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Forcefree Control for Flexible Motion  

of Industrial Articulated Robot Arms 

 
 

Satoru Goto  
 

1. Introduction     

Many industrial robot arms are operated in industry, and some robotic 
applications in the industry, such as a pulling-out of products made by die 
casting, require the flexible motion excited by an external force. Here, the 
flexible motion means that the robot arm moves passively according to the 
external force. Industrial robot arms, however, are difficult to be moved by the 
external force because the servo controller of the industrial robot arm controls 
the motion of the robot arm excited by an input signal responsible for the 
motion. The torque generated by the external force is a kind of disturbance for 
the robot control system and it can be compensated by the servo controller. 
Impedance control (Hogan 1985; Scivicco & Siciliano, 2000) and compliance 
control (Mason, 1981; Micheal et al., 1982) were proposed in order to achieve 
the flexible motion, and these methods have been applied to industrial robots 
(Ciro et al., 2000). Most of these control methods impose desired dynamic 
characteristics between an end-effector and an environment by setting inertia, 
friction and stiffness. Usually an elastic spring behavior is introduced in order 
to achieve the flexible motion of the robot arm. The potential force of the elastic 
spring behavior is a conservative force, and it is impossible to achieve the 
passive motion away from the environment caused by the external force is 
impossible to be achieved by using these control methods. 
In this research, the forcefree control, which achieves the passive motion of the 
robot arm according to the external force, is proposed. Moreover, the forcefree 
control is extended to the forcefree control with independent compensation, 
the forcefree control with assigned locus and the position information based 
forcefree control. The effectiveness of the proposed forcefree control is assured 
by comparing the experimental results with simulation results. Comparison 
between the forcefree control and other force control methods such as 
impedance control are also described. Finally, applications of the forcefree 
control of pull-out work, direct teaching and rehabilitation robot are 
demonstrated. 

 

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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2. Forcefree Control 

2.1 Necessity of Forcefree Control 

Operations such as cutting and welding can be easily achieved by using 
industrial robot arms. These operations are carried out through contour control 
in that the tip of the robot arm moves along a given path, and point-to-point 
(PTP) control in that the tip moves between previously assigned points. These 
operations are tractable as the rigidity of the robot arm advances. Therefore, 
the industrial robot arms are designed with high rigidity. 
Recently, control of a contact force is required in order to carry out assembling, 
handling, inlaying, pull-out work and grinder operations. On the contrary, it is 
difficult to control the contact force if the robot arm possesses high rigidity. In 
view of this, the property of low rigidity for the industrial robot arms is 
required to control the contact force.  
On the other hand, flexible motion is also required for the safety operation 
such as contact between the robot and human operator. Generally, an 
emergency shutdown switch is built in to the servo controller. When the 
operator is sandwiched between the tip of the robot arm and the environment, 
the emergency halt becomes more dangerous. If the robot arm can be actuated 
with flexibility, the operator is released from the sandwiched situation.  
Some of the problems have been solved by particularly designed robots or by 
remodeling of robots. However, a number of industrial robot arms are 
manufactured for general purpose, and such robot arms have a lower cost 
compared with that of special purpose robots. In this view, flexible motion by 
general purpose industrial robot arms is required in industry. 
A servo controller of industrial robot arm includes a position loop and a 
velocity loop. Input to the industrial robot arm is usually the joint position of 
each link. Hence, the industrial robot arms should be considered as the 
combination of the mechanism of the robot arm and the servo controller. 
Recently, a study of force control of industrial robots has developed rapidly 
and the achievement of such force control has been the major concern. A 
number of force control methods for the change of rigidity of robot arms such 
as impedance control (Hogan 1985; Scivicco & Siciliano, 2000) and compliance 
control (Mason, 1981; Mecheal et al., 1982) have been proposed. These methods 
are apparently good enough to achieve the requirement of force control. 
However, to apply these methods in industry, there are difficult problems to be 
solved. For general purpose robots including the servo controller, these 
methods require changes in the control strategy in the servo controller.  
Modification of the servo controller is almost impossible from the user side, 
and modification by the maker is very expensive even upon request from the 
user side. Presently, available methods for the achievement of flexible contact 
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between the tip of the robot arm and the environment are almost achieved by 
attaching a flexible device on the tip of the robot arm. 
The forcefree control can achieve the flexible motion of the industrial robot 
arms under virtual circumstances of non-gravity and non-friction without any 
change of the built-in controller. By use of the forcefree control, the robot arm 
moves passively according to the external force directly as if it were under the 
circumstances of non-friction and non-gravity. The mathematical explanation 
of the forcefree control is described below. 

2.2 Derivation of Forcefree Control 

Dynamics of an articulated robot arm is expressed by 
 

( ) ( ) ( ) ( ) fsȝ τ+τ=qg+qq,h+qNqD+qqH $$$$$ sgn+  (1) 

 

where ( )qH  is the inertia matrix, ( )qN+qD ȝ $$ sgn is the friction term, ( )qq,h $ is the 

coupling nonlinear term, ( )qg  is the gravity term, q  is the output of joint 

angle, sτ  is the torque input to the robot arm and fτ  is the joint torque 

corresponding to the external force f  acting on the tip of the robot arm (Fu et 

al., 1987). 
 
 

 

Figure 1. Block diagram of forcefree control 

 
In industrial robot arms, the servo controller is adapted to control the motion 

of the robot arm. The control loop of the servo controller is shown on the right 

side of Fig. 1, where pK , vK  and τK  are position loop gain, velocity loop gain 

and torque constant, respectively (Nakamura et al., 2004; Kyura, 1996). The 
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servo controller adopts P and PI type cascade control, the P controller is used 

for the position loop control and the PI controller is used for the velocity loop 

control. The velocity control loop has the role of the derivative action. The 

servo controller generates the torque input to the robot arm as described by 
 

( )( )( ) fgddpvτs ττ+τ+qqqKKK=τ −−− $  (2) 

 

where dq  is the input of joint angle, dτ  is the friction compensation torque and 

gτ  is the gravity compensation torque. As expressed in (2), the servo controller 

includes the friction compensation and the gravity compensation through 
integral action of PI control. The friction and the gravity are assumed to be 
exactly compensated by the servo controller as  
 

( )qN+qD=τ ȝd
$$ sgn   (3) 

 

( ).qg=τ g  (4) 

 

The torque caused by an external force fτ  is also compensated by the servo 

controller because the servo controller of an industrial robot arm is designed 
such that the stiffness of the robot arm is high enough and the robot arm will 
never be moved by the external force. 
The total dynamic equation of an industrial articulated robot arm including the 
servo controller is given by substituting (2), (3) and (4) for (1) as 
 

( ) ( ) ( )( )( ).qqqKKK=qq,h+qqH dpvτ $$$$ −−  (5) 

 

Forcefree control means that the influences of friction and gravity on the robot 
arm motion can be compensated. The entire dynamics of the industrial robot 
arms controlled by the forcefree control is described by 
 

( ) ( ) fτ=qq,h+qqH $$$  (6) 

 

where  fτ  is obtained by substituting (2) for (5) as 

 

( ) ( )( )( ).qq,h+qqHτττ=τ gdsf
$$$−−−−  (7) 

 
Generally, the speed of the flexible motion of an industrial robot arm is 
relatively slow, usually less than 1/5 of the rated speed. Hence, the inertia and 

nonlinear terms of the robot arm is negligibly small ( ) ( )( )0≈qq,h+qqH $$$ , and the 

external torque is approximately given by 
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( ).gdsf τττ=τ −−−  (8) 

 
Finally, the control law of the forcefree control with independent compensation 

is obtained by substituting (6) and (8) for (5) and by solving for dq as 

 

( )( ) .111 q+q+τ+τ+τKKK=q gdsτvpd
$−−−−  (9) 

 

Here, sτ  is measured by the torque monitor which is usually attached to the 

servo controller of the industrial robot arm and is used to check the value of 
the torque.  

2.2.1 Estimation of Friction Term 

Friction term dτ  consists of Viscous friction qD $  and Coulomb friction 

( )qN ȝ $sgn  as in (3). The friction effect to the motion of the robot arm is 

estimated by the torque output under constant velocity motion. The friction 
term is obtained through the following procedure;  
 

1. To cancel the effect of the gravity, the robot arm sets around its vertical po-
sition; 

2. Various constant velocity inputs are applied to each link of the robot arm; 
3. Respective torque outputs corresponding to the applied velocities are mea-

sured by using the torque monitor; 
4. The torque output vs. applied velocities are plotted; 

5. Viscous friction coefficient D  and magnitude of Coulomb friction ȝN  in 

(3) are estimated by using the least squares method from the collected da-
ta. 

In order to smoothen the Coulomb friction effect, the Sigmoid function is intro-
duced in the friction term as 
 

( )qfN+qD=τ dȝd
$$  (10) 

 

where 

( ) ( ) ( )
( ) ( )
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and the parameter γ  is introduced for adjusting the effect of smoothness. 
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2.2.2 Estimation of Gravity Term 

The gravity term is a function of the robot arm position q  as (4). Here, the 

gravity term is modelled by 
 

( ) ( ) ( )bqV+aqU=qg $  (12) 

 
where the function 
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  (13)

 

is introduced in order to smoothen the effect of static friction b . In (13), the 
parameter λ  is introduced for adjusting the effect of smoothness. 

The parameters  a  and b  are estimated by using the least squares method 
from the experimental data of the steady-state torque monitor outputs for 

various postures of the robot arm. For the estimation of the parameters a  and 

b  in (12), the steady-state torque monitor outputs are used because the torque 
monitor output contains a transient component, which is caused by the integral 
action of the servo controller. Hence, the gravity compensation torque can be 
represented by 
 

( ) ( )qgeI=τ At

g −  (14) 

 
where 

.

00

0

0

00

/

2
/

1
/

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

n
Tt

Tt

TtAt

e

e

e=e

A

DDB

BD

A  

(15)

 

and ),,1( niTi A=  are the time constants. 
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2.3 Alogrithm of Forcefree Control 

The algorithm of the forcefree control is explained here. Initial setting of the 
forcefree control is expressed in the following first 3 items.  
 

1. Servo parameters pK , vK  and τK  are obtained from the servo controller; 

2. Friction term (10) is estimated as explained in the above section; 
3. Gravity term (12) is estimated as explained in the above section. 
 

The execution of the forcefree control has summarized by the following 6 
items.  
 

1. External force f  is added to the robot arm; 

2. Torque monitor detects the external force f ; 

3. The friction torque dτ  is estimated by (10); 

4. The gravity torque gτ  is estimated by (12); 

5. External torque fτ  is calculated by (8);  

6. The position input dq  is generated by (9).  
 

Finally, the reference position input dq  is given to the servo controller 

according to the above algorithm and the forcefree control is achieved. 
 

2.4 Verification 

Robot arm motion by using the forcefree control was verified by a simulation 

study and experiments. The simulation study shows an ideal motion of the 

forcefree control. An industrial articulated robot arm (Performer-MK3S, 

YAHATA Electric Machinery Mfg., Co., Ltd) was used for the experiment on 

the forcefree control with independent compensation. Two links of Performer-

MK3S were used for the experiment. The link lengths of the robot arm are 

0.251 =l [m], 0.2152 =l [m], and masses of the links are 2.861 =m [kg], 

2.192 =m [kg], respectively. The position loop gain was ( )25,25diag=K p  [1/s], 

the velocity loop gain was ( )150,150diag=K v  [1/s], and the torque constant 

was ( ).0369520.017426,0diag=K τ  [ ( )2s/rad/Nm ].  

Fig. 2 shows the experimental results of the estimation of friction term. The 

bold lines show the results of (10) for 120=γ and the dotted lines show the 

results of ( )qN+qD ȝ $$ sgn . The step change of the results of ( )qN+qD ȝ $$ sgn can be 

smoothened using the sigmoid function. 
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Figure 2. Estimation of friction term 

 
Fig. 3 shows the experimental results of the estimation of gravity term. The 

bold lines show the results of (12) for 150=Ȝ  and the dotted lines show the 

results of ( ) b+aqU . The alternate long and short lines show the result of 

( )aqU . The estimated friction approximately gives the static friction effect. 
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Figure 3. Estimation of gravity term 
 

Fig. 4 shows the simulation results and the experimental results where the 

external force f  is ( )88.9,6.1−  [N]. The dotted lines show the simulation results 

and the bold lines show the experimental results. As in Fig. 4, the experimental 
results and theoretical response are almost the same and thereby shows that 
the exact forcefree control can be achieved in practice. The result shows that 
the forcefree control was achieved with an actual industrial robot arm.  
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Figure 4. Simulation and experimental results of forcefree control 
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3. Expansion of Forcefree Control 

3.1 Forcefree Control with Independent Compensation 

The forcefree control is achieved in the non-friction and non-gravity condition. 
Nevertheless, in some operation of industrial robot arms, friction and/or 
gravity of the robot arm is useful. Moreover, a large force is required in order 
to achieve flexible motion of huge robot arms because of their huge inertia, 
even if the forcefree control is applied. The forcefree control is extended to 
realize flexible motion emulating the operational circumstances of arbitrary 
inertia, arbitrary friction and arbitrary gravity through independent 
compensation of inertia, friction and gravity.  

3.1.1 Derivation of Forcefree Control with Independent Compensation 

Forcefree control with independent compensation means that the influences of 
inertia, friction and gravity to the robot arm motion can be assigned arbitrarily. 
The entire dynamics of an industrial robot arm working on the forcefree 
control with independent compensation is described by 
 

( ) ( ) ggddff τCτCτC=qq,h+qqH −−$$$  (16) 

 

where fC , dC  and gC  are the coefficients of the inertia, friction and gravity 

terms, respectively. They can be tuned to adjust the effect of the inertia, friction 

and gravity, independently. For instance, E=C f , 0=Cd  and 0=Cg , 

corresponds to the forcefree control and ∞→fC , 0=C=C gd  corresponds to 

the perfect compensation of the inertia, friction and gravity. 
 
The block diagram of the forcefree control with independent compensation is 

shown in Fig. 5. The inputs of joint angle dq  for the forcefree control with 

independent compensation is obtained by substituting (14) for (5) and by 

solving for dq  as 

 

( )( ) .111 q+q+τCτCτCKKK=q ggddffτvpd
$−−−−−  (17) 

 
Finally, the control law of the forcefree control with independent compensation 
is obtained by substituting (8) for (17) as 
 

( ) ( )( )( ) q+q+τCC+τCC+τCKKK=q ggfddfsfτvpd
$−−−−−− 111  (18) 
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Figure 5. Block diagram of forcefree control with independent compensation 

 

3.1.2 Verification 

Step input of 10[N] to X-axis direction was applied to the tip of the robot arm. 
A force sensor was used to measure the value of external force. The initial end-
effector position of the robot arm was at (0.3, 0.3)[m]. 
Experimental results of the forcefree control with independent compensation 

are shown in Fig. 6, where the coefficients of compensation are E=c f 2 , 

E=C d , 0=C g . In Fig. 6, the dotted lines show the theoretical responses 
obtained through simulation and the bold lines show the experimental results.  
 
As in Fig. 6, the experimental results and theoretical response are almost the 
same and thereby shows that the exact forcefree control with independent 
compensation can be achieved in practice. The result shows that the forcefree 
control with independent compensation was realized with an actual industrial 
robot arm.  
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Figure 6. Simulation and experimental results of forcefree control with independent 
compensation 

3.2 Forcefree Control with Assigned Locus 

3.2.1 Necessity of Forcefree Control with Assigned Locus 

By use of the forcefree control, the robot arm moves according to the external 
force. The direction of the motion depends on the direction of the external 
force. When the motion of the robot arm was restricted, the original forcefree 
control can not be applied. In such a case, the flexible motion with assigned 
locus is required.  In this section, the forcefree control with assigned locus is 
introduced. The forcefree control with assigned locus makes the tip of the robot 
arm to follow the assigned locus, and the tip velocity depends on the external 
force. 
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3.2.2 Derivation of Forcefree Control with Assigned Locus 

The forcefree control with assigned locus is based on mass point type forcefree 
control. Mass point type forcefree control is constructed from a mass point 
which is assumed to be the tip of the robot arm. Therefore, the motion of the 
mass point and the tip of the robot arm are the same. The mass point moves 

according to the velocity v  caused by the external force f , when an external 

force f  is applied on the mass point. 

The direction of the motion is the same as the external force f . Besides, the 

absolute value of the velocity v  depends on the external force f . Therefore, 

the mass point could not follow the assigned locus. In order to follow the 

assigned locus, the direction of the generated velocity v  has to be changed to 
the tangential direction of the assigned locus. By continuing the above 

processes, the direction of the velocity v  of the mass point is always the same 
as the tangential direction on the assigned locus. Hence, the tip of the robot 
arm follows the assigned locus with the velocity which is determined by the 

external force f .  

Fig. 7 shows the block diagram of the forcefree control with assigned locus. 
Under the non-gravity condition, the equation of the motion of the mass point 

by the external force f  

 

f=rd+rm $$$  (19) 

 
where r is the position of the mass point, m  is the mass of the mass point and 

d  is the friction coefficient.  
In order to realize the flexible motion with assigned locus according to the 

external force f , the mass point obeys the equation (19) only for the 

component in ( x , y , z ) which gives the maximal amplitude of the external 

force f  . 

 
 

 
 

Figure 7.  Block diagram of the forcefree control with assigned locus 
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The other components of the position of the mass point are determined by the 

assigned locus ( ) 0=rh d .  As a result, the position of the tip of the robot arm dr  

under the forcefree control with assigned locus is determined by 

 

( )

| |.f=i,

=rh

f=rd+rm j

zy,x,j=

d

ii

d

i

d argmax

0⎪⎩

⎪
⎨
⎧ $$$  (20) 

 
The algorithm of forcefree control can be described as follows. 
 

1. The external force f   is measured by a force sensor. 

2. The component having the maximum amplitude of the external force 

| |jzy,x,j= f=i argmax  is determined. 

3. The i th component of the position of the tip of the robot arm i

dr  is deter-

mined by using the equation of motion. 
4. The other components of the position of the tip of robot arm is determined 

by the assigned locus ( ) 0=rh d . 

5. The input of the servo controller dq is calculated from the tip position dr  

by using inverse kinematics. 
 

3.2.3 Verification 

Verification of the forcefree control with assigned locus was carried out by 
simulation and experiment. Besides, simulation and experiment were carried 

out under non-friction conditions which mean the coefficient of friction d  was 
zero. 
Simulation and experimental results are shown in Fig. 8. In Fig. 8, (a) and (b) 
illustrate the components of the external force f  along the direction of X-axis 

and Y-axis, respectively, (c) and (d) show the joint trajectories of link1 and 

link2, respectively, (e) and (f) show the  velocity v  of X-axis and Y-axis, 
respectively, and (g) shows the locus of the tip of the robot arm. In Fig. 8, the 
dotted line denotes the simulation result and the bold line denotes the 
experimental results. In Fig. 8(g), dash line shows the assigned locus. It can be 
verified that simulation and experimental results are comparable, and both 
results have realized the exact assigned locus. This phenomenon illustrates the 
realization of the proposed forcefree control with assigned locus. 
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Figure 8.  Simulation and experimental results of forcefree control with assigned locus 
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3.3 Position Information Based Forcefree Control 

3.3.1 Necessity of Position Information Based Forcefree Control 

 
The above explained forcefree control requires a force sensor or a torque 
monitor for the detection of the external force. In order to apply more general 
industrial robot arms, the forcefree control is extended, where the external 
force is estimated only by the position information. 
In the servo controller of the industrial robot arms, a PI controller is used for 
the velocity loop and the torque disturbance is compensated by the integral 
action of the PI controller so that the robot arm is not moved by the external 
force. On the other hand, the torque information required for the forcefree 
control must be estimated by the change of position caused by the external 
force. Hence, the P controller must be used for the velocity loop. By changing 
the velocity controller from PI controller to P controller, the compensation of 
the torque disturbance vanishes and the torque information can be estimated 
from the change of position caused by the external force. 

3.3.2 Derivation of Position Information Based Forcefree Control 

Fig. 9 shows the block diagram of the position information based forcefree 
control. As in Fig. 9, the velocity loop in the servo controller is the P controller 

and the friction compensation dτ , the gravity compensation gτ  and the 

external torque compensation  fτ  are not included in the servo controller 

compared with the servo controller in Fig. 1. 
 

 

 

Figure 9.  Block diagram of position information based forcefree control  
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The control input dq  is calculated by 

 

( )( ) q+q+τ+τ+τKKK=q gdfτvpd
$111 −−−  (21) 

 

where the friction compensation torque dτ and the gravity compensation 

torque gτ  are calculated by (8) and (12), respectively.  

The external force compensation torque fτ  can be estimated by using the 

position information q  and the velocity information q$  as 

 

( ) ( ).qq,h+qqH=τ f $$$  (22) 

3.3.3 Verification 

Verification of the position information based forcefree control was carried out 
by a simulation study and an experiment. Simulation and experimental results 
are shown in Fig. 10. In Fig. 10, (a) and (b) illustrate the components of the 

external force f  in the directions of X-axis and Y-axis, respectively, (c) and (d) 

show the joint trajectories of link1 and link2, respectively, (e) and (f) show the  

velocity v  of X-axis and Y-axis, respectively, (g) and (h) show the estimated 
torque by using the torque observer and the torque calculated by the force 
sensor, respectively, and (i) shows the locus of the tip of the robot arm. In Fig. 
10, the dotted line denotes the simulation result and the bold line shows the 
experimental result. In (g) and (h), the estimated torque coincides with the 
actual torque. It can be verified that the simulation and experimental results 
are comparable, and the forcefree control can be achieved only by the usage of 
the position information.  
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Figure 10.  Simulation and experimental results of position information based 
forcefree control  
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4. Comparison between Forcefree Control and Force Control 

4.1 Comparison between Forcefree Control with Independent Control and 
Inpedance Control 

In order to illustrate the feature of the forcefree control, the forccefree control 
with independent compensation is compared with the impedance control 
(Hogan 1985; Scivicco & Siciliano, 2000). The impedance control is the typical 
force control, which enables the contact force between the tip of the robot arm 
and the object as assigned inertia, friction and stiffness. The impedance 
characteristics are expressed by 
 

( ) ( ) F=rrK+rrD+rM ddddd −− $$$$  (23) 

 

where F  is the assigned force between the tip of the robot arm and the object, 

dM  , dD   and dK  are the assigned inertia, friction and stiffness, respectively, 

and dr , dr$   are the objective position and the objective velocity in working 

coordinates, respectively. The dynamics of the robot arm in joint coordinates is 
expressed by 
 

( ) ( ) ( ) ( ) FJ+τ=qg+qN+qD+qq,h+qqH T

ȝ $$$$$ sgn  (24) 

 
and the dynamics in working coordinates is expressed by 
 

( ) ( ) ( ) ( ) ( ) .sgn
1

F+τJ=qg+rN+rD+qq,h+rqH T

rȝrrrr

−$$$$$  (25) 

 
By substituting (23) for (25), the torque input for the impedance control is 
obtained by 
 

( ) ( ) ( ){ }[
( ) ( )( ) ( ) ( )].sgn1

1

qg+rN+rD+FIMqH+qq,h+

rrKrrDMqHJ=τ

rȝrrdrr

dddddr

T

$$$
$$

−

−−−−
−

−

 (26) 

 
The torque input of the forcefree control with independent compensation is 
derived as the same format of the impedance control. The dynamics of the 
forcefree control with independent compensation in joint coordinates (16) is 
transformed into working coordinates as 
 
 

( ) ( ) ( )( ) ( ).sgn qgCrN+rDCFC=qq,h+rqH r

g

ȝrr

df

rr −− $$$$$  (27) 

 



832       Industrial Robotics: Theory, Modelling and Control 

By substituting (27) for (24), the torque input for the forcefree control with 
independent compensation is obtained by  
 

( ) ( ) ( )( ) ( ) ( )[ ].sgn qgCI+rN+rDCI+FICJ=τ r

g

ȝrr

dfT −−− $$  (28) 

 
By comparing the torque input of the impedance control (26) and that of the 
forcefree control with independent compensation (28), the following 
relationship is fulfilled. 
 
 

( ) ( ) ( ){ } ( ) 01 =qq,h+rrKrrDMqH rdddddr
$$$ −−−−−  (29) 

 

( ) ( )qHC=M r

f

d

1−
 (30) 

 

O=Dd  (31) 

 

O=K d  (32) 

 

( ) 0=qq,hr $  (33) 

 

O=C=C gd  (34) 
 
The difference between the forcefree control with independent compensation 
and the impedance control is as follows; 
 

1. In impedance control, the objective trajectory dr  is defined whereas no ob-

jective trajectory exists in the forcefree control with independent compen-
sation. 

2. The forcefree control with independent compensation can tune the effects 
of the friction and the gravity whereas the impedance compensation do 
perfect compensation. 

 

As a result, the forcefree control with independent compensation is completely 
different control strategy from the impedance control. 

4.2 Comparison between Forcefree Control with Assigned Locus and Impedance 
Control 

In the case of forcefree control with assigned locus and the impedance control, 
the tip of the robot arm is related to joint motion, but actually, joint coordinate 
is not necessary to consider because generalized coordinates are defined in 
working coordinate. 
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In case of impedance control, inertia is compensated by adjusting a compliance 
matrix. On the contrary to the forcefree control with assigned locus, inertia can 
be adjusted through independent setting of the value of the mass point.   
Moreover, in case of impedance control, identification of coefficients of viscous 
friction and calculation of gravity term must be done a priori for the friction 
compensation and the gravity compensation. On the contrary to the forcefree 
control with assigned locus, these compensations are not required because a 
dynamic equation of the mass point is defined in non-friction and non-gravity 
space.  
Although forcefree control with assigned locus is capable of following the 
assigned locus, impedance control is not thus capable. Therefore, forcefree 
control with assigned locus has the many advantages over impedance control 
counterparts. Other general force control methods have same problems as 
impedance control. 
The impedance control is expressed by 
 

( ) ( ) f=rrK+rrD+rM ddddd −− $$$$  (35) 

 

where f  is the assigned force between the tip of the robot arm and the object, 

dM  , dD  and dK  are the assigned inertia, friction and stiffness, and dr , dr$  are 

the objective position and the objective velocity in working coordinates, 
respectively.  
The mass point type forcefree control is expressed by 
 

f=rm $$  (36) 

 

where m  is the assigned mass of the mass point. By comparing (35) and (36), 
the mass point type forcefree control is achieved by 
 
M d= m  (37) 

 

0=Dd  (38) 

 

0=Kd  (39) 

 

After achieving the mass point type forcefree control by the impedance control, 
the forcefree control with assigned locus is accomplished in exactly the same 
way explained in section 3.2.2. 
Table 1 summarized the comparison of the forcefree control with independent 
compensation, the forcefree control with assigned locus and the impedance 
control. 
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 Forcefree control  
with independent 
compensation 

Forcefree control  
with assigned locus 

Impedance control 

Objective Free motion by 
external force 

Free motion by external 
force with assigned 
locus 

Desirable mechanical 
impedance 

Model Dynamics of indu-
strial articulated 
robot arm 

Dynamics of industrial 
articulated robot arm 

Mechanical 
impedance between 
tip arm and object 

Motion Passive motion aga-
inst external force 

Passive motion against 
external force 

Active motion to rea-
lize assigned force 

Rigidity Zero Zero Setting by virtual 
spring 

Inertia Setting by coefficient 
of inertia 

Setting by virtual mass Setting by virtual 
mass 

Friction Setting by coefficient 
of friction 

Setting by virtual 
friction  

Setting by virtual 
damper 

Gravity Setting by the 
coefficient of gravity 

Zero Compensation 

Target Industrial articu-
lated robot arm 

Industrial articulated 
robot arm 

Articulated robot arm

Coordinates Joint coordinates Cartesian coordinates Cartesian coordinates 

Locus 
following 

Impossible Possible Impossible 

Command Position Position Torque, Position 

 
 
 
 
 
 
 
 

 
Table 1. Comparison among forcefree control with independent compensation, forcefree 
control with assigned locus and impedance control 
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5. Applications of Forcefree Control 

5.1 Pull-Out Work 

Pull-out work means that the workpiece is pulled out by the push-rod, where 
the workpiece is held by the robot arm, and it is usually used in aluminum 
casting in industry. The operation follows the sequence, a) the hand of the 
robot arm grasps the workpiece, b) the workpiece is pushed out by the push-
rod, and c) the workpiece is released by the force from the push-rod. The 
motion of the robot arm requires flexibility in order to follow the pushed 
workpiece. 
Experimental results of pull-out work by the force-free control is shown in Fig. 
11. Fig. 11(a) and (b) show the torque monitor outputs of link 1 and link 2 
caused by the push-rod, respectively, (c) and (d) show the position of link 1 
and link 2, respectively, and Fig. 11(e) shows the locus of the tip of the robot 
arm. 
It guarantees the realization of pull-out work with industrial articulated robot 
arm based on the forcefree control. 
 

5.2 Direct Teaching 

In general, the industrial robot arms carry out operations based on teaching-
playback method. The teaching-playback method is separated into two parts, 
i.e., teaching part and playback part. In the teaching part, the robot arm is 
taught the data of operational positions and velocities. In the playback part, the 
robot arm carries out the operation according to the taught data. 
The teaching of industrial articulated robot arms is categorized into two 
methods, i.e., on-line teaching and off-line teaching. Off-line teaching requires 
another space for teaching. Therefore, on-line teaching is used for industrial 
articulated robot arms. On-line teaching is also categorized into remote 
teaching and direct teaching. Here, the remote teaching means that the 
teaching is carried out by use of a teach-pendant, i.e., a special equipment for 
teaching, and direct teaching means that the robot arm is moved by human 
direct force. 
Usually, the teaching of industrial articulated robot arms is carried out by 
remote teaching. Remote teaching by use of teach-pendant, however, requires 
human skill because there exists a difference between operator coordinates and 
robot arm coordinates. Besides, the operation method of teach-pendant is not 
unique, thus depends on the robot arm manufacturer. 
Direct teaching is useful for industrial articulated robot arms against remote 
teaching. The process of direct teaching is as follows; 1) the operator grasps the 
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tip of the robot arm, 2) the operator brings the tip of the robot arm to the 
teaching points by his hands, directly, and 3) teaching points are stored in 
memory. Operational velocities between teaching points are set after the 
position teaching process. In other words, anyone can easily carry out teaching. 
In direct teaching, operational positions of the industrial articulated robot arm 
are taught by human hands directly. The proposed forcefree control can be 
applied to realize the direct teaching of the industrial articulated robot arm. 
Forcefree control can realize non-gravity and non-friction motion of the 
industrial articulated robot arm under the given external force. In other words, 
an industrial articulated robot arm is actuated by human hands, directly. Here, 
position control of the tip of the robot arm is the important factor in direct 
teaching. Position control of the tip of the robot arm is carried out by the 
operator in direct teaching. 
Direct-teaching for teaching-playback type robot arms is an application of the 
forcefree control with independent compensation, where the robot arm is 
manually moved by the human operator's hand. Usually, teaching of industrial 
articulated robot arms is carried out by using operational equipment and 
smooth teaching can be achieved if direct-teaching is realized.  
Fig. 12 shows the experimental result of direct-teaching where the 

compensation coefficients are E=C f 0.5 , E=Cd , 0=Cg . As shown in Fig. 12, 

teaching was successfully done by the direct use of human hand. The forcefree 
control with independent compensation does not use the force sensors and any 
part of the robot arm can be used for motion of the robot arm. 
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Figure 11. Experimental result of pull-out work by using the forcefree control with 

independent compensation ( E=C f 0.2 , 0=C=C gd ) 
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Figure 12. Experimental result of direct teaching by using the forcefree control with 

independent compensation ( E=C f 0.5 , E=Cd , 0=Cg ) 
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5.3 Rehabilitation Robot 

The forcefree control with independent compensation uses the torque monitor 
in order to detect the external force. Hence, each joint can be monitored for 
unexpected torque deviation from the desired torque profile as a result of 
unplanned circumstances such as accidental contact with an object or human 
being. As a result, the forcefree control with independent compensation can 
also improve the safety of work with human operator. To utilize this feature, 
the forcefree control with independent compensation is applied to 
rehabilitation robots.  
The forcefree control with independent compensation is applied to the control 
of a meal assistance orthosis for disabled persons both of direct-teaching of 
plate position and mouth position and safety operation against unexpected 
human motion. 
If the forcefree control with independent compensation is installed in such 
systems, the safety will be improved because when the unexpected contact 
between the operator and the robot occurs, the escape motion of the robot arm 
can be invoked by the forcefree control method. 

6. Conclusions 

The proposed forcefree control realizes the passive motion of the robot arm 
according to the external force. Moreover, the forcefree control is extended to 
the forcefree control with independent compensation, the forcefree control 
with assigned locus and the position information based forcefree control. 
Experiments on an actual industrial robot arm were successfully carried out by 
the proposed methods. The comparison between the forcefree control and 
other force control is expressed and the features of the forcefree control are 
clarified. The proposed method requires no change in hardware of the robot 
arm and therefore is easily acceptable to many industrial applications. 
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