
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



25
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1. Introduction 

In recent years, robot vision became an attractive scientific discipline. From a technological 
point of view, its aim is to endow robots with visual capabilities comparable to those of 
human beings. Although there is considerable endeavour, the progress is only slowly 
proceeding, especially in comparison to the level of behavior of human beings in natural 
environments. This has its reason in lacking insight into the organization principles of 
cognitive systems. Therefore, from a scientific point of view, robot vision is a test bed for 
understanding more on cognitive architectures and the mutual support of vision and action 
in cognitive systems. While in natural systems self-organization of structures and data flow 
is responsible for their success, in case of technical systems, the designer has to model 
cognitive systems. Modeling needs a theoretical base which is rooted in the state-of-art 
knowledge in science, mathematics and engineering. 
The most difficult problem to be solved is the design of a useful cognitive architecture. This 
concerns e.g. the gathering and use of world knowledge, controlling the interplay of 
perception and action, the representation of equivalence classes, invariants and concepts. 
Besides, hard real-time requirements have to be considered. The most attractive approach to 
the design of a cognitive architecture is the framework of behavior-based systems (Sommer, 
1997). A behavior is represented by a perception-action cycle. Remarkable features of such 
architecture are the tight coupling of perception and action, and learning the required 
competences (Pauli, 2001) from experience. 
Another problem to be coped with in designing robot vision systems is the diversity of 
contributing disciplines. These are signal theory and image processing, pattern recognition 
including learning theory, robotics, computer vision and computing science. Because these 
disciplines developed separately, they are using different mathematical languages as 
modeling frameworks. Besides, their modeling capabilities are limited. These limitations are 
caused to a large extend by the dominant use of vector algebra. Fortunately, geometric 
algebras (GA) as the geometrically interpreted version of Clifford algebras (CA) (Hestenes 
& Sobczyk, 1984) deliver a reasonable alternative to vector algebra. 
The aim of this contribution is to promote the use of geometric algebra in robot vision 
systems based on own successful experience over one decade of research. The application of 
GA within a behavior based design of cognitive systems is the long-term research topic of 
the Kiel Cognitive Systems Group (Sommer, 1999). Such a coherent system has to be an 
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embodiment of the geometry and the stochastic nature of the external world. That is, it 
should enable both internal processes converging at reasonable interpretations of the world 
and performing useful actions in the environment. We will report on some novel results 
achieved within the last years which extend the survey papers (Sommer, 2004; Sommer, 
2005).
Our main contributions to applications of geometric algebra in robot vision are focussing on 
the following problems:  

• Development of a signal theory for local analysis of multi-dimensional signals (Sommer 
& Zang, 2005)  

• Formulation of computer vision in the framework of conformal geometry (Rosenhahn 
& Sommer, 2005a and 2005b)  

• Knowledge based neural learning by using algebraic constraints (Buchholz & Sommer, 
2006)

• Higher-order statistics (Buchholz & Le Bihan, 2006) and estimations (Perwass et al., 
2006) in GA. 

More details of the results contributed by the Kiel Cognitive Systems Group can be found in 
the publications and reports on the website http://www.ks.informatik. uni-kiel.de. Here we 
will report from an engineer’s point of view. But the reader should be aware that GA 
constitutes a framework which has to be adapted to the problem at hand. Therefore, the 
system designer has to shape this mathematical language in a task related manner. This is 
both a challenge and a chance at the same time. 
In section 2, we will present a bird’s eye view on geometric algebra and will also motivate 
its use in robot vision. Special emphasis will be on the conformal geometric algebra (CGA). 
A novel approach to local image analysis based on embedding the curvature tensor of 
differential geometry into a Clifford analysis setting will be presented in section 3. Sections 
4 and 5 are dedicated to our recent progress on estimations from uncertain data in CGA. We 
will handle uncertainty for geometric entities and kinematic operations as well. Parameter 
estimation methods, based on the principle of least squares adjustment, will be used for 
evaluating multi-vectors and their respective uncertainties. Also, in section 5 we will focus 
on the problem of pose estimation in case of uncertain omnidirectional vision. In addition, 
we will present a novel generalized camera model, the so-called inversion camera model. 
Again, we will take advantage of the representation power of CGA. 

2. A Bird’s-eye View on Geometric Algebra 

In this section we will sketch the basic features of a geometric algebra representation and 
compare it with a vector space representation. Special emphasis is laid on the conformal 
geometric algebra. In addition, we introduce the key ideas of the tensor notation of GA 
representations and the coupling of the conformal embedding and stochastic concepts. 

2.1 Comparison of Vector Algebra and Geometric Algebra 

As mentioned in the introduction, the limited modeling capabilities within the disciplines 
contributing to robot vision are caused to a large extend by the use of vector algebra. That 
statement has to be justified. First, a vector space is a completely unstructured algebraic 
framework whose entities, that is the vectors, are directed numbers. This is a richer 
representation than having only scalars at hand. But the product of vectors, the scalar  
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product, destroys the direction information originally represented in the pair of vectors by 
mapping them to a scalar. Second, we are mostly interested in vector spaces with Euclidean 
norm. The basic geometric entities of Euclidean spaces are points. A Euclidean vector space 
can thus be interpreted as an infinite set of points. There is no possibility of formulating 
useful subspace concepts in the vector space but set based ones. Third, a cognitive system is 
reasoning and acting on global geometric entities, like a tea pot. It makes no sense to 
decompose the world phenomena into point-like entities. Fourth, the most important 
transformation in robot vision, that is rigid body motion (RBM), has no linear representation 
in Euclidian space. Instead, if we are interested in describing RBM of points, we have to take 
advantages of an algebraic trick as extending the dimension of the space for remaining in 
terms of linear operations. There is no general way for generalizing this trick within the 
vector space concept to other geometric entities (as a pair of points or a line). Therefore, 
most of the basic disciplines of robot vision are getting stuck in non-linearities. The resulting 
iterative solutions are intractable in real-time applications. Finally, besides translation, all 
other operational entities acting on a vector are not itself elements of the algebra. This 
makes the description of actions based on certain transformation groups a difficult task. 
Geometric algebra enables to overcome most of those problems, at least to a certain extend. 
In fact, if not specified, the term geometric algebra represents a whole family of geometric 
algebras. The designer has to select the right one for the problem at hand or has to design a 
special one with the desired features. Hence, its use enables a knowledge based system 
design in an algebraic framework which can represent the geometry of interest. 
Representing geometry in an algebraic framework means thinking in a Kleinian sense 
(Brannan et al., 1999). Any GA has the following features: 
1. It is a linear space, which can be mapped to a vector space again. Its elements are multi-

vectors, that is directed numbers of mixed grade. It has a rich subspace structure with 
each subspace having algebraic properties and interpretations in a geometric or 
operational sense of representing entities of a certain grade, e.g. of higher order. 

2. It represents a geometry of interest. That means, it models geometric spaces equipped 
with basic geometric entities and a range of higher order geometric entities with useful 
algebraic properties. Besides, it represents a Clifford group the elements of which are 
linear operational entities. This makes non-linear operations in vector spaces to linear 
ones in the chosen GA. That is, both geometric and operational entities are elements of 
the algebra. 

3. A geometric algebra is equipped with a geometric product the action of which on multi-
vectors not only enables mappings into certain subspaces but from which also incidence 
algebraic operations between subspaces can be derived.  

This as a whole makes GA a powerful tool for modeling in robot vision and beyond. 

2.2 Basic Structure of Geometric Algebra 

Here we will only present a sketch of the rich structure represented by a geometric algebra. 
For more details see (Hestenes & Sobczyk, 1984) or the introduction paper (Hestenes et al., 
2001), respectively the tutorial report (Perwass & Hildenbrand, 2003). 
A geometric algebra  is a linear space of dimension 2n constructed from a vector space 

 with signature (p,q, r), n = p+q+r, which we denote  = . The algebra  is 
built by applying the geometric product to the basis vectors  of  , i = 1, . . .,n, 
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(1)

The GA  is called Euclidean for n = p and pseudo-Euclidean for n = p + q. In the case of 

r≠0, its metric is degenerate. The signature (p,q, r) is the key for selecting certain geometric 
properties of the GA. The geometric product is linear and associative but not commutative. 
The linear space of a GA is split into a rich subspace structure represented by a set of blades 
Bk of grade k. Given k independent vectors1 ai, i = 1, . . . , k, a k-blade is defined for k = 1,...,n 
by

(2)

Here  indicates the outer product. There are  different k-blades, each having its 
own direction given by . Hence, k-blades constitute directed linear 

subspaces of . In figure 1 we visualize the blade structure of , that is the GA of .

By considering next the simple example of the geometric product of two vectors a,b ∈
we will get an inductive access to the construction rule of multi-vectors as the algebraic 
entities of a geometric algebra.  

Figure 1. Blade structure of  

Here (· )k means the grade-operator which indicates the separation of the linear space 
into grade-k entities. Obviously, vectors are of grade one and  . Then we 
get with 

 (3) 

                                                                
1
We use lower case letters, as , for algebra vectors or for vector space elements.
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a separation of the geometric product into the sum of the inner product 

(4)

and the outer product 

 (5)

The geometric product, a b, results in the sum of a scalar, (ab)0, and a bivector, (ab)2.
In contrast to the scalar product of vector algebra, the geometric product of geometric 
algebra is both grade-decreasing and grade-increasing. In general the multi-vector A is a 
mixture of k-vectors, Ak,

(6)

with

(7)

l* ≤ lk. For the geometric product of homogeneous multi-vectors of grades s and r we get a 
multi-vector C with a certain spectrum of different k-vectors,

(8)

with the pure inner product Ar · Bs = (ArBs)|r–s| and the pure outer product  = 
(ArBs)r+s. Hence, the other components result from mixing the inner and outer product. 
The blades of grade n are called pseudoscalar, P , 

(9)

with I being the unit pseudoscalar with I2 = ±1 if r = 0 and  being a scalar which equals the 
determinant of matrix algebra. Because I = IkIn–k, a blade Bk is related to its dual one, Bn–k, by 

(10)

This is a useful operation for switching between different representations of a multi-vector.  
There are several main algebra involutions in GA, like in case of complex numbers the only 
existing one is conjugation. Let us mention as an example the reversion. If  is a 
k-vector, then its reverse is defined as 

(11)

and the reserve of a multi-vector  defined as 

(12)

The reverse of a k-vector is needed for computing its magnitude, 

(13)
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and its inverse, 

(14)

Besides, it should be mentioned that any GA may be decomposed by 

(15)

into two partial spaces with  representing the odd grade blades and  representing the 

even grade blades and  being a GA itself again. 
There exist several isomorphisms of algebras. The most important statement is the existence 
of a certain matrix algebra for every GA (Porteous, 1995). In addition, the following 
isomorphisms are of practical importance: 

(16)

and
(17)

Examples of the last one are  and  with  being the 

algebra of complex numbers and  being the quaternion algebra. 

2.3 Geometric Algebra and its Tensor Notation 

We take a look beyond the symbolic level and question how we can realize the structure of 
geometric algebra numerically. We show a way that makes direct use of the tensor 
representation inherent in GA. 

If  denotes the 2n -dimensional algebra basis of , then a multi-vector  can 

be written as  , where  denotes the ith component of a vector2  and a sum 
over the repeated index i is implied. We use this Einstein summation convention also in the 
following. If  and  , then the components of C in the algebra equation 

 can be evaluated via . Here   is a placeholder for the algebra 

product and  is a tensor encoding this product (we use sans serif letters as 
 to denote vectors, matrices, tensors or generally any regular arrangement of 

numbers). If we define the matrices , as  and ,
then . This perfectly reveals the bilinearity of algebra products. 

We define a mapping Φ and can then write   or 

if  is an element of a Euclidian vector space,  as well. Note that we 
reduce the complexity of equations considerably by only mapping those components of 

multi-vectors that are actually needed. As an example, a vector in  can have at least n
non-zero components. Also, the outer product of two vectors will not produce 3-vector 

components, which can thus be disregarded. In the following we assume that Φ maps to the 
minimum number of components necessary. 

2.4 Conformal Geometric Algebra 

Recently it has been shown (Rosenhahn & Sommer, 2005a and 2005b) that the conformal 
geometry (Needham, 1997) is very attractive for most of the problems in robot vision, which 

                                                                
2
At least numerically, there is no other way than representing multi-vectors as vectors.
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are related to shape modeling, projective geometry and kinematic. Conformal geometric 
algebra (CGA) delivers a non-linear representation of a Euclidean space with remarkable 
features:
First, CGA constitutes a unique framework for affine, projective and Euclidean geometry. 
Because the special Euclidean transformation (RBM) is a special affine transformation, we 
can handle either kinematic, projective or metric aspects of the problem at hand in the same 
algebraic frame. Second, the basic geometric entities of conformal geometry are spheres of 
dimension n. Other geometric entities as points, planes, lines, circles,... may be easily 
constructed. These entities are no longer set concepts of a vector space but elements of CGA. 
Third, the special Euclidean group is a subgroup of the conformal group, which is in CGA 
an orthogonal group. Therefore, its action on the above mentioned geometric entities will be 
a linear operation. Fourth, the inversion operation is another subgroup of the conformal 
group which can be advantageously used in robot vision. Fifth, CGA generalizes the 
incidence algebra of projective geometry with respect to the above mentioned geometric 
entities.
Before we enlighten the structure and features of CGA in more detail, we will have a short 
look on , the geometric algebra of the Euclidean 3D-space  . This will be the starting 
point for the mentioned non-linear representation in CGA. Additionally,  is the 
embedding framework for image analysis, which will be described in section 3. The basis of 
its 8- dimensional space is given by  

(18)

with  and  being the basis vectors of  with . Here the   constitute 
the unit 1-blades and the  constitute the unit 2-blades with , see figure 1. The 
unit pseudoscalar   squares according to .
The even subalgebra  is isomorphic to the quaternion algebra  according to equation 
(17). Its dimension is four and the basis is given by 

(19)

where i, j, k are the imaginary unit vectors of a quaternion. 
The conformal geometric algebra , is built by extending  with a so-called 
Minkowski plane , resulting in . Originally, this construction of the CGA of a 
pseudo-Euclidean space  which results in , was proposed and analyzed by 
(Angles, 1980). Only the work of (Li et al., 2001a) has been recognized by the robot vision 
community as valuable access to the interesting phenomena in a unique framework. The 
same authors presented also a CGA for spherical geometry (Li et al., 2001b) and a further 
generalization to cope with Euclidean, spherical and hyperbolic geometry (Li et al., 2001c). 
But the last two cases have not yet been studied in robot vision. 
The basis of the Euclidean CGA , is of dimension 32. That one of the extended space 

 contains as additional basis vectors  and  with .
Both basis vectors constitute the so-called orthonormal basis of the Minkowski plane. More 
attractive is to switch to the so-called null-basis  with  and  

. This has two reasons. First, both the origin of , represented by  
, and the point at infinity, represented by , are explicitly 

accessible. Second, a point x 4,1 of the Euclidian 3D-vector space  is mapped to a 
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conformal point (null vector) , with  and , by the embedding 
function

(20)

We denote these special vectors by capital letters as well. The mapping  builds a  
homogeneous representation of a stereographically projected point (Rosenhahn & Sommer, 
2005a). As a grade-1 entity, a point is a special sphere, S, (also of grade one) with radius 
zero. The dual representation of a sphere 

(21)

is of grade four and is defined by the outer product of four points. A circle as a 2-
dimensional sphere,  or  is defined by 

(22)

By replacing one point in the defining equations (21) or (22) by the point at infinity, , a 
plane, a line or a point pair (a one-dimensional sphere) may be derived. Most interesting for 
robot vision is the orthogonal representation in  of the elements of the conformal group 
C(3). All transformations belonging to the conformal group are linear ones and the null 
cone, that is the set of all null vectors, is invariant with respect to them. Let  be an 
element of the conformal group and   any entity which has to be transformed by 

. Then 

(23)

describes this transformation as a (bi-)linear mapping. In general, all algebraic entities with 
such sandwich product are called versors (Hestens et al., 2001). Given some conditions, 
certain versors are called spinors (representing rotation and dilation) and normalized 
spinors are called rotors (representing pure rotation). Interestingly, also translation has a 
rotor representation (called translator) in CGA. But the most interesting transformation 
belonging to the conformal group is inversion, see (Needham, 1997), because all other 
transformations can be derived from it. Let  be a unit sphere located at 

the origin , then the inversion of any conformal point   in the unit sphere is 

written

(24)

The elements of the rigid body motion in CGA are called motors, . They connect 

rotation, represented by a rotor R, and translation, represented by a translator T, in a 
multiplicative way, 

(25)

and can be interpreted as a general rotation (Rosenhahn & Sommer, 2005a). As all versors, 
they are concatenated multiplicatively. Let M = M2M1 be a sequence of two motors, then 

(26)

for all . Another important feature of linear operations in GA also applies for 
versors in CGA. It is the preservation of the outer product under linear transformation, 
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which is called outermorphism (Heestens, 1991). Let  be two spheres and 

 a circle. Then according to equations (22) and (23) the circle transforms under 

the action of a motor    as 

(27)

These last features of CGA turn out  to be very important for  robot vision applications as 
pose estimation, see (Rosenhahn & Sommer, 2005b) and (Gebken et al., 2006). Another 
important feature of CGA is the stratification of spaces according to (Faugeras, 1995) in one 
algebraic framework. Because 

(28)

with  being one possible representation of the projective space in GA, the change of the 
representations with the respective geometric aspects is a simple task, see (Rosenhahn & 
Sommer, 2005a). 

2.5 Conformal Embedding - the Stochastic Supplement 

We have to obey the rules of error propagation when we embed points by means of function 
, equation (20). Assume that point x is a random vector with a Gaussian distribution and 

is its mean value. Furthermore, we denote the 3×3 covariance matrix of x by Σx. Let  denote 
the expectation value operator, such that . The uncertain representative in 
conformal space, i.e. the stochastic supplement for , is determined by a sphere 
with imaginary radius 

(29)

rather than the pure conformal point . However, observing that 

 shows why our algorithms do not noticeably differ in the output when using an 

exact embedding or its approximation. We evaluate the corresponding 5×5 covariance 
matrix  for  by means of error propagation and find 

(30)

where we used the Jacobian of .

(31)
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3. Monogenic Curvature Tensor as Image Representation 

In this section we will describe how the embedding of local image analysis into a geometric 
algebra extends the representation in such a way that a rich set of local features will emerge. 

3.1 Overview: Local Spectral Representations 

Image analysis is a central task of robot vision systems. It is to a main portion local analysis. 
Image analysis based on local spectral representations (Granlund & Knutsson, 1995), that is 
amplitude and phase, has been a well-known method of signal processing for years. The 
aim is to assign a structural or/and geometric interpretation to an image point. That task of 
computing is called split of identity. In practice, a set of oriented bandpass operators are 
applied, each consisting of a pair of quadrature filters. The most well-known representative 
is the complex valued Gabor filter (Gabor, 1946). It delivers a complex valued signal 
representation, the analytic signal, from which for each chosen orientation at position 

 a local amplitude and a local phase can be derived. The local amplitude can be 
considered as a confidence measure of estimates of the local parity symmetry of the signal 
derived from local phase. Parity symmetry is a measure, which describes the type of 
structure. The method can be used for detecting lines and edges, analyzing textures, and 
with some restrictions for detecting corners and junctions. 
Regrettably, the analytic signal is neither rotation invariant nor sensitive to discriminate 
intrinsically 1D and 2D (i1D and i2D) structures. This has its reason in the fact that the 
analytic signal is indeed only a reasonable complex valued extension of one-dimensional 
functions. Therefore, with great endeavour the problems of orientation steerability 
(Freeman & Adelson, 1991) and of generalizing the Hilbert transform (Hahn, 1996) have 
been attacked. 
Only the consequent use of Clifford analysis (Brackx et al., 1982) led us to a multi- 
dimensional generalization of the analytic signal, called monogenic signal (Felsberg & 
Sommer, 2001) which overcomes the missing rotation invariance. But also that 
representation is incomplete with respect to represent intrinsically 2D structures, see the 
survey paper (Sommer & Zang, 2007). 
The monogenic curvature tensor (Zang & Sommer, 2007) further generalizes the monogenic 
signal. It delivers a local signal representation with the following features: 

• It enables classification of intrinsic dimension. 

• It delivers two curvature based signal representations which distinctly separate 
represent intrinsically 1D and 2D structures. One of these is identical to the monogenic 
signal. Two specific but comparable types of local amplitude and phase can be 
described. 

• In both cases the local phase constitutes a vector that includes also the orientation as a 
geometric feature. 

• In case of i2D structures, an angle of intersection can be derived from the derivations of 
phase angles. 

• Both curvature based signal representations can be embedded in a novel scale-space 
concept, the monogenic scale-space (Feldsberg & Sommer, 2004), in which local 
amplitude, phase and orientation become inherent features of a scale-space theory. This 
enables scale adaptive local image analysis. 
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All these efforts have been made because of the advantages of phase based image analysis 
for getting access to geometry and because of the illumination invariance of phase 
information. 

3.2 Monogenic Curvature Tensor 

The image representation we want to model should have some invariances: 

• Invariance with respect to intrinsic dimension: Both i1D and i2D structures can be 
modeled. This is possible by the curvature tensor of differential geometry (Koenderink 
& van Doorn, 1987).  

• Invariance with respect to parity symmetry: Both even and odd symmetric structures 
can be represented. This is possible by designing quadrature phase filters, whose 
harmonic conjugate component is in quadrature phase relation to the real valued 
component (Sommer & Zang, 2007). The way to get this is applying a (generalized) 
holomorphic extension of a real valued multi-dimensional function by a (generalized) 
Hilbert transform. 

• Invariance with respect to rotation: This becomes possible by specifying the generalized 
holomorphic extension by a monogenic extension (Felsberg & Sommer, 2001), whose 
operator realization is given by the Riesz transform (Stein & Weiss, 1971). 

• Invariance with respect to angle of intersection: Because of the involved differential 
geometric model, a local structure model for i2D structures is considered for i1D 
structures intersecting at arbitrary angles. 

• Invariance with respect to scale: This requires embedding of the image representation, 
respective of the operator which derives it into a monogenic scale-space (Felsberg & 
Sommer, 2004). 

Having these invariances in the image representation, in a second step of analysis the 
corresponding variances can be computed. These are intrinsic dimension, parity symmetry, 
rotation angle, angle of intersection and intrinsic scale at which these features exist. 
We will interpret a 2D-image as a surface in . Let be  the curvature tensor of the second 
fundamental theorem of differential geometry. Its Monge patch representation is given by 

(32)

with the Hesse matrix 

(33)

Then the Gaussian curvature, , and the mean curvature, , are 
spanning a basis in which the local signal f(x) can be classified according to its intrinsic 
dimension according to table 1. 

Type µ (Mean Curvature) κ (Gaussian Curvature) 

Elliptic (i2D)  κ  > 0 

Hyperbolic (i2D)  κ  < 0 

Parabolic (i1D) |µ| ≠ 0 κ  = 0 

Planar (i0D) |µ| = 0 κ  = 0 

Table 1. Surface type classification based on Gaussian and mean curvature 
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The signal representation we want to get is a kind of Hesse matrix in a monogenic 
representation. This requires two steps. First, according to (Felsberg & Sommer, 2001) we 
are embedding the originally scalar valued signal f(x) as a vector field f(x)  with values 
directed to the unit vector ,

(34)

Second, we are switching from the vector space  to the Euclidean geometric algebra 

 and are applying a monogenically extended Hessian operator, ,
which is a 2×2 matrix with monogenic elements. The convolution of the signal f with all 
elements of the operator matrix results in the monogenic curvature tensor 
as signal representation. To be more specific, see (Zang & Sommer, 2007), the monogenic 
Hessian operator may be splitted into an even operator, , with spinor valued 
elements and an odd operator,  which results from the even operator by 
applying the Riesz transform hR,

(35)

with

(36)

and

(37)

The monogenic Hessian operator may be interpreted as a rotation invariant and parity 
symmetry invariant detector of two i1D structures crossing invariant with respect to the 
angle of intersection. This involved structure model is the most general that could be 
developed. Nevertheless, it is limited by the model of differential geometry which does not 
consider derivatives of order higher than two. The structure of the monogenic Hessian 
operator reveals if we are going to the Fourier domain, take advantage of the derivative 
theorem of Fourier theory, and are modeling the operator in terms of circular harmonics of 

order n, , in polar coordinates u = (ρ, α),

(38)

Then we recognize that our model involves circular harmonics of orders n ∈ {0, 1, 2,3},

(39)

(40)
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As equations (35) and (40) reveal, the Riesz transform is identic to the first order circular 
harmonic, 

(41)

What remains for fulfilling the scale invariance requirement is embedding the monogenic 
Hessian operator into the monogenic scale-space (Felsberg & Sommer, 2004). This is 

achieved by replacing the radial component of circular harmonics, Cn (ρ), by a Difference-of-
Poisson kernel, HDOP,

(42)

with s1 < s2 being two different scale parameters. This results in circular harmonic bandpass 
functions

(43)

Finally, we get the monogenic curvature tensor  as 

(44)

respectively its representation in frequency domain. 

3.3 Analysis of the Monogenic Curvature Tensor 

Having the monogenic curvature tensor (in a scale-space embedding), it will now be 
analyzed with respect to the represented curvature information (Zang & Sommer, 2007). 
By computing the trace of , we get the monogenic mean curvature signal, fi1D (x):

, which is specific with respect to i1D structures. It may be written as a vector field 

 (45) 

(46)

which turns out to be identical to the monogenic signal (Felsberg & Sommer, 2001). 
By computing the determinant of , we get the generalized monogenic Gaussian 

curvature signal, fi2D (x): , which is specific with respect to i2D structures. In 
similar way as fi1D, it may be written as a vector field 

 (47) 

(48)

We call it ’generalized monogenic’ because its conjugate harmonic part results from the real 
part by applying c2 as generalized Hilbert transform with the result that the relations 
between de and do are different to those of te and to. Both signal representations can be 
interpreted as the result of a spinor valued operator, s, which rotates and scales the original 
vector field  so that it will be supplemented by a conjugate harmonic 
component which projects to the plane  and fulfills the conditions  and 

. The scaling-rotation is performed in the ’phase plane’ 
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with  being the respective spinor and  or . By evaluating 
the exponential representation of s with respect to the -logarithm, see (Felsberg, 2002), 
the local spectral representations can be computed. These are the local amplitude  

(49)

and the (generalized) monogenic local phase bivector 

(50)

From Φ(x) follow the local phase φ(x) as rotation angle within the phase plane, 

(51)

and the orientation angle θ(x) of the phase plane within the plane ,

(52)

In the case of fi1D, θ (x) is indicating the orientation of the i1D structure within the image 

plane and in the case of fi2D, 2θ (x) represents the local main orientation of the i2D structure 
in a double angle representation which results from the eigenvector decomposition of the 
structure tensor (Felsberg, 2002). Hence, phase analysis delivers also the orientation 
information as a consequence of the monogenic representation of the curvature tensor.  
In Figure 2, an example signal is analyzed with respect to its local spectral representations. 
The monogenic curvature tensor is obviously invariant with respect to rotation. In figure 3, 
two patterns of even and odd symmetric structures are analyzed with respect to local 
amplitudes and local phases for fi1D and fi2D, respectively. Clearly can be seen the 
invariances of the monogenic curvature tensor with respect to the intrinsic dimension, 
parity symmetry and angle of intersection. 
We will not discuss in detail the scale-space properties (Zang & Sommer, 2006a). It should 
only be mentioned that the embedding of the curvature tensor into a monogenic scale-space 
results in an improved corner detection based on a novel two-dimensional phase 
congruency method (Zang & Sommer, 2006b) and delivers superior estimates of the optical 
flow field based on a phase constrained variational approach (Zang et al., 2007). 

4. Parameter Estimation from Uncertain Data 

Uncertain data occurs almost invariably, especially in computer vision applications. It is 
hence a necessity to develop and use methods, which account for the errors in observational 
data. Here, we discuss a parameter estimation from uncertain data in the unified 
mathematical framework of geometric algebra. 
We use conformal geometric algebra (CGA) as introduced in section 2.4. Consequently, the 
estimation is applicable to (parameterizations of) geometric entities and geometric 
operators; points, lines, planes, circles or spheres can be treated in very much the same way 
as rotations or rigid body motions (RBM). In general, our aim is to find multi-vectors that 
satisfy a particular condition equation, which depends on a set of uncertain measurements. 
The specific problem and the type of multi-vector, representing a geometric entity or a 
geometric operator, determine the condition. In the language of CGA we obtain succinct 
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expressions and thanks to the bilinearity of the always involved geometric product, the 
corresponding equations are linear or at most quadratic in the multi-vector components. In 
section 2.3 we have introduced a simple way to represent geometric algebra operations in 
terms of a tensor notation, where the term tensor denotes the classical extension of matrix 
theory to higher dimensions. This allows us to use well-tried and efficient algorithms 
without leaving the algebra. Moreover, it paves the way for using the stochastic: standard 
error propagation, for example, is exact for the geometric product and makes it easily 
possible to keep track of the uncertainties while doing operations like an intersection. 

Figure 2. Top: original image (left), even and odd components of fi2D (middle and right). 
Bottom: local amplitude (left), local phase (middle) and local orientation (right) 

Figure 3. From left to right: original images, local amplitudes and local phases of the 
monogenic signal fi1D, local amplitudes and local phases of the generalized monogenic 
Gaussian curvature signal fi2D
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The stochastic is one of the fundamental aspects of this section. To account for the 
uncertainties in observational data we consequently decided on a least squares adjustment 
parameter estimation. We use the Gauss-Markov and the Gauss-Helmert method. Each of 
them provides an estimate together with a suitable covariance matrix. Hence, further 
calculations can be carried out with these uncertain elements, as mentioned above.  
This text builds on previous works by (Heuel, 2004) where uncertain points, lines and 
planes were treated in a unified manner, but not in GA. The linear estimation of rotation 
operators in GA was previously discussed in (Perwass & Sommer, 2002), albeit without 
taking account of uncertainty. In (Perwass et al., 2005) the estimation of uncertain general 
operators was introduced. 
The structure of this section is as follows: first, we explain the underlying parameter 
estimation methods. We then present two applications. For each, we demonstrate in which 
way we profit from the expressiveness of CGA and we explain how our method can be 
applied within that framework. 

4.1 Stochastic Estimation Method 

In the field of parameter estimation one usually parameterizes some physical process  in 
terms of a model  and a suitable parameter vector . The components of p are then to be 
estimated from a set of observations originating from .
Here, we introduce our two parameter estimation methods, the common Gauss-Markov 
method and the most generalized case of least squares adjustment, the Gauss-Helmert 
method. Both are founded on the respective homonymic linear models, cf. (Koch, 1997). The 
word ’adjustment’ puts emphasis on the fact that an estimation has to handle redundancy in 
observational data appropriately, i.e. to weight unreliable data to a lesser extend. In order to 
overcome the inherent noisiness of measurements one typically introduces a redundancy by 
taking much more measurements than necessary to describe the process. Each observation 
must have its own covariance matrix describing the corresponding Gaussian probability 
density function that is assumed to model the observational error. The determination of 
which is inferred from the knowledge of the underlying measurement process. The matrices 
serve as weights and thereby introduce a local error metric. 
The principle of least squares adjustment, i.e. to minimize the sum of squared weighted 

errors , is often denoted as 

(53)

where  is a covariance matrix assessing the confidence of .
Let  be a set of N observations, for which we introduce the abbreviation 

. Each observation  is associated with an appropriate covariance matrix . An 
entity, parameterized by a vector , is to be fitted to the observational data. Consequently, 
we define a condition function  which is supposed to be zero if the observations and 
the entity in demand fit algebraically. Besides, it is often inevitable to define constraints 

 on the parameter vector . This is necessary if there are functional dependencies 
within the parameters. Consider, for example, the parameterization of a Euclidian normal 
vector  using three variables  = [n1, n2, n3]T. A constraint T  = 1 could be avoided using 

spherical coordinates θ  and φ, i.e.  = [cosθ cosφ, ,cosθ sinφ, sinθ]. In the following sections, 
we refer to the functions  and  as G-constraint and H-constraint, respectively. 
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Note that most of the fitting problems in these sections are not linear but quadratic, i.e. the 
condition equations require a linearization and estimation becomes an iterative process. An 
important issue is thus the search for an initial estimate (starting point). If we know an 
already good estimate , we can make a linearization of the G-constraint yielding 

. Hence, with  and :
, which exactly matches the linear Gauss-Markov model. The 

minimization of equation (53) in conjunction with the Gauss-Markov model leads to the best 
linear unbiased estimator. Note that we have to leave the weighting out in equation (53), 
since our covariance matrices  do not match the . Subsequently, we consider a model 
which includes the weighting. 

If we take our observations as estimates, i.e.  , we can make a Taylor series 

expansion of first order at  yielding 

 (54) 

Similarly, with  we obtain , which exactly matches the 

linear Gauss-Helmert model. Note that the error term Δyi has been replaced by the linear 
combination ; the Gauss-Helmert differs from the Gauss-Markov model in 
that the observations have become random variables and are thus allowed to undergo small 
changes  to compensate for errors. But changes have to be kept minimal, as observations 
represent the best available. This is achieved by replacing equation (53) with 

(55)

where  is now considered as error vector. 
The minimization of (55) subject to the Gauss-Helmert model can be done using Lagrange 

multipliers. By introducing ,

 and   the Lagrange 

function Ψ, which is now to be minimized, becomes 

(56)

The last summand in Ψ corresponds to the linearized H-constraint, where  and 
 was used. That term can be omitted, if  has no functional dependencies. A 

differentiation of Ψ with respect to all variables gives an extensive matrix equation, which 
could already be solved. Nevertheless, it can be considerably reduced with the substitutions 

 and  . The resultant matrix 

equation is  free from  and can be solved for  

(57)

For the corrections , which are now minimal with respect to the Mahalanobis 
distance (55), we compute 
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(58)

It is an important by-product that the (pseudo-) inverse of the quadratic matrix in equation 
(57) contains the covariance matrix  belonging to . The similar solution for the 
Gauss-Markov model and the corresponding proofs and derivations can be found in (Koch, 
1997). Due to outstanding convergence properties we start iterating with the Gauss-Markov 
method. At the optimum we start the slower Gauss-Helmert method, which ultimately 
adjusts the estimate according to the uncertainties .

4.2 Fitting a Circle in 3D 

Now we show how the estimation method can be used in CGA to fit a circle in 3D-space to a 
set of N data points {b1..N}. Each data point is given with its mean bi and covariance matrix 

. In order to apply the estimation methods as described, we need a G-constraint and 
possibly an H-constraint. We therefore give an introduction to circles in CGA. 
We represent a circle by the inner product null space  of a 2-blade C. That space consists 
of all conformal points X, the inner product of which with the circle C is zero, i.e. 
=.  To understand this relationship, consider the inner product 
null space of a sphere Sr with radius r and center m. It can be created from a point 

 by subtracting the term  .  The sphere is thus 

given by . For some vector x it can be verified that 
iff . Now, consider two intersecting spheres S1 and S2. A 

circle intuitively consists of all points X lying on S1 and S2. Intersection can be expressed by 
the outer product and in fact the circle definition is . For a justification examine 
the inner product X· C

 (59) 

The terms cannot cancel each other if S1 S1 and S2 are linearly independent, i.e. if they do 
not represent the same sphere. The upper equation is therefore zero iff X is located on S1 and 
S2 as well. 
Remarkably, we have found an appropriate G-constraint right from the definition of the 
circle’s inner product null space itself. It remains to transfer the inner product expression  
X · C to an equivalent matrix expression. As there are ten basis blades of grade two in ,
we have  . The points {b1..N } are embedded and mapped as follows: 

. Note that our condition equation (59) yields a vector, being 

defined by five components in . Consequently, we obtain 

 (60) 

which can be differentiated easily. Thus, the required Jacobians  and  follow from 
the bilinearity of geometric algebra products in an implicit manner. 
Because a circle in 3D-space can be described by a minimum number of six parameters, we 
face a functional dependency of grade 4 = 10 – 6 within . As mentioned in section 4.1, we 
have to introduce constraints on the parameters, namely the H-constraint . We enforce C
to be a circle by requiring that , which can be shown to be sufficient. In almost the 

same way as for the G-constraint, the usage of Φ allows us to derive the -matrix. Being in 



Robot Vision in the Language of Geometric Algebra 477

the possession of all necessary matrices, we are able to run the estimation in order to solve 
for the corrections  and .
We remain with this stage and refer the reader to the next estimation example. There, we 
explicitly derive the constraint functions in terms of the tensor notation. 
As mentioned earlier, our method provides the covariance matrix  of the estimated entity 

 as well. It shows up to which degree the model fits the observations and how 
advantageously they were initially distributed. It does not reflect to which extend the 
estimate deviates from a potentially perfect fit, i.e. it is no quality measure for our method. 
Figure 4 exemplarily shows the uncertainty of an estimated circle. The surrounding tubes, 
indicated by slices, show the standard deviation of the estimates. 

4.3 Fitting two Point Clouds in 3D 

In this part, we describe how the proposed methods can be used to estimate an RBM; it 
extends a rotation, given by a rotor, by a translational component along the axis of rotation. 
Hence, we can think of it as a screw motion, cf. (Rosenhahn, 2003). In geometric algebra an 
RBM is represented by an operator called motor. In the scope of pose estimation, the pose is 
uniquely characterized by an RBM. The estimation of motors is thus a first step towards the 
perspective pose estimation problem. 
Let {a1..N} and {b1..N} be two sets of N Euclidian points each. The latter represent the 
observations for which we have the covariance matrices . The set {a1..N} is assumed 
to have no uncertainty. Let  and  denote the conformal embedding 

of ai and bi, respectively. We search for the motor M, which best transforms all points in 
{A1..N} to the respective points in {B1..N}. The scenario is shown in figure 5.  

Using geometric algebra, we can easily write  cf. (Perwass & Sommer, 2002). 

Note that a motor is a unitary versor, i.e. it has to satisfy . Exploiting this fact, we 
rearrange the previous formula and obtain the G- constraint  

(61)

where we used  and . The tensor  encodes the 
geometric product. In order to evaluate the matrices  and , we differentiate equation  (61)  
with respect to  and , respectively. Hence, we get  and 

.
Since an RBM is defined by six rather than eight parameters, we need the H-constraint. We 

again exploit unitarity and choose . The tensor 
 encodes the reverse operation and  is zero, except for t = 1. Differentiation  yields 

. The estimate for M can now be computed by simply 
substituting the matrices ,  and  into the respective equations given in the 
theoretical part.
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Figure 4. Fitting a circle: four views of a circle’s uncertainty (standard deviation) 

Figure 5. Fitting two point clouds: the rotation of the motor M is indicated by the partial 
disc. The translational part is specified by the arrow attached to it 

5. Pose Estimation from Uncertain Omnidirectional Image Data 

We present a sophisticated application of the parameter estimation from uncertain data as 
depicted in the previous section. It reads ’perspective 2D-3D pose estimation for 
omnidirectional vision using line-plane correspondences’ and has strong geometrical 
streaks, which is why we spend an extra section. In this context, we introduce the ’inversion 
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camera model’, which has the ability to model a variety of distinct camera systems thereby 
taking image distortions into account. 
Pose estimation certainly is a well-studied subject, but not in case of an omnidirectional 
vision system. Hence, our objective was to develop accurate pose estimation for 
omnidirectional vision, given imprecise image features, i.e. 2D-sensory data. Note that these 
features can readily be detected by the method proposed in section 3. 
Comparable to triangulation, the accuracy of an estimated pose benefits when landmarks 
can be seen in clearly different directions. But the most significant advantages of 
omnidirectional vision are related to navigation, since the objects remain on the image plane 
under most camera movements. We consider a single viewpoint catadioptric vision sensor. 
It combines a customary camera with a parabolic mirror and provides a panoramical view 

of 360°.
We make the assumption to have 3D-models of the interesting objects we observe in the 
images. Secondly, we assume to know the one-to-one correspondences between the model 
features and the image features. Note that a model consists of 3D-lines, which mostly 
represent object edges, which in turn, are likely to generate a line under imaging; 
consequently, we have lines as image features. We herewith extend our previous work 
where we had been employing point features and point models. 

Figure 6. Fitting a triangle model to the projection planes spanned by R1, R2 and R3

5.1 Omnidirectional 2D-3D Pose Estimation 

Roughly speaking, rigidly moving an object in 3D such that it comes into agreement with 
2D-sensory data of a camera is called 2D-3D pose estimation (Grimson, 1990). Specifically, 
we estimate an RBM in 3D, such that the model lines come to lie on the projection planes of 
the underlying image lines, see figure 6. 
The method to be proposed comprises three steps: from those pixels corresponding to 
visible model lines, we estimate projection planes with associated uncertainties. In a second 
step, a simple algorithm is used to do prior rotation estimation being a first and rough guess 
at the rotational part of the desired RBM. As a result the model will be aligned such that its 
lines are nearly parallel to the respective projection planes. We finally estimate the entire 
pose taking the computed plane uncertainties into account as well. 
Before we explain those steps in detail, we give a sketch of catadioptric imaging. 
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5.2 Omnidirectional Imaging 

Consider a camera, focused at infinity, which looks upward at a parabolic mirror centered 
on its optical axis. This setup is shown in figure 7. A light ray emitted from world point Pw

that would pass through the focal point F of the parabolic mirror M, is reflected parallel to 

the central axis of M, to give point p2 on image plane π2. Now we use the simplification that 

a projection to sphere S with a subsequent stereographic projection to π1 produces an 

identical image on π1. Accordingly, point Pw maps to PS and further to p1, see figure 7. 
Together with the right side of figure 7 it is intuitively clear that infinitely extended lines 
form great circles on S. Moreover, a subsequent stereographic projection, being a conformal 
mapping, results in circles on the image plane, which then are no more concentric. For 
details refer to (Geyer & Daniilidis, 2001). 
Our approach exploits that the mapping from a projection ray to an image point is bijective 
and therefore invertible. Moreover, given an image line, we can compute its projection 
plane.

Figure 7. Left: mapping (cross-section) of a world point Pw: the image planes π1 and π2 are 

identical. Right: mapping of line L to Lπ via great circle LS on S. As an example, scattered 

image data belonging to Lπ  is shown 

5.3 Estimating Projection Planes 

We must come up with observations in the form of planes for a line-plane fitting; we 
compute a projection plane for each set of image points that corresponds to a visible model 
line. To be more specific, we estimate the planes from the stereographically back-projected 
image points. Hence, the points have to be moved to the projection sphere S, see figure 7. 
This is done by an inversion of the image points in a certain sphere SI. Note that the 
(uncertain) image points, initially identically 2D-distributed, thereby obtain distinct 3D-
uncertainties, which reflect the imaging geometry. The uncertainties are computed using 
error propagation, where we profit from the inversion being a linear operation in . The 
plane estimation can now be done by restricting the circle estimation, see section 4.2, to the 
three parameters describing the circle’s plane. Recall that we obtain a covariance matrix for 
each estimated plane. 



Robot Vision in the Language of Geometric Algebra 481

5.4 Prior Model Alignment 

The line-plane pose estimation will prove to be a quadratic problem. In such cases, as 
mentioned in section 4.1, the linearization requires an initial estimate. The prior model 
alignment provides such a starting point at very low costs. We like to rotate the model such 
that the set of unit direction vectors  of its lines lie on the respective planes. Let 

 denote the set of normal vectors of all planes, which belong to visible model lines. 
We search for a rotation matrix  such that ˆ .
By Rodrigues’s formula (1840) we know that the rotation matrix  regarding a rotation of 

angle θ  around unit vector  can be expressed by an exponential map of 
 which is ,

where  denotes the 3×3 identity matrix. For small angles we obtain . With this 
relation and due to the skew symmetric structure of  it is possible to solve for 

, where each line-plane pair gives one line  in an 
overdetermined system of linear equations. Every run of this procedure yields a rotation 
matrix, the concatenation of which gives the desired rotation matrix . Once, the rotated 
lines are close enough to the planes w.r.t. some threshold the procedure can be stopped. 

5.5 Perspective Line-Plane Pose Estimation 

Here we derive geometric constraint equations for the stochastic estimation methods 
presented in the previous section. 
Let P be a projection plane, see section 5.3. For any line L lying on P , we have 

 A model line L’ is transformed by an RBM represented by M, say, via the operation 

. Therefore, if we have estimated the correct M, a model line L’ with corresponding 

projection plane P has to satisfy 

Using Φ from section 2.3, we can identify our elements P, L’ and M with particular vectors 
,  and . For example,  simply denotes the normal vector of the plane 

represented by P. We contract all constituent product tensors to one tensor  and obtain 
condition function  for one line-plane pair 

 (62) 

Algebraically, the constraint  may only be non-zero in four of its 25 = 32 components, 

which is why we have t ∈ {1,...,4}. The observations and parameters are  and ,
respectively. Hence, differentiating would yield the matrices  and  required 
in section 4.1. The eight components of M are an overparameterization, again, such that we 

need to include the H-constraint  from section 4.3. 

5.6 Inversion Camera Model 

The inversion camera model can be used for image rectification. Besides, it can readily be 
incorporated into the previously presented pose estimation methods as inversion embodies 
the main CGA operation. We briefly discuss both applications. 
We go on from section 5.2 in which we dealt with imaging. The considerations were limited 
to the special case of a parabolic catadioptric imaging system: a stereographic projection had 
been replaced by an inversion of the projection sphere S in a inversion sphere SI. This is one 
case of what the inversion camera model, which was proposed by (Perwass & Sommer, 
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2006), can handle. It basically expresses a projective mapping in terms of an inversion. It 
enables a continuous transition between different geometries of imaging, as fisheye optics or 
the classic pinhole camera, merely by changing two parameters. These determine the 
constellation of suitable spheres S and SI in respect to the focal point F. In addition to the left 
side of figure 7, which illustrates a parabolic catadioptric imaging system, figure 8 depicts 
two further interesting constellations. To demonstrate the versatility of the inversion camera 
model, recall the imaging principle described in section 5.2. It can equally be applied to the 
left side of figure 8, where the same operations describe a completely different camera 
system: ’point Pw maps to PS and further to p’.

Figure 8. Mapping schemes (cross-section) in terms of the inversion camera model. Left: 
setup reflecting a pinhole camera. Right: setup modeling a real lens by taking radial 
distortions into account. Namings are in concordance with figure 7; C denotes the center of 
SI

The aim of image rectification is to undo distortions which originate from a variety of 
optical imperfections. The right side of figure 8 shows the problem. The ray belonging to 
world point Pw was subjected to distortion which lead to the ray Rdev that eventually 
produced p. However, Rdev deviates from the geometrically true ray R in a non-linear 
manner depending on the angle to the optical axis. Hence a mapping has to be found that 
corrects the position of point p, within the image plane, such that it comes to lie on its 
projection ray R again.
We denote the rectified point prect. In (Perwass & Sommer, 2006), the authors discovered that 
moving off the inversion sphere SI from F , which distinguishes the mapping schemes in 
figure 8, results in a mapping suitable to model distortions. It consists of two parts. First a 
versor K, which essentially does the inversion of the image point p, is applied. Next, the 

corresponding ray R is constructed and intersected with image plane π to give prect.
Our subsequent considerations require a right handed coordinate system. The -axis
denotes the optical axis. It points upwards and is incident with F. The -axis points to the 
right and is aligned with the image plane. Hence, all image points lie on the -plane.
The inversion sphere  SI of radius r is defined by SI = , where we used 

the abbreviation . One of the simplest forms K can take on is K = SID. In order 
to handle scaling and for numerically well-balanced equations, the inversion in SI is 
preceded by the dilator D (isotropic scaling operator). The dilation operator D for a scaling 
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by a factor d  is given by D = 1 + γ E, where we defined γ = (d – 1)/(d+ 1). The image point 
transformation operator K is then given by 

(63)

with   and . Let  be the 

embedding of an image point p. Similar to figure 8, we denote  the point 
transformed by K. For determining the rectified point prect, as intended, it remains to 
intersect the projection ray R, now given by 

(64)

with the image plane π. The intersection is an elementary operation in CGA and yields the 
conformal point . Computing yields 

(65)

with the two parameters 

(66)

It is noteworthy that prect/β is the respective expression produced by the so-called division 
model. It was proposed by (Fitzgibbon, 2001) and can be considered equivalent to the 
camera inversion model. The division model itself was shown in (Claus & Fitzgibbon, 2005) 
to have a rectification quality comparable to a fourth order radial polynomial approach. The 
camera inversion model is thus a sufficiently good approximation of lens distortion for 
many applications. 
In (Perwass & Sommer, 2006), the estimation of lens distortion was successfully combined 
with pose estimation by means of the estimation methods presented in this text. Specifically, 
the pose, the focal length and the lens distortion were estimated at the same time. For 
example, in case of a point-line fitting a model point P’ is to be transformed by an RBM M
such that it comes to lie on the corresponding rectified projection ray R. In analogy to 
section 5.5 and with the help of equation (64) it is required for image point that 

(67)

A respective tensor representation can be derived easily, and the necessary constraints 
follow from differentiation. With this impressive example of the unifying nature of 
geometric algebra we conclude this chapter. 
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