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Modelling of Parameter and Bound Estimation Laws for 
Adaptive-Robust Control of Mechanical Manipulators 

Using Variable Function Approach 

Recep Burkan 

1. Introduction 

Two different approaches have been actively studied to maintain performance 
in the presence of parametric uncertainties: adaptive control and robust con-
trol. The basic philosophy of adaptive controller is that incorporates some sort 
of parameter estimation and adaptive controller can learn from experiences in 
the sense that parameters are changed. Some of the adaptive control laws in-
troduced by Craig et al.(1987), Middleton&Goodwin (1988), Spong&Ortega 
(1990) require the acceleration measurements and/or the computation of the 
inverse of the inertia matrix containing estimated parameters. Later, 
Slotine&Li (1987, 1988) Spong et.al (1990), Egeland&Godhavn (1994) have de-
rived adaptive control algorithms without using the joint accelerations and the 
inverse of inertia matrix. Other adaptive control laws are proposed in refer-
ences (Carelli et al 1995, Kelly et al 1989, Burkan&Uzmay 2005, Burkan 2005, 
Burkan, 2006). Comparative studies of adaptive control laws are given in ref-
erences (Ortega&Spong 1989, Colbaugh at al 1996).
On the other hand, robust control has been successfully used to design control-
ler with disturbance, unmodelled dynamics and other sources of uncertainty. 
The papers about application these techniques for the background of robotic 
application are given in survey papers (Abdullah at al 1991, Sage at al 1999).  
Based on the approach of Corless-Leitmann (1981), Spong (1992) developed a 
new robust control law. In this approach (Spong 1992), the Leitmann (1981) or 
Corless-Leitmann (1981) approach was used to design a robust controller. Dif-
ferent extension of the scheme by Spong (1992) has been developed by 
Liu&Goldenberg (1996a, 1997), Yaz (1993), Candudas de Wit et al. (1996). An 
adaptive scheme of uncertainty bound is given in the papers (Koo&Kim 1994, 
Burkan and Uzmay 2003b, Burkan and Uzmay 2005). Similar algorithms have 
proposed by Dawson at. al. (1993) and Zenieh&Corless (1997). Comparative 
studies of robust controllers are given in the references (Liu & Goldenberg 
1996b, Jaritz & Spong (1996).

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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In pure adaptive control laws, parameters are updated in time and there is no 
additional control input. However, parameters are not adaptive and fixed (or 
adaptive) uncertainty bound is used as an additional control input in robust 
control laws. In the studies (Burkan, 2002; Uzmay & Burkan 2002, Burkan & 
Uzmay 2003 a, Burkan & Uzmay 2006) adapts previous results on both robust 
and adaptive control techniques for robot manipulators in an unified scheme, 
so an adaptive-robust control law is proposed. As distinct from previous stud-
ies, variable functions are used in derivation, and parameter and bound esti-
mation laws are updated using exponential and logarithmic functions depend-
ing on the robot link parameters and tracking error.

2. Adaptive Control Law   

In the absence of friction or other disturbances, the dynamic model of an n-link 
manipulator can be written as (Spong &Vidyasagar, 1989) 

=++ G(q)q)qC(q,qM(q)         (1) 

where q denotes generalised coordinates,  is the n-dimensional vector of ap-
plied torques (or forces), )q(M  is the nxn symmetric positive definite inertia 

matrix, q)qC(q,  is the n-dimensional vector of centripetal and Coriolis terms 

and G(q) is the n-dimensional vector of gravitational terms. Equation (1) can 
also be expressed in the following form. 

)q,qY(q,G(q)q)qC(q,qM(q) =++            (2) 

where  is a constant (px1) dimensional vector of inertia parameters and Y is 
an nxp matrix of known functions of the joint position, velocity and accelera-
tion. For any specific trajectory consider known the desired position, velocity 

and acceleration vectors qd, dq and dq  and measured the actual position and 

velocity errors  qqq~ d −= , and qqq~ d −= . Using the above information a cor-

rected desired velocity and acceleration vectors for nonlinearities and decoup-
ling effects are proposed as: 

q~qq dr Λ+= qdr
~qq Λ+=                                                     (3) 

where Λ is a positive definite matrix. Then the following control law is consid-
ered.

KG(q)q)qC(q,qM(q) +++= rr   (4) 
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where q~q~q-q r Λ+==σ  is a corrected velocity error and Kσ is the vector of  

PD action.
Suppose that the computational model has the same structure as that of the 
manipulator dynamic model, but its parameters are not known exactly. The 
control law (4) is then modified into  

K+ˆ)q,q,qY(q,=

K+Ĝ+q)q(q,Ĉ+q(q)M̂=

rr

rr

π

τ
                                              (5) 

where π̂  represents the available estimate on the parameters, and accordingly, 

M̂ , Ĉ , Ĝ  denote the estimated terms in the dynamic model. Substituting  (5) 
into (2) gives 

~)q,q,q-Y(q,G
~

-q)q(q,C
~

-q(q)M
~

-K)qC(q,M(q) rrrr ==+σ+                       (6) 

where πππ −= ˆ~  is the property of linearity in the parameter error. Error quan-
tities concerning system parameters are characterised by 

MM̂M
~

−= , CĈC
~

−= , GĜG
~

−=                                              (7) 

The Lyapunov function candidate is defined as

0~K~

2

1
q~Bq~

2

1
M(q)

2

1
)~,q~,V( TTT >++=σ                                  (8) 

where π is a p dimensional vector containing the unknown manipulators and 
load parameters, ˆ  is its estimate and ˆ~ −=  denotes the parameter estima-

tion error vector. B and πK are positive definite, usually diagonal matrix. Us-

ing the property 0)]q,q(C2-)q(M[T =σσ nR∈∀σ  and choosing K2B Λ= , the 

time derivative of V along the trajectory of system (6) is 

))q,q,q(q,Y-~(K~q~Kq~-q~Kq~-V rr

TTTT π+=                          (9) 

If the estimate of the parameter vector is updated as the adaptive law 

)q,q,q(q,YKˆ
rr

T-1=π                                                      (10) 

Equation (9) becomes 

q~Kq~-q~Kq~-V TT=                                                         (11) 



442       Industrial Robotics: Theory, Modelling and Control  

So,
.

V is negative semidefinite and Equation (6) is stable. It should be noted 

that ~ˆ = ( π  is constant) (Sciavicco & Siciliano, 1996). The parameter estima-
tion law (10) can also be written as 

)0(ˆdt)q,q,q(q,YKˆ
rr

T-1 ππ +=                                                  (12)

where )0(π̂  is the initial estimation of the parameters. The resulting block dia-

gram of the adaptive control law is given in Fig. 1 (Sciavicco & Sciliano, 1996) 

Figure 1. Implementation of the adaptive control law (10) (Sciavicco & Siciliano, 1996). 

3. Robust Control Law 

Consider the nominal control vector for the model system described by Equa-
tions (1) and (2). 

K)q,q,qY(q,

K(q)Gq)q(q,Cq(q)M

0rr

0r0r00

−=

−++=
                                  (13) 

The definition of the nominal control law τ0 is based on the adaptive algorithm 
of Slotine and Li (1987). It is important to understand that the nominal control 

vector τ0  in Equation (13) is defined in terms of fixed parameters which are 
not changed or updated in time as would be an adaptive control strategy. The 

control input τ can be defined in terms of the nominal control vector τ0 and a 
compensation vector for parameter variations as:

K-u(t)))(q,q,qY(q,)u(t)q,q,qY(q, 0rrrr0 +=+=                            (14) 
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where

dqqq −=~ ; q~qq dr Λ−= ; q~qq dr Λ−=                                             (15) 

It is supposed that the parameter estimation vector π is uncertain and it is as-

sumed that both π0 εRp and εR are known a priori, such that 

-~
0 ≤=                                     (16) 

Let ε>0 and the additional control vector as defined by Spong (1992) as: 

≤−

>−

=

Yif
Y

Yif
Y

Y

u(t)

T
T

T

T

T

                                                (17) 

Considering adaptive control law (Sciavicco & Siciliano, 1996), the block dia-
gram of the pure robust controller is given in Fig. 2. 

Figure 2  Block diagram of the robust control law. (Burkan &Uzmay, 2003 c) 

Since the controller which is defined by Equation (17) consists of two different 

input depending on ε, the matrices A and A’ are introduced to select appropri-
ate control input. The A matrix is diagonal with ones and zeros on the diago-

nal. When 0TY > ,−  a one is present in A, a zero is present in A’ and the 

first additional control input is in effect. When 0TY − ≤   a zero is present 

in A, a one is present in A’, and so the second additional control input is in ef-
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fect. Hence, the matrices A and A’ are simple switches which set the mode of 
additional control input to be used (Burkan & Uzmay, 2003 c). 
As a measure of parameter uncertainty on which the additional control input 
is based,  can be defined as  

1/2
p

1i

2

i=
=

                                                                 (18) 

Having a single number  to measure the parametric uncertainty may lead to 
overly conservative design, higher than necessary gains, ect. For this reason 
we may be interested in assigning different “weights” or gains to the compo-
nents of τ . We can do this as follows. Suppose that we have a measure of un-

certainty for each parameter i
~π  separately as: 

ii
~ ≤                    i=1,2,..,p                                                      (19) 

Let i denote the ith component of the vector TY , i =i=1,2....pi represent the 

ith component of ε, and define the ith component of the control input i  as 

(Spong, 1992), then 

ε≤υυερ−

ε>υυυρ−
=

iiiii

iiiii

i
if)/(

if/
)t(u            (20)   

4. Adaptive-Robust Control Law    

Considering the dynamic model of a n-link robot manipulator given by Equa-
tions (1) and (2), the control input vector that comprises the parameter estima-
tion and the additional control input is defined as 

K+(t))+ˆ)(q,q,qY(q,= rr π                                                 (21) 

Substituting (21) into (1) and some arrangements yield 

(t))q,q,qY(q,~)q,q,qY(q,K)qC(q,M(q) rrrr δ−π−=+σ+σ                      (22)  

Adaptive robust parameters are identical as adaptive control law in the known 
parameter case such as , qr,  and K. It is assumed that the parameter error is 
unknown such that 

(t)=π−π=π ˆ~                                                                 (23) 
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where ˆ  is the estimate of the available parameters and updated in time. The 

upper bounding function (t)ˆ is assumed to be unknown, and should be de-

termined using the estimation law to control the system properly. Finally the 

error (t)  shows the difference between parameter error and upper bounding 

function as 

(t)(t)-(t)(t) ρ−π−π=ρ= ˆˆˆ~                                         (24) 

Theorem (Burkan & Uzmay, 2003 a):

Let >0 be a positive number, π be the unloaded and lower bound of parame-

ter,  and ρ be the upper uncertainty bound of Equation (16). The three of them 
are supposed to be known initially. If the estimate of parameter ˆ  and the ad-
ditional control input (t) in control law (21) are defined, respectively as

+)q,q,q(q,Ye
2

-=ˆ
rr

Tt- ;
t

2(t) eδ ρ
−

= (25)

and substitute them in the control input (21) for the trajectory control of the 

model manipulator, then the tracking errors q~  and q~  will converge to zero. 

Proof:
By taking into account above parameters and control algorithm, the Lyapunov 
function candidate is defined as 

(t)~(t)~

2

1
q~Bq~

2

1
M(q)

2

1
(t))~,q~,V( TTT Γ++=σ                                     (26) 

Apart from similar studies, Γ is the positive definite diagonal matrix and 
change in time. The time derivative of Equation (26) is written as 

)t(q~(t)~(t)~(t)~

2

1
q~Bq~(q)M

2

1
M(q)V

TTTTT
.

Γ+Γ+++σ=                      (27) 

where

(t)ˆ--ˆ(t)ˆ-(t)(t)~ ==  ; (t)ˆˆ(t)ˆ(t)(t)~ −=−ρ=                        (28) 

Let K2B Λ=  and use the property 0)]q2C(q,-(q)M[T =σσ , nRσ∀ ∈ , the time 

derivative of V along the system (22) is 

)t(q~(t)~(t)~(t)~

2

1
(t)Y(t)Yq~Kq~-q~Kq~-V TTTTTT

.

Γ+Γ+ρ−δ−=          (29) 
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Since K>0, and Λ>0 the first terms of Equation (29) are less or equal to zero 
that is:

0q~Kq~-q~Kq~- TT ≤                                                          (30) 

So, in order to find conditions to make 0V
.

≤  we concentrate on the remaining 
terms of the equation. If the rest of Equation (29) is equal to or less than zero, 
the system will be stable. Substituting Equation (24) into the remaining terms 
of Equation (29) the following equation is obtained:  

0])t(ˆ(t)[(t)]ˆ(t)[(t)]ˆ(t)[(t)]ˆ(t)[
2

1
(t)Y(t)Y- T

.
TTT =ρ−Γ−ρ+−ρΓ−ρ+ρ−δ   (31) 

Now, in considering δ (t) as an estimated term of uncertainty bound, that is, 
δ (t)=- )t(ρ̂  then Equation (31) is written as:

0])(ˆ(t)[(t)]ˆ(t)[(t)]ˆ(t)[(t)]ˆ(t)[
2

1
(t)Y(t)ˆY T

.
TTT =−Γ−+−Γ−+− tρρρρρ    (32) 

Taken (t)]ˆ(t)[ −ρ  as a common multiplier, Equation (32) is written as: 

0])t(ˆ(t)[(t))ˆ(t)[
2

1
Y[(t)]ˆ(t)[(

.
TT =ρ−Γ+−ρΓ+−−ρ                            (33) 

Hence, we look for the conditions for which the equation 

0])t(ˆ(t)[(t))ˆ(t)[
2

1
Y

.
T =ρ−Γ+−ρΓ+−  is satisfied. The terms constituting the 

above equation are expressed as

(t)(t)(t) ˆ~
-= ; π−π==π ˆ~ (t) ;

.

π̂=(t)
.

; )t(ˆˆ)t(ˆ)t()t(~ ρ−π=ρ−ρ=ρ    (34)  

Substituting the parameters in Equation (34) into Equation (33) yields 

0])t(ˆˆ[(t)]ˆˆ[
2

1
YT =ρ−πΓ+−−Γ+−                                                (35) 

Then

0])t(ˆ(t)ˆ
2

1
[ˆ)ˆ(

2

1
Y

..
T =ρΓ+Γ−πΓ+−Γ+−                                           (36) 
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A solution for Equation (36) can be derived if it is divided into two equations 
as:

0ˆ)ˆ(
2

1
YT =πΓ+−Γ+−               (37) 

0))t(ˆ(t)ˆ
2

1
( =ρΓ+Γ−                      (38) 

Equation (37) can also be written as; 

σ=πΓ+−Γ )q,q,q(q,Yˆ)ˆ(
2

1
rr

T                                            (39) 

For the proposed approach, and its time derivative are chosen as a positive 
definite diagonal matrix of the form

Ie,Ie tt =Γ=Γ                                                       (40) 

where I is a pxp dimensional matrix. Substitution of Equation (40) into Equa-
tion (39) yields; 

σ=−+π )q,q,q(q,Y)ˆ(e
2

1
ˆe rr

Ttt                                            (41) 

Dividing Equation (41) by the factor 
t

2e result in the following expression. 

e
2

1
)q,q,q(q,Yeˆe

2

1
ˆe

t
2

rr

T
t

2
t

2
t

2 +σ=+π
−

                                  (42) 

Equation (42) can be arranged as

e
2

1
)q,q,q(q,Ye)ˆ(e

dt

d t
2

rr

T
t

2
-t

2 +σ=                                           (43) 

For a given instant, YT and  can be assumed to be constant. Integrating both 
sides of Equation (43) yields; 

Ce)q,q,q(q,Ye
2

-dt)e
2

1
)q,q,q(q,Ye()ˆ(e

t
2

rr

T
t

2
-t

2
rr

T
t

2
-t

2 ++σ=+σ=     (44) 
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If Equation (44) is divided by 
t
2e

α

, the result is 

t
2

1

rr

Tt- Ce)q,q,q(q,Ye
2

-ˆ
α

α +π+σ
α

=π                                       (45) 

If the initial condition is π̂ (0)= , the constant C becomes zero. So, the parame-
ter adaptation algorithm is derived as

π+σ
α

=π α )q,q,q(q,Ye
2

-ˆ
rr

Tt-                                                 (46)    

Adaptive parameter estimation law is obtained as a solution of Equation (37). 

As a result of Equation (38), robust parameter estimation law (t)ˆ  can be also 

obtained. Substitution of Equation (40) into Equation (38) yields; 

0(t))ˆe
2

1
(t)ˆ(e- tt =ρ+ρ                                          (47) 

By dividing Equation (47) by the factor 
t

2e , the following expression is found. 

0(t))ˆe
2

1
(t)ˆ(e-

t
2

t
2 =ρ+ρ                                             (48) 

If Equation (48) is arranged according to (t)ˆ

0(t)))ˆ((e
dt

d t
2 =ρ−                                                   (49) 

Integrating both sides of Equation (49) yields 

t
2

t
2 Ce(t))ˆ(C(t))ˆ(e-

−

=ρ−=ρ                                          (50) 

If )0(ˆ =  is taken as an initial condition, the constant C is equivalent to . So, 

the robust parameter estimation algorithm is derived as

t
2e(t)ˆ

−

ρ−=ρ    (51) 

Since )t(ˆ)t( ρδ −= , the control vector can be written as 
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σ+ρ++σ−=τ
−

− K)]e)q,q,q(q,Ye
2

)[q,q,qY(q,
t

2
rr

Tt

rr                      (52) 

The block diagram of adaptive-robust control law is shown in Fig. 3.

Figure 3. Block diagram of the adaptive-robust control law (52) (Burkan & Uzmay, 
2003a) 

If Equation (46) and (51) are substituted in Equation (29) it will become a nega-
tive semidefinite function of the form of Equation (30). So, the system (22) will 
be stable under the conditions assumed in the theorem.

At this point, it is very important to choose the variable function Γ in order to 
solve the Equations (38) and (39), and there is no a certain rule for selection of 

Γ for this systems. We use system state parameters and mathematical insight 

to search for appropriate function of Γ as a solution of the first order differen-
tial in Equations (38) and (39). For the second derivation, we choose variable 

function Γ and its derivative such that  (Uzmay & Burkan, 2002). 

dtYTdtY TT

eY;e σ=Γ=Γ                                           (53) 

where  is a pxp dimensional identity matrix. Substitution of (53) into (39) 
yields

σ=−σ+π TdtYTdtY

Y)ˆ(eY
2

1
ˆe

TT

                                    (54) 

Remembering that π=π ˆ~  ( π  is constant).  Dividing Equation (54) by 
dtYT

e

yields
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Y
2

1
YeˆY

2

1
ˆ TTdtYT

T

+=+π
−

                                           (55) 

Multiplying Equation (55) by the factor 
dtY

2

1 T

e  results 

eY
2

1
YeeˆeY

2

1
ˆe

dtY
2

1

TTdttYdtY
2

1
dtY

2

1

T
dtY

2

1 TTTTT

σ+σ=σ+π
−

            (56) 

Equation (56) can be arranged as

πσ+σ=π
− dtY

2

1

TT
dtY

2

1
dtY

2

1 TTT

eY
2

1
Ye)ˆ(e

dt

d
                                      (57) 

Integrating both sides of Equation (57) yields 

dteY
2

1
dtYeˆe

dtY
2

1

TT
dtY

2

1
dtY

2

1 TTT

σπ+=π
−

      (58) 

Cee2ˆe
dtY

2

1
dtY

2

1
dtY

2

1 TTT

+π+−=π
−

                    (59) 

By dividing both sides of Equation (59) by 
dtY

2

1 T

e ,  the following result is ob-
tained.

dtY
2

1
dtY

TT

Cee2ˆ +π+−=π
−−

                            (60) 

If the condition of π̂ (0)=  is taken as an initial condition, the constant C is 
equivalent to 2. Hence, the parameter adaptation law is derived as  

π+−=+π+−=
−−−−

)ee(22ee2ˆ
dtYdtY

2

1
dtY

2

1
dtY TTTT

          (61) 

In order to drive )t(ρ̂ , Equation (53) is substituted into (38) yields 

0)t(ˆeY
2

1
)t(ˆe

dtYT
dtY

2

1
TT

=ρσ+ρ−
−

                                          (62) 

By dividing 
dtY

2

1 T

e Equation (62), the following expression is found 
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0))t(ˆeY
2

1
)t(ˆe(

dtY
2

1

T
dtY

2

1 TT

=ρσ+ρ−                                                     (63) 

Equation (63) is arranged according to

0)t(ˆe(
dt

d dtY
2

1 T

=ρ−                                                              (64) 

Integrate both side of Equation (64) yields 

C)t(ˆe(
dtY

2

1 T

−=ρ                                                               (65) 

Then

dtY
2

1 T

eC)t(ˆ −=ρ
−

                                                            (66) 

If ρ=ρ )0(ˆ  is taken as an initial condition, the constant C will be equivalent to 

. Hence the bound estimation law is derived as 

dtY
2

1 T

e)t(ˆ ρ−=ρ
−

                                                         (67) 

As a result, the adaptive-robust control law is obtained as (Uzmay & Burkan, 
2002).

σ+ρ+π+−=τ
−−−

K)]e)ee(2)[q,q,qY(q,
dtY

2

1
dtYdtY

2

1

rr

TTT

                               (68) 

The block diagram of adaptive-robust control law is shown in Fig. 4.

Figure 4. Block diagram of the adaptive-robust control law (68)
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Theorem 2: (Burkan & Uzmay, 2006):

Let ∈R+, ≥α 0dt)Y( i

T , i=1,2……p, ρi i=1,2……p be the initial estimation of 

the upper bounding function )t(ρ̂  and it is assumed to be known initially. If 

the estimation of parameter ˆ , estimation of the upper bounding function  

)t(ρ̂  and the additional control input (t) are defined respectively as  

π

π

π

+

+

+α

+

+α

+

+α

α=π

p

2

1

p
T

p
T

2
T

2
T

1
T

1
T

......

1dt)Y(

)1dt)Yln((

.....

1dt)Y(

1)dt)Yln((

1dt)Y(

)1dt)Yln((

)/1(ˆ ;

+

+

+

−=

1dt)(

......

1dt)(

1dt)(

)(ˆ

p
T

2
T

2

1
T

1

Y

Y

Y

t

pρ

ρ

ρ

ρ ;

+

ρ

+

ρ

+

ρ

=δ

1dt)Y(

......

1dt)Y(

1dt)Y(

)t(

p
T

p

2
T

2

1
T

1

(69)

where )(ˆ)( tt ρδ −= . Substitute ˆ  and (t) into the control input (21) for the tra-

jectory control of the model manipulator, then the tracking errors q~  and q~

will converge to zero. 
Proof:
In the previous approaches, it is difficult to derive another parameter and 
bound estimation law because selection of appropriate variable function  and 
solution of the differential equation are not simple. However, the selection of 
the  and solution of the differential equation are simplified in the studies 
(Burkan 2005, Burkan & Uzmay, 2006) In order to simplify selection of the 
variable function  and simplify the solution of the differential equation, the 
following  Lyapunov function is developed (Burkan & Uzmay, 2006). 

(t)~(t)~

2

1
q~Bq~

2

1
M(q)

2

1
(t))~,q~,V( 2TTT Γ++=σ                                 (70) 

where is a pxp dimensional diagonal matrix and change in time. The time 
derivative of Equation (70) is written as 

(t)~(t)~(t)~(t)~q~Bq~(q)M
2

1
M(q)V 2TTTTT ++++=                      (71)  

Let K2B Λ=  and use the property 0)]q2C(q,-(q)M[T =σσ , nRσ∀ ∈ , the time 

derivative of V along the system (22) is determined as 
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)(p~(t)~(t)~(t)~(t)Y(t)Yq~Kq~-q~Kq~-V 2TTTTTT tΓ+ΓΓ+−−= ρδ      (72) 

Substituting Equation (24) into Equation (72) yields the following equation. 

0])t(ˆ)t([(t)]ˆ(t)[(t)]ˆ(t)[(t)]ˆ(t)[(t)Y(t)Y- 2TTTT =ρ−ρΓ−ρ+−ρΓΓ−ρ+ρ−δ  (73) 

Now, let’s consider δ (t)=- )t(ρ̂ , then Equation (73) is written as:

0])t(ˆ)t([(t)]ˆ(t)[(t)]ˆ(t)[(t)]ˆ(t)[(t)Y(t)ˆY 2TTTT =ρ−ρΓ−ρ+−ρΓΓ−ρ+ρ−   (74) 

Taking (t)]ˆ(t)[ −ρ  as a common multiplier, Equation (74) is arranged as: 

0))]t(ˆ)t(((t))ˆ(t)(Y[(t)]ˆ(t)[( 2TT =ρ−ρΓ+−ρΓΓ+−−ρ                            (75) 

Substituting the parameters in Equation (34) into (75) yields 

0])t(ˆˆ[(t)]ˆˆ[Y 2T =ρ−πΓ+−−ΓΓ+−                                                (76) 

Then

0]ˆ(t)ˆ[ˆ)ˆ(Y 22T =+−+−+−                                           (77) 

A a result, two different equations can be obtained from Equation (77) as fol-
lows.

0ˆ)ˆ(Y 2T =πΓ+−ΓΓ+−                                                    (78)  

0))t(ˆ(t)ˆ( 2 =ρΓ+ΓΓ−                                    (79) 

Equation (79) can also be written as 

Yˆˆ T1 Γ+Γ=Γ+Γ −ππ                                                   (80) 

since π=π ˆ~  ( π  is a constant). Equation (80) is arranged as 

Y)ˆ(
dt

d T1 Γ+Γ=Γ −                                              (81) 

Integration both sides of Equation (81) yields 

dtdtYˆ T1 Γ+Γ=Γ −                                                  (82) 

Then, Equation (82) is arranged as
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CdtYˆ T1 +Γ+Γ=Γ −                                             (83) 

In Equation (83), π̂  and  are unknown and in order to derive π̂ ,  must be de-

fined. There is no a certain rule for definition of Γ for this systems. We use sys-
tem state parameters and mathematical insight to search for appropriate func-

tion of Γ as a derivation of the π̂ . For the third derivation, we choose Γ and Γ-1,
such that  (Burkan & Uzmay, 2006). 
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where  and -1 are pxp dimensional diagonal matrices. Substitution of Equa-
tion (84) into Equation (83) yields 
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After integration, the result is 



Modelling of Parameter and Bound Estimation Laws …………….. 455 
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Multiplying both sides of Equation (86) by -1 and taken initial condition as 
π̂ (0)= , the constant C will be equivalent to zero. Hence, the parameter adap-
tation law is derived as 

π

π

π

+

+
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+
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+
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             (87) 

Adaptive parameter estimation law is obtained as a solution of Equation (83). 
As a result of Equation (78), robust parameter estimation law (t)ˆ  can be also 

obtained. Equation (78) is arranged as 

0(t))ˆ(t)ˆ( =+−                                     (88) 

If Equation (88) is arranged according to (t)ˆ

0(t))ˆ
dt

d
(- =Γρ                                                     (89) 

Integrating both sides of Equation (89) yields 

C(t)ˆC(t))ˆ(- 1−Γ−==                                               (90) 
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If )0(ˆ =  is taken as an initial condition as would be defined in Equation (90), 

the constant C will be equivalent to . So, the robust parameter estimation al-

gorithm is derived as

+

ρ

+

ρ

+

ρ

−=ρΓ−= −

1dt)Y(
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1dt)Y(

1dt)Y(
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1                                                                 (91) 

Since )t(ˆ)t( ρδ −= , the control vector in Equation (21) can be written as 
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The resulting block diagram of the proposed adaptive-robust control law is 
given in Fig. 5. 

Figure 5. Implementation of the adaptive-robust control law (92) (Burkan & Uzmay, 
2006).
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For the fourth derivation, Γ and Γ-1 are chosen such that 
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After integration, the result is 
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Multiplying both sides of Equation (95) by -1 and taken initial condition as 
π̂ (0)= , the constant C will be equivalent to zero. Hence, the parameter adap-
tation law is derived as
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If )0(ˆ =  is taken as an initial condition as would be defined in Equation (90), 

the constant C will be equivalent to . So, the upper bounding function is de-

rived as
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As a result, the fourth adaptive-robust control law is derived as
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 The resulting block diagram of the proposed adaptive-robust control law is 
given in Fig. 6. 

Figure 6. Implementation of the adaptive-robust control law (98)  
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5. Dynamic Model and Parametric Uncertainties 

As an illustrations, a two-link robot arm manipulators shown in Fig. 7. The ro-
bot link parameters are  

π1=m11c12+m2l12+I1 2= m2lc22+I2 3=m2l1lc2

(99)

4=m1lc1 5=m2l1 6=m2lc2    

Figure 7. Two-link planar robot (Spong, 1992) 

With this parameterization, the dynamic model in Equation (1) can be written 
as

)q,qY(q, =                                                                  (100) 

The component yij of )q,qY(q,  are given as 

111 qy = ; 2112 qqy += ;

)qq2q)(sin(q)qq)(2cos(qy 21

2

2221213 +−+= ;

y14= gccos(q1);
y15= gccos(q1);
y16= gccos(q1+q2) ;

(101)
y21=0;

2122 qqy +=  ;

)q)(sin(qq)cos(qy
2

121223 +=  ;

y24=0 ;

x

y

l2

l1

lc2

lc1

m2, I2

m1, I1

q1

q2
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y25=0 ;
y26= gccos(q1+q2).                                 

)q,q,qY(q, rr  has the component

r111 qy =  ; 

2rr112 qqy +=  ;

)qqqqqq)(sin(q)qq)(2cos(qy r22r212r122rr1213 ++−+= ;

y14=gccos(q1);
y15= gccos(q1) ;
 y16= gccos(q1+q2)

(102)
y21=0;

2rr122 qqy += ;

)qq)(sin(qq)cos(qy r112r1223 += ;

y24=0 ;
y25=0  ;
y26= gccos(q1+q2).

For illustrated purposes, let us assume that the parameters of the unloaded 
manipulator are known and the chosen values of the link parameters are given 
by Table 1. Using these values in Table 1, the ith component of  obtained by 
means of Equation (99) are given in Table 2. These parametric values also 
show lower and unloaded robot parameters.

    m1      m2     l1       l2        lc1      lc2        I1       I2

    10       5     1       1        0.5     0.5    10/12     5/12 

Table 1. Parameters of the unloaded arm (Spong, 1992) 

1           2 3        4         5           6

    8.33      1.67        2.5        5         5          2.5 

Table 2. i for the unloaded arm (Spong, 1992) 

If an unknown load carried by the robot is regarded as part of the second link, 
then the parameters m2, lc2, and I2 will change m2+ m2, lc2+ lc2 and I2+ I2, re-
spectively. A controller will be designed that provides robustness in the inter-
vals
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10m0 2 ≤≤  ; 0.5l0 c2 ≤≤ ;
12

15
I0 2 ≤≤         (103)   

π0 is chosen as a vector of nominal parameters and it also has the loaded arm 
parameters and their upper bounds. The computed values for ith component 
of 0 are given in Table 3.

π01 π02 π03 π04 π05 π06

13.33 8.96 8.75 5 10 8.75 

Table 3. Nominal parameter vector 0 (Spong, 1992) 

With this choice of nominal parameter vector π0 and uncertainty range given 

by (103), it is an easy matter to calculate the uncertainty bound ρ as follows: 

=

≤π−π=π
6

1i

2

i0i

2 26.181)(~                                              (104) 

and thus 46.1326.181 ==ρ . Since extended algorithm (20) is used, the uncer-

tainty bounds for each parameter separately are shown in Table 4. The uncer-

tainty bounds ρi  in Table 4 are simply the difference between values given in 
Table 3 and Table 2 and that the value of  is the Euclidean norm of the vector 
with components i  (Spong, 1992).

1          2         3       4        5 6

        5     7.29       6. 25        0         5          6.25 

Table 4.  Uncertainty bound (Spong, 1992) 

7. Conclusion 

In the studies (Burkan, 2002; Uzmay & Burkan 2002, Burkan & Uzmay 2003 a), 
it is very difficult to use different variable functions for other derivation, and 
derivation of parameter and bound estimation laws are also not simple. How-
ever, in the recent studies (Burkan, 2005; Burkan & Uzmay 2006), first of all, a 
new method is developed in order to derive new parameter and bound esti-
mation laws based on the Lyapunov function that guarantees stability of the 
uncertain system and the studies (Burkan, 2002; Uzmay&Burkan, 2002; Bur-
kan&Uzmay, 2003a) provides basis of this study. In this new method, deriva-
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tion of the parameter and bound estimation laws are simplified and it is not 
only possible to derive a single parameter and bound estimation laws, but also 
it is possible to derive various parameters and bound estimation laws using 
variable functions. 
Parameters and bound estimation laws can be derived depending the variable 

function Γ, and if another appropriate variable function Γ is chosen, it will be 
possible to derive other adaptive-robust control laws. In derivation, other inte-
gration techniques are also possible to use in derivation for the new parameter 
and bound estimation laws. 

π̂  and )(ˆ tρ  are error-derived estimation rules act as a compensators, that is, 

estimates the most appropriate parameters  and upper bounding function to 
reduce tracking error. The aim of this approach is to solve for finding a control 
law that ensures limited tracking error, and not to determine the actual pa-
rameters and upper bounding function.  π̂  is considered as an adaptive com-

pensator, )(ˆ tρ  is implemented as a robust controller and both of them are em-

ployed during the control process. This has the advantages that the employed 
adaptive controller increases the learning, while the employed robust control-
ler offers the ability to reject disturbance and ensures desired transient behav-
iour. This improvement is achieved by computation of the upper bounding 
function.

8. References 

Abdullah, C.; Dawson, D.; Dorato, P & Jamshidi, M. (1991) Survey of robot 
control for rigid robots, IEEE Control System Magazine, Vol 11, No. 2, 24-
30, ISSN: 1066-033X 

Burkan, R. (2002). New approaches in controlling robot manipulators with pa-
rametric uncertainty, Ph.D. Thesis, Erciyes University, Institute of Science, 
Turkey.

Burkan R, Uzmay . (2005). A model of parameter adaptive law with time 
varying function for robot control, Applied Mathematical Modelling, Vol. 29, 
361-371, ISSN: 0307-904X

Burkan, R. (2005).  Design of an adaptive control law using trigonometric func-
tions for robot manipulators, Robotica, Vol.23, 93-99, ISSN:0263-5747. 

Burkan, R. & Uzmay, . (2003 a). Variable upper bounding approach for adap-
tive- robust control in robot control, Journal of Intelligent & Robotic Systems,
Vol.37, No.4, 427-442, ISSN:0921-0296. 

Burkan, R. & Uzmay, . (2003 b). Upper bounding estimation for robustness to 
the parameter uncertainty in trajectory control of robot arm, Robotics and 
Autonomous Systems, Vol.45, 99-110, ISSN: 0921-8890 

Burkan, R. & Uzmay, . (2003 c). A Comparison of Different Control Laws in 
Trajectory Control for a Revolute-Jointed Manipulator, Turkish Journal of 



464       Industrial Robotics: Theory, Modelling and Control  

Engineering and Environmental Sciences, Vol.27, No.5, 315-331, ISSN:1300-
0160.

Burkan, R & Uzmay, . (2005). Logarithmic Based Robust Approach To Para-
metric Uncertainty For Control of Robot Manipulators, International Jour-
nal of Robust and Nonlinear Control, Vol.15, 427-436, ISSN: 1049-8923. 

Burkan, R. (2006). Modelling of a logarithmic parameter adaptation law for 
adaptive control of mechanical manipulators, Robotica, Vol. 24, No.4, 523-
525, ISSN: 0263-5747 

Burkan, R. & Uzmay, . (2006), Application of logarithmic–based parameter 
and upper bounding estimation rules to adaptive- robust control of robot 
manipulators, European Journal of Control, Vol. 12, No.2, 156-170, ISSN: 
0947-3580.

Canudas De Wit, C.; Siciliano, B. & Bastin, G. (1996). Theory of Robot Control, 
ISBN:3-540-76054-7, Springer, London

Carelli, C.; Camacho, E. F. & Patino, D. (1995). A neural-network-based feed-
forward adaptive controller for robots, IEEE Transactions on Systems and 
Cybernetics, Vol.2, 1281-1288, ISSN: 1083-4427. 

Colbaugh, R.; Glass, K. & Seraji, H. (1996). Adaptive tracking control of ma-
nipulators: Theory and experiments,  Robotics & Computer-Integrated 
Manufacturing, Vol.12, No.3, 209-216, ISSN: 0736-5845 

Corless, M. & Leitmann, G. (1981). Continuous feedback guaranteeing uniform 
ultimate boundedness for uncertain dynamic systems, IEEE Transactions 
Automatic Control, Vol.26, 1139-1144, ISSN: 0018-9286. 

Craig, J. J.; Hsu, P. & Sastry, S. S. (1987). Adaptive control of robot manipula-
tor, The International Journal of Robotics Research, Vol.6, 16-28, ISSN: 0278-
3649

Dawson, D. M.; Qu, Z. & Duffie, J. (1993). Robust tracking control of robot 
manipulators: Theory, simulation and implementation, Robotica, Vol.11,

201-208, ISSN:0263-5747 
Egeland, O. & Godhavn, J. M. (1994). A note on Lyapunov stability for adap-

tive robot control, IEEE Transactions on Automatic Control, Vol.39, No.8, 
1671-1673, ISSN: 0018-9286 

Jaritz,  A. & Spong, M. W. (1996). An experimental comparison of robust con-
trol algorithms on a direct drive manipulators, IEEE Transactions on Con-
trol Systems Technology, Vol.14, No.6, 627-640, ISSN: 1063-6536 

Koo, K. M. & Kim, J. H. (1994). Robust control of robot manipulators with pa-
rametric uncertainty, IEEE Transactions Automatic  Control, Vol. 39, No.(6, 
1230-1233. ISSN: 0018-9286 



Modelling of Parameter and Bound Estimation Laws …………….. 465 

Kelly, R.; Carelli, R. & Ortega, R. (1989). Adaptive motion control design of ro-
bot manipulators: an input output approach, International Journal of Con-
trol, Vol.50, No.6, 2563-2581. ISSN: 0020-7179 

Leitmann, G. (1981). On the efficiency of nonlinear control in uncertain linear 
system, Journal of Dynamic Systems Measurement and  Control, Vol.102, 95-
102, ISSN:0022-0434. 

Liu, G. & Goldenberg, A. A. (1996a). Uncertainty decomposition-based robust 
control of robot manipulators, IEEE Transactions on Control Systems Tech-
nology, Vol.4, 384-393, ISSN: 1063-6536. 

Liu, G. & Goldenberg, A. A. (1996b). Comparative study of robust saturation-
based control of robot manipulators: Analysis and experiments, Interna-
tional journal of Robotics Research, Vol.15, 474-491, ISSN: 0278-3649. 

Liu, G. & Goldenberg, A. A. (1997). Robust control of robot manipulators 
based on dynamics decomposition, IEEE Transactions on Robotics and 
Automation, Vol.13, 783-789, ISSN: 1552-3098. 

Middleton,  R. H. & Goodwin, G. C. (1988). Adaptive computed torque control 
for rigid link  manipulators, System Control Letters, Vol.10, 9-16,
ISSN:0167-6911.

Ortega, R. & Spong, M. W. (1989). Adaptive motion control of rigid robots: A 
tutorial. Automatica, Vol.23, No.6, 877-888, ISSN: 0005-1098. 

Sage, H. G.; De Mathelin, M. F. & Ostretag, E. (1999). Robust control of robot 
manipulators: A survey, International Journal of Control, Vol.72, No.16, 
1498-1522, ISSN: 0020-7179 

Sciavicco, L. &  Siciliano, B. (1996). Modelling and Control of Robot Manipulators,
The McGraw-Hill Companies, ISBN:0-07-057217-8, New York. 

Spong, M. W. & Ortega, R. (1990). On adaptive inverse dynamics control of 
rigid robots, IEEE Transactions on Automatic Control, Vol.35, No.1, 92-95, 
ISSN: 0018-9286. 

Spong, M. W. & Vidyasagar, M. (1989). Robot Dynamics and Control, Willey, 
New York, 1989, ISBN:0-471-50352-5. 

Slotine, J. J. & Li, W.(1987). On the adaptive control of robotic manipulator,  
The International Journal of Robotics Research, Vol.6, No.3, 49-59,ISSN:0278-
3649.

Slotine, J. J. & Li, W. (1988). Adaptive manipulator control: A case study, IEEE
Transactions on Automatic Control, Vol.33, No.11, 994-1003, ISSN: 0018-
9286.

Spong, M. W; Ortega, R & Kelley, R. (1990). Comment on adaptive manipula-
tor control: A case study, IEEE Transactions on Automatic Control, Vol.35, 
No.6, 761-762, ISSN: 0018-9286. 

Spong, M. W. (1992). On the robust control of robot manipulators, IEEE Trans-
actions on Automatic Control, Vol.37, 1782-1786, ISSN: 0018-9286. 



466       Industrial Robotics: Theory, Modelling and Control  

Uzmay, . & Burkan, R. (2002). Parameter estimation and upper bounding ad-
aptation in adaptive-robust control approaches for trajectory control of 
robots, Robotica, Vol.20, 653-660, ISSN: 0263-5747 

Yaz, E.( 1993). Comments on the robust control of robot manipulators, IEEE
Transactions on Automatic Control, Vol.38, No.38, 511-512, ISSN: 0018-9286. 

Zenieh, M. & Corless, M. A. (1997). A simple robust r-α tracking controllers for 
uncertain fully-actuated mechanical systems, Journal of Dynamics Systems, 
Measurement and Control, Vol.119, 821-825, ISSN:0022-0434.



Industrial Robotics: Theory, Modelling and Control

Edited by Sam Cubero

ISBN 3-86611-285-8

Hard cover, 964 pages

Publisher Pro Literatur Verlag, Germany / ARS, Austria 

Published online 01, December, 2006

Published in print edition December, 2006

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation

technologies. Although being highly technical and complex in nature, the papers presented in this book

represent some of the latest cutting edge technologies and advancements in industrial robotics technology.

This book covers topics such as networking, properties of manipulators, forward and inverse robot arm

kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here.

The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic

and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using

the ideas and concepts presented herein.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Recep Burkan (2006). Modelling of Parameter and Bound Estimation Laws for Adaptive-Robust Control of

Mechanical Manipulators Using Variable Function Approach, Industrial Robotics: Theory, Modelling and

Control, Sam Cubero (Ed.), ISBN: 3-86611-285-8, InTech, Available from:

http://www.intechopen.com/books/industrial_robotics_theory_modelling_and_control/modelling_of_parameter_

and_bound_estimation_laws_for_adaptive-robust_control_of_mechanical_manipulat



© 2006 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


