel to one another.  If the two revolute joints are perpendicu-
lar to one another, then the two axes must intersect to form a pointer, other-
wise an unnecessary offset would exist between the two joints and the layout 
would not be kinematically simple.  The pointer-prismatic layout can be repre-
sented by the axes directions CED and is illustrated as KS 8 in Figure 2.  
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For the case where the two revolute joints are parallel to one another, the axes 
of the revolute joints must also be parallel to the axis of the prismatic joint.  In 
addition, a necessary link length must exist between the two revolute joints.  
The axes for this layout can be represented with the directions ADD.  Note that 
for this configuration, the layout is fundamentally degenerate, unless an addi-
tional link length is added between joints two and three, since without the ad-
ditional link length, the axis of the second revolute joint would always pass 
through the centre of the spherical joint group (see Figure 4a).  Figure 4b illus-
trates the non-degenerate KS layout with an additional link length between the 
second revolute joint and the prismatic joint.  However, the layout of Figure 4b 
is kinematically equivalent to KS 7 and therefore is not counted as a unique KS 
layout. 
 
 

 
 

(a) Layout ADD 

 
 

(b) Layout ADD with Offset 
 

Figure 4. Revolute-Revolute-Prismatic Layouts: a) Degenerate; b) Non-Degenerate 
 

2.2.3 Revolute-Prismatic-Revolute Layouts 

For a revolute-prismatic-revolute layout, in order to achieve spatial motion 
and belong to the KS class, the axes of the two revolute joints must be or-
thogonal to one another.  The resulting KS layouts of axes can be represented 
by the axes directions ACE and ACF and are illustrated as KS 9 and KS 10 in 
Figure 2, respectively.  

2.3 Layouts with One Revolute Joint and Two Prismatic Joints 

Layouts consisting of one revolute joint and two prismatic joints can take on 
three forms: prismatic-revolute-prismatic; prismatic-prismatic-revolute; and 
revolute-prismatic-prismatic. 

2.3.1 Prismatic-Revolute-Prismatic Layouts 

For a prismatic-revolute-prismatic layout, the two prismatic joints must be 
perpendicular to each other.  In order to achieve spatial motion and be kine-
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matically simple, the axis of the revolute joint must be parallel to the axis of 
one of the prismatic joints.  The feasible layout of joint directions can be repre-
sented by the axes directions CFD and is illustrated as KS 11 in Figure 2.  
 

2.3.2 Prismatic-Prismatic-Revolute Layouts 

For a prismatic-prismatic-revolute layout, the two prismatic joints must be 
perpendicular to each other.  In order to achieve spatial motion and be kine-
matically simple, the axis of the revolute joint must be parallel to one of the 
prismatic joints.  The feasible layout of joint directions can be represented by 
the axes directions BCF and is illustrated as KS 12 in Figure 2.  
 

2.3.3 Revolute-Prismatic-Prismatic Layouts 

For a revolute-prismatic-prismatic layout, the two prismatic joints must be 
perpendicular to each other.  In order to achieve spatial motion and be kine-
matically simple, the axis of the revolute joint must be parallel to the axis of 
one of the prismatic joints.  The feasible layout of joint directions can be repre-
sented by the axes directions CCD.  Note that this layout is kinematically 
equivalent to the prismatic-revolute-prismatic KS 11.  Therefore, the revolute-
prismatic-prismatic layout is not kinematically unique.  For a further discus-
sion on collinear revolute-prismatic axes please see Section 2.5.  
 

2.4 Layouts with Three Prismatic Joints 

To achieve spatial motion with three prismatic joints and belong to the KS 
class, the joint directions must be mutually orthogonal.  A representative lay-
out of joint directions is CED.  This layout is illustrated as KS 13 in Figure 2.  

2.5 Additional Kinematically-Simple Layouts 

The layouts above represent the 13 layouts with unique kinematics belonging 
to the KS family.  However, additional layouts that have unique joint struc-
tures can provide motion that is kinematically equivalent to one of the KS lay-
outs. For branches where the axes of a prismatic and revolute joint are collin-
ear, there are two possible layouts to achieve the same motion.  Four layouts, 
KS 6, 7, 11, and 12, have a prismatic joint followed by a collinear revolute joint.  
The order of these joints could be reversed, i.e., the revolute joint could come 
first followed by the prismatic joint.  The order of the joints has no bearing on 
the kinematics of the layout, but would be very relevant in the physical design 
of a manipulator.  Note that the dj and θj elements of the corresponding rows 
in the D&H tables (see Section 3.2) would need to be interchanged along with 
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an appropriate change in subscripts.  The presented forward and inverse dis-
placement solutions in Sections 4.1 and 4.2 would remain unchanged except 
for a change in the relevant subscripts. 
In addition to the above four layouts, as discussed in Section 2.2.2, the layout 
shown in Figure 4b is kinematically equivalent to KS 7.  Therefore, there are 
five additional kinematically-simple layouts that can be considered part of the 
KS family.  
 

3. Zero-Displacement Diagrams and D&H Parameters 

3.1 Zero-Displacement Diagrams 

The zero-displacement diagrams (θi = 0, for all revolute joints i ) for the KS 
family of layouts for Craig's (1989) convention of frame assignment are pre-
sented in Figures 5 to 7.  Note that the KS layouts in Figure 2 are not necessar-
ily shown in zero-displacement.  The rotations necessary to put each of the KS 
Layouts from zero-displacement configuration into the configuration illus-
trated in Figure 2 are outlined in Table 1.  
 
 

 
KS Rotations KS Rotations 

1 
2

2

π
θ =  2 

2
2

π
θ =  

3 
2

3

π
θ =  4 

2
2

π
θ =  & 

2
3

π
θ =  

5 
2

2

π
θ −=  & 

2
3

π
θ =  6 

2
3

π
θ −=  

7 None 8 
2

2

π
θ −=  

9 
2

3

π
θ =  10 None 

11 None 12 
2

3

π
θ =  

13 None   

 

 

Table 1. Rotations Necessary to put Each of the KS Layouts from Zero-Displacement             
Configuration (Figures 5 to 7) into the Configuration Illustrated in Figure 2 
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3.2 D&H Parameters 

Table 2 shows the D&H parameters for the kinematically-simple family of joint 
layouts.  The D&H parameters follow Craig's frame assignment convention 
(Craig, 1989) and correspond to the link transformations: 
 
 

( ) ( ) ( ) ( )

( ) ( )
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 (1) 

 

where T
1−j

j is a homogeneous transformation describing the location and orien-

tation of link-frame jF  with respect to link-frame 1−jF ,  ( )1ˆ 1 −− jj
Rot αx  denotes a 

rotation about the 1
ˆ

−jx  axis by 1−jα , ( )
1ˆ 1 −− jaTrans

jx
 denotes a translation along 

the 1
ˆ

−jx  axis by 1−ja , ( )
jdTrans

jẑ
 denotes a translation along the jẑ axis by jd , 

and ( )
jj

Rot θẑ  denotes a rotation about the jẑ  axis by jθ .  

 
The homogeneous transformation of equation (1) is of the form:  
 

⎥
⎦

⎤
⎢
⎣

⎡
= →

−−

− −

1000
1

11

1 jj oo

jj

jj

j

pR
T  (2) 

 

where R
1−j

j  is a 3x3 orthogonal rotation matrix describing the orientation of 

frame jF  with respect to frame 1−jF  and 
jj oo

j

→

−

−1

1
p  is a vector from the origin of 

frame 1−jF  to the origin of frame jF .  
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KS 1 

 

 

 
KS 2 

 

 

 

KS 3 
 
 

 
KS 4 

 

 

 
KS 5 

 

 

Figure 5. Zero-Displacement Diagrams for Layouts with Three Revolute Joints (KS 1 
to 5) 
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KS 6 
 

 
KS 7 

 

 
KS 8 

 

 
KS 9 

 

 
KS 10 

 
 
 

 

Figure 6. Zero-Displacement Diagrams for Layouts with Two Revolute Joints and One 
Prismatic Joint (KS 6 to 10) 
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KS 11 

 

 
KS 12 

 

 
 

KS 13 

Figure 7. Zero-Displacement Diagrams for Layouts with One Revolute Joint and Two 
Primatic Joints (KS 11 and 12) or Three Prismatic Joints (KS 13) 

4. Forward and Inverse Displacement Solutions  

4.1 Forward Displacement Solutions for the KS Family of Layouts  

The position and orientation of the spherical wrist frame sphF  with respect to 

the base frame 0F  is found from: 

 

⎥
⎦

⎤
⎢
⎣

⎡
== →

1000
   0

00

32

3

1

2

0

1

0 sphoosph

sphsph

pR
TTTTT  (3) 

 

where the homogeneous transformation T
1−j

j  is defined in equation (1).  The 

transformation T
0

sph  is the solution to the forward displacement problem: R
0

sph  
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is the change in orientation due to the first three joints and 
sphoo →0

0
p  is the loca-

tion of the spherical wrist centre.  The homogeneous transformations T
0

sph  for 

the KS family of layouts can be found in Tables 3 and 4.  Note that in Tables 3 

and 4, ic  and is  denote ( )iθcos  and ( )iθsin , respectively. 

 

KS 1−jF  1−jα  1−ja  jd  jθ  jF  KS 1−jF  1−jα  1−ja  jd  jθ  jF  

1 0F  0 0 0 
1θ  1F  2 

0F  0 0 0 
1θ  1F  

 1F  2/π  0 0 
2θ  2F   

1F  2/π  0 0 
2θ  2F  

 2F  0 f  0 
3θ  3F   

2F  2/π−  f  0 
3θ  3F  

 3F  2/π  0 g  0 sphF   
3F  2/π  0 g  0 sphF  

3 0F  0 0 0 
1θ  1F  4 

0F  0 0 0 
1θ  1F  

 1F  2/π  0 f  
2θ  2F   

1F  0 f  0 
2θ  2F  

 2F  2/π−  0 0 
3θ  3F   

2F  2/π  0 0 
3θ  3F  

 3F  2/π  0 g  0 sphF   
3F  2/π−  0 g  0 sphF  

5 0F  0 0 0 
1θ  1F  6 

0F  0 0 
1d  0 

1F  

 1F  2/π  f  0 
2θ  2F   

1F  0 0 0 
2θ  2F  

 2F  2/π−  0 0 
3θ  3F   

2F  2/π  0 0 
3θ  3F  

 3F  2/π  0 g  0 sphF   
3F  2/π−  0 g  0 sphF  

7 0F  0 0 
1d  0 

1F  8 
0F  0 0 0 

1θ  1F  

 1F  0 0 0 
2θ  2F   

1F  2/π  0 0 
2θ  2F  

 2F  0 f  0 
3θ  3F   

2F  2/π−  0 
3d  0 

3F  

 3F  2/π  0 g  0 sphF   
3F  0 0 g  0 sphF  

9 0F  0 0 0 
1θ  1F  10 

0F  0 0 0 
1θ  1F  

 1F  2/π  0 
2d  2/π  2F   

1F  2/π  0 
2d  0 

2F  

 2F  2/π  0 0 
3θ  3F   

2F  0 0 0 
3θ  3F  

 3F  2/π−  0 g  0 sphF   
3F  2/π−  0 g  0 sphF  

11 0F  0 0 
1d  0 

1F  12 
0F  0 0 

1d  0 
1F  

 1F  0 0 0 
2θ  2F   

1F  2/π  0 
2d  0 

2F  

 2F  2/π  0 
3d  0 

3F   
2F  0 0 0 

3θ  3F  

 3F  0 0 g  0 sphF   
3F  2/π−  0 g  0 sphF  

13 0F  0 0 
1d  0 

1F         

 1F  2/π  0 
2d  2/π  2F         

 2F  2/π  0 
3d  0 

3F         

 3F  0 0 g  0 sphF         

Table 2. D&H Parameters for the KS Layouts 
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Table 3. Forward Displacement Solutions for KS 1 to 5 

4.2 Inverse Displacement Solutions for the KS Family of Layouts  

For the inverse displacement solution, the location of the spherical wrist centre 

with respect to the base, 
sphoo →0

0
p , is known:  

 

⎪
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⎪
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⎩

⎪
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⎧
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z
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oo

p

p

p

sph0

0
p  (4) 

 

Paul (1981) presented a methodology to solve the inverse displacement prob-
lem of 6-joint manipulators with a spherical wrist.  To demonstrate the appli-
cation of this methodology to the inverse displacement problem for the KS 
family, KS 1 will be used as an example. 
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Table 4. Forward Displacement Solutions for KS 6 to 13 

 
From the forward displacement solution presented in Table 3 for KS 1, the fol-
lowing relation exists: 
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where the left-hand-side of equation (5) is the last column of T
0

sph .  Pre-

multiplying both sides of equation (5) by ( ) 10
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From the second row of equation (6), a solution for 1θ  can be found as:  

 

( ) ( )  ,atan2or   ,atan2 11 xyxy pppp −−== θθ  (7) 

 
where atan2 denotes a quadrant corrected arctangent function (Paul, 1981). 
Squaring and adding the first three rows of equation (6) allows an expression 

for 3s  to be found thus yielding a solution for 3θ  of: 
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From rows one and three of equation (6), after substituting 

323223 ssccc −= and 323223 sccss += , expressions for 2s  and 2c  can be found thus 

yielding a solution for 2θ  of:  
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A similar procedure can be followed for the other KS layouts.  Inverse dis-
placement solutions for all 13 of the KS layouts are summarized in Tables 5 
and 6. 
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Table 5. Inverse Displacement Solutions for KS 1 to 5 
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KS Inverse Displacement Solutions 
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Table 6. Inverse Displacement Solutions for KS 6 to 13 
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Referring to Tables 5 and 6, for KS 1 to 6, 8, 9, and 10, up to four possible solu-
tions exist to the inverse displacement problem.  For KS 7, 11, and 12, up to 
two possible solutions exist for the inverse displacement problem.  For KS 13 
there is only one solution to the inverse displacement problem.  
For the inverse displacement solutions presented, undefined configurations 
occur when the spherical wrist centre of the arm intersects either the first or 
second joint axes, provided the axes are for a revolute joint.  In such a configu-
ration, the inverse solution becomes undefined, i.e., an infinity of possible so-

lutions exist.  Looking at KS 3 of Figure 5 as an example, if 03 =s  as illustrated, 

the spherical wrist centre intersects the second joint axis and the solution for 

2θ  becomes arbitrary.  Similarly, if 0== yx pp , the spherical wrist centre inter-

sects the first joint axis and the solution for 1θ  becomes arbitrary.  

Table 7 reports all of the undefined configurations for the KS family of layouts.  
If an undefined configuration was encountered, a value would be assigned to 
the arbitrary joint displacement.  
 
KS Undefined Configurations KS Undefined Configurations 
1 arbitrary is 0 1θ⇒== yx pp  

arbitrary is 02 23

22 θ⇒=++ fgsgf  

2 arbitrary is 0 1θ⇒== yx pp  

arbitrary is 0 23 θ⇒=+ gsf  

3 arbitrary is 0 1θ⇒== yx pp  

arbitrary is 0 23 θ⇒=s  

4 arbitrary is 0 1θ⇒== yx pp  

arbitrary is 0 23 θ⇒=s  

5 arbitrary is 0 1θ⇒== yx pp  

arbitrary is 0 23 θ⇒=s  

6 arbitrary is 0 23 θ⇒=s  

7 ( ) arbitrary is 0 2

22

3

2

3 θ⇒=++ gcgsf 8 arbitrary is 0 1θ⇒== yx pp  

arbitrary is 0 23 θ⇒=+ gd  

9 arbitrary is 0 1θ⇒== yx pp  10 arbitrary is 0 1θ⇒== yx pp  

11 arbitrary is 0 23 θ⇒=+ gd  12 None  

13 None    

Table 7. Undefined Configurations for the Inverse Displacement Solutions of the KS Layouts 
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5. Discussion  

5.1 Application of the KS Layouts  

The KS family of layouts can be used as main-arms for serial manipulators or 
as branches of parallel manipulators.  For example, KS 1 is a common main-
arm layout for numerous industrial serial manipulators.  KS 4 is the branch 
configuration used in the RSI Research 6-DOF Master Controller parallel joy-
stick (Podhorodeski, 1991).  KS 8 is a very common layout used in many paral-
lel manipulators including the Stewart-Gough platform (Stewart, 1965-66).  KS 
13 is the layout used in Cartesian manipulators.  
The choice of which KS layout to use for a manipulator would depend on fac-
tors such as the shape of the desired workspace, the ease of manufacture of the 
manipulator, the task required, etc.  For example, layout KS 1 provides a large 
spherical workspace.  Having the second and third joints parallel in KS 1 al-
lows for the motors of the main-arm to be mounted close to the base and a 
simple drive-train can used to move the third joint.  

5.2 Reconfigurable Manipulators 

KS layouts are also very useful for reconfigurable manipulators.  Podhorode-
ski and Nokleby (2000) presented a Reconfigurable Main-Arm (RMA) manipu-
lator capable of configuring into all five KS layouts comprised of revolute only 
joints (KS 1 to 5).  Depending on the task required, one of the five possible lay-
outs can be selected. 
Yang, et al. (2001) showed how KS branches are useful for modular recon-
figurable parallel manipulators. 

5.3 Application of the Presented Displacement Solutions 

5.3.1 Serial Manipulators 

If a KS layout is to be used as a main-arm of a serial manipulator, the spherical 
wrist needs to be actuated.  Figure 8 shows the zero-displacement configura-
tion and Table 8 the D&H parameters for the common roll-pitch-roll spherical-
wrist layout.  The wrist shown in Figure 8 can be attached to any of the KS 
layouts. 
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Figure 8. Zero-Displacement Diagram for the Roll-Pitch-Roll Spherical Wrist 

 
 

1−jF  1−jα  1−ja  jd  jθ  jF  

sphF  0 0 0 4θ  4F  

4F  2/π−  0 0 5θ  5F  

5F  2/π  0 0 6θ  6F  

Table 8. D&H Parameters for the Roll-Pitch-Roll Spherical Wrist 

 

For the KS family of layouts with a spherical wrist, the forward displacement 
solution is:  
 

( )( ) TTTTTTTTTTTT
6

6

065

6

4

54

32

3

1

2

0

1

0      ee

sph

sphee

sph

sphee ==   (10) 

 

where T
6

ee  is the homogeneous transformation describing the end-effector 

frame eeF  with respect to frame 6F  and would be dependent on the type of 

tool attached,  T
0

sph  is defined in equation (3), and T
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For a 6-joint serial manipulator, Pieper (1968) demonstrated that for a manipu-
lator with three axes intersecting, a closed-form solution to the inverse dis-
placement problem can be found.  As demonstrated by Paul (1981), for a 6-
joint manipulator with a spherical wrist, the solutions for the main-arm and 
wrist displacements can be solved separately.  Therefore, the presented inverse 
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displacement solutions for the KS family of layouts (see Section 4.2) can be 
used to solve for the main-arm joint displacements for serial manipulators that 
use KS layouts as their main-arm and have a spherical wrist. 
For the inverse displacement solution of the main-arm joints, the location 

(
60

0

oo →p ) and orientation ( R0

6 ) of frame 6F  with respect to the base frame in 

terms of the known value T0

ee  can be found from:  
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where Tee6  is constant and known.  Since the manipulator has a spherical wrist:  
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where xp , yp , and zp  are found from equation (12).  The inverse displacement 

solutions for the KS family of layouts discussed in Section 4.2 can now be used 
to solve for the main-arm joint displacements.  
For the inverse displacement solution of the spherical wrist joints, in terms of 

the known value T0

ee , the orientation of 6F  with respect to the base frame, R0

6 , 

was defined in equation (12).  Note that: 
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Since the main arm joint displacements were solved above, the elements of 

matrix R3

0  are known values and thus the right-hand-side of equation (14) is 

known, i.e., ijr , i = 1 to 3 and j = 1 to 3, are known values. 

Substituting the elements of the rotation matrix RRR
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 where R
3

sph  is dependent on the D&H parameter 3α for the manipulator, i.e.:  
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Equation (15) can be used to derive expressions for the wrist joint displace-

ments 4θ , 5θ , and 6θ .  For example, if 23 πα = , equation (15) becomes:  
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Using element (2, 3) of equation (17) allows 5θ  to be solved as:  
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Using elements (1, 3) and (3, 3) of equation (17) allows 4θ  to be solved as:  
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Using elements (3, 1) and (3, 2) of equation (17) allows 6θ  to be solved as:  
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Note that if 05 =s , joint axes 4 and 6 are collinear and the solutions for 4θ  and 

6θ  are not unique.  In this case, 4θ  can be chosen arbitrarily and 6θ  can be 

solved for.  

Similar solutions can be found for the cases where 3α  equals 0 and 2π− . 

 

5.3.2 Parallel Manipulators 

Two frames common to the branches of the parallel manipulator are estab-

lished, one frame attached to the base ( baseF ) and the other attached to the plat-

form ( platF ).  The homogeneous transformations from the base frame baseF  to 

the base frame of each of the m branches 
i

F0  are denoted T
base

i0 , i = 1 to m.  The 

homogeneous transformations from the platform frame platF  to the m passive 

spherical group frames 
isphF  are denoted T

plat

sphi
, i = 1 to m.  Note that for a given 

parallel manipulator all T
base

i0  and T
plat

sphi
 would be known and would be con-

stant. 
For the inverse displacement solution, for the ith branch, the location and orien-

tation of the spherical wrist frame, 
isphF , with respect to the base frame of the 

branch, 
i

F0 , in terms of the known value T
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plat  can be found from:  
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where Ri
isph

0  is the orientation of 
isphF  with respect to 

i
F0  and 
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0
p  is the po-

sition vector from the origin of 
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where 
ix

p , 
iy

p , and 
iz
p  are known values.  The inverse displacement solutions 

for the KS family of layouts shown in Section 4.2 can then be used to solve for 
the joint displacements for branches i =1 to m. 
 
Unlike the forward displacement problem of serial manipulators, the forward 
displacement problem of parallel manipulators is challenging. Raghavan 
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(1993) showed that for the general 6-61 Stewart-Gough platform up to 40 solu-
tions could exist to the forward displacement problem.  Note that the notation 
i-j denotes the number of connection points of the branches at the base and 
platform, respectively.  
Innocenti and Parenti-Castelli (1990) showed that for a class of parallel ma-
nipulators that have the branches connected at three distinct points on the end-
effector platform (e.g., 6-3 and 3-3 layouts), the forward displacement problem 
can be reduced to a 16th order polynomial of one variable leading to a maxi-
mum of 16 possible solutions to the forward displacement problem.  
Numerous researchers (e.g., Inoue, et al. (1986); Waldron, et al. (1989); Cheok, 
et al. (1993); Merlet (1993); Notash and Podhorodeski (1994 and 1995); and 
Baron and Angeles (2000)) have shown that utilizing redundant sensing in 
parallel manipulators is necessary to achieve a unique solution to the forward 
displacement problem.  For the purposes of the solutions presented here, it is 
assumed that the manipulator is redundantly sensed and that the positions of 

the passive spherical groups ( ip , i = 1 to m) would be known. 

 
Noting that:  
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For 6-3 and 3-3 layouts, the origin of platF  can be found as:  
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where 1p , 2p , and 3p  are the positions of the passive spherical groups.  The 

positions of the passive spherical groups can be found using the solutions pre-
sented in Tables 3 to 4.   
The orientation of the platform frame can be found as:  
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where  

                                                 
1 Note that the notation i-j denotes the number of connection points of the branches at the base and plat-
form, respectively. 
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For 6-6 and 3-6 layouts, the origin of platF  can be found as:  
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where 1p  to 6p  are the positions of the passive spherical groups.  Note that it is 

assumed that the passive spherical groups are symmetrically distributed about 
the platform.  The positions of the passive spherical groups can be found using 
the solutions presented in Tables 3 and 4.   
The orientation of the platform frame can be found as:  
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6. Conclusions  

The complete set of layouts belonging to a kinematically simple (KS) family of 
spatial joint layouts were presented.  The considered KS layouts were defined 
as ones in which the manipulator (or branch of a parallel manipulator) incor-
porates a spherical group of joints at the wrist with a main-arm comprised of 
successfully parallel or perpendicular joints with no unnecessary offsets or 
lengths between joints.  It was shown that there are 
13 layouts having unique kinematics belonging to the KS family: five layouts 
comprised of three revolute joints; five layouts comprised of two revolute 
joints and one prismatic joint; two layouts comprised of one revolute joint and 
two prismatic joints; and one layout comprised of three prismatic joints.  In 
addition, it was shown that there are a further five kinematically-simple lay-
outs having unique joint structures, but kinematics identical to one of the 13 
KS layouts.  
Zero-displacement diagrams, D&H parameters, and the complete forward and 
inverse displacement solutions for the KS family of layouts were presented.  It 
was shown that for the inverse displacement problem up to four possible solu-
tions exist for KS 1 to 6, 8, 9, and 10, up to two possible solutions exist for KS 7, 
11, and 12, and only one solution exists for KS 13.  The application of the KS 
family of joint layouts and the application of the presented forward and in-
verse displacement solutions to both serial and parallel manipulators was dis-
cussed. 
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