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1. Introduction 

Visual exploration of unknown environments is considered a typical and highly important 
task in intelligent robotics. Although robots with visual capabilities comparable to human 
skills (e.g. mushroom-picking robots or bird-viewing robots) are apparently unachievable in 
the near future, but the concept of robots able to search for known objects in unknown 
surroundings is one of the ultimate goals for machine vision applications. In the scenarios 
that are currently envisaged, the expectations should be realistically limited. Nevertheless, 
one can expect that a robot, after a visual presentation of an object of interest, should be able 
to “learn” it and, subsequently, to detect the same object in complex scenes which may be 
degraded by typical effects, i.e. partial visibility of the objects (due to occlusions and/or 
poor illumination) and their unpredictable locations. The purpose of this chapter is to 
propose a novel mechanism that is potentially useful (it has been confirmed by promising 
preliminary results) in such applications. 
Several theories exist explaining the human perception of objects (e.g. Edelman, 1997). Some 
researchers promote the importance of multiple model views (e.g. Tarr et al., 1997) others 
(e.g. Biederman, 1987) postulate viewpoint invariants in the form of shape primitives 
(geons). From all the theories, however, the practical conclusion is that vision systems 
detecting objects in a human-like manner should use locally-perceived features as the 
fundamental tool for matching the scene content to the models of known objects. 
The idea of using local features (keypoints, local visual saliencies, interest points, 
characteristic points, corner points – several almost equivalent names exist) in machine 
vision can be traced back to the 80’s (e.g. Moravec, 1983; Harris & Stephens, 1988). Although 
stereovision and motion tracking were initially the most typical applications, it was later 
found that the same approach can be used in more challenging tasks (e.g. matching images 
in order to detect partially hidden objects). A well-known Harris-Plessey operator (Harris & 
Stephens, 1988) was combined with local descriptors of detected points to solve object 
recognition problems in which local features from analysed images are matched against a 
database of images depicting known objects (e.g. Schmid & Mohr, 1995). The intention was 
to retrieve images containing arbitrarily rotated and partially occluded objects.  
Subsequently developed keypoint detectors address the issues of scale changes (this was the 
weakest point of the original detectors) and perspective distortions. Generally, to achieve 
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scale invariance of local features, computationally expensive scale-space approaches are 
used (e.g. Lowe, 2004; Mikolajczyk & Schmid, 2004). So far, no method is known that can 
scale-invariantly match local features using a one-size window for scanning images 
captured in arbitrarily changing scales. The perspective distortions are usually 
approximated by affine transformations (or even ignored altogether). This is acceptable 
since only relatively minor distortions are typically assumed. Stronger deformations are 
avoided by using multiple views (differing usually by 15-30 degrees) to model 3D database 
objects.
Our paper presents how to integrate  and expand selected ideas from the abovementioned 
theories and techniques into an alternative framework that could satisfy the practical 
requirements of robotic vision systems at lower computational costs than other currently 
existing solutions. Generally, we follow the fundamental concepts presented in previously 
published works (e.g. Huttenlocher & Ullman, 1990; Wolfson & Rigoutsos, 1997; Häusler & 
Ritter, 1999; Ulrich et al., 2003; etc.). In particular:  
1. Database objects are represented by 2D images. Multiple images of the same object are 

used if 3D transformations of the object are expected in the captured scenes, while a 
single image is needed if only 2D transformations are envisaged. 

2. Database objects are modelled as a set of locally computed features (keypoints) 
characterised by their descriptors. The geometric constraints of the set (i.e. length and 
orientation of vectors joining the keypoints) are also stored. 

3. Keypoints of the same categories are extracted from captured scenes. Subsequently, 
those keypoints are matched to the models of database objects. If a sufficient number of 
the keypoints are consistently (i.e. satisfying the geometric constraints of the model) 
matched to a certain model image, the corresponding database object is considered 
found in the scene. 

What makes our method novel is the definition of local features (keypoints). Therefore, the 
major sections of this chapter discuss the proposed keypoints and present exemplary results 
obtained using such keypoints. The actual object detection and/or localisation are only 
briefly mentioned since the methods used follow the algorithms published in our previous 
papers or papers of other authors.
Typically used keypoints are based directly (e.g. Harris & Stephens, 1988) or indirectly (e.g. 
Lowe, 2004; Mikolajczyk & Schmid, 2004) on derivatives of the intensity functions. Such 
keypoints have many advantages but certain disadvantages as well. For example, the 
scanning window over which the keypoints are computed should be resized according to 
the scale of objects present in the image. If the scale is unknown (which is the most typical 
scenario) additional computations and/or assumptions are necessary. Some authors use 
computationally intensive search for the optimum scale at which the current keypoint 
should be processed (e.g. SIFT detector in Lowe, 2004) while others propose a simplifying 
(but nevertheless justifiable for robotic application) assumption that only a few scales are 
used and the object would be identified when its distance to the capturing camera 
corresponds to one of those scales (e.g. Islam et al., 2005). An additional disadvantage of 
derivation-based keypoints is that some photometric transformations (e.g. excessively high 
contrasts) may distort the captured image to the point where the original differential 
properties of the intensities are lost while the visual content of the image is still readable. 
We propose keypoints based on the local structural properties of the images, i.e. the contents 
of scanning windows are approximated by a certain number of structures (parameterised 
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patterns). If the approximation if sufficiently accurate, a keypoint is built and characterised 
by the parameters describing this approximation. The fundamentals of such keypoints are 
presented in Section 2.  
In Section 3, we discuss how to use such approximation-based keypoints for object detection 
(including scale-invariance issues). It is shown that, in spite of using uniform scanning 
windows, objects at arbitrary scales can be matched (within a certain range of scales). 
Section 4 presents exemplary results of the proposed technique and briefly explains the 
further steps of object detection. Conclusions and additional remarks are given in Section 5. 

2. Approximation-based Keypoints 

2.1 Pattern-based Approximations 

Recently (in Sluzek, 2005) a method has been proposed for approximating circular images 
with selected predefined patterns. Although corners and corner-like patterns (e.g. junctions) 
are particularly popular and important, the method is applicable to any parameter-defined 
patterns (both grey-level and colour ones, though the latter are not discussed in this 
chapter).
We assume that a grey-level circular pattern is modelled by several configuration parameters 
and intensity parameters (as shown in exemplary patterns given in Figure 1). Typical 
patterns are specified by 2-3 configuration parameters and 2-3 intensities. The radius R of a 

pattern can be arbitrarily selected. Thus, if a configuration parameter is a length (e.g. β1 in 

Figure 1B, or β1 and β2 in Figure 1C) it should be measured both absolutely and relatively to 
the radius.

A                                      B                                       C                                       D 

Figure 1. Exemplary patterns defined in circles of radius R (configuration parameters 
shown)

Circular patterns are considered templates that would be matched to other circular images 
(or rather to circular windows of a larger image) in order to determine how well that image 
can be approximated by given patterns. In other words, the optimum values of the 
parameters should be found to identify the best pattern approximation. This idea (originally 
applied to edge detection) can be traced back to the 70’s (e.g. Hueckel, 1973). 
In our previous papers (e.g. Sluzek, 2005) it is explained how to build the optimum 
approximations for various template patterns (or, alternatively, how to determine that no 
such approximation exists) using locally computed intensity moments. For several patterns, 

the explicit solutions are given. For example, the orientation angle β2 of a corner 
approximation (see Figure 1A) is obtained from  
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β = ± ±2 01 10arctan2( , )m m  (1) 

while the angular width β1 is computed as  
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For T-junctions (Figure 1D) β1 angular width and β2 orientation angle can found from  
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where m10, m20, etc. are moments of the corresponding orders computed in the coordinate system 

attached to the centre of circular windows. 

The intensities of such approximations can be estimated using other moment-based expressions 

(details in  Sluzek, 2005).

Exemplary circular windows (containing actual corners, T-junctions and more random 
contents) are given in the top row of Figure 2. The bottom row shows the optimum corner or 
T-junction approximations. For some irregular images the approximations do not exist, i.e. 
the corresponding equations have no solutions. 

Figure 2.  Optimum approximations (using corner or T-junction patterns) for selected 
circular images of 15-pixel radius 

It can be straightforwardly proven that results produced by Eqs (1)-(4) are invariant under 
linear illumination changes, and that non-orientation configuration parameters (e.g. angular 

widths β1 in Figs 1A and 1D) are invariant under any 2D similarity transformation. 
Extensive tests have also indicated that the results are stable (unlike, for example, the corner 
approximations discussed by Rosin, 1999) under high- and low-frequency noise, image 
texturization and partial over- and under-saturation of intensities. The same level of stability 
has been confirmed for other circular patterns. 

2.2 Approximation-based Model Keypoints 

Examples in Figure 2 show that even if the approximation exists, there might be a significant 
visual difference between a circular image and its approximation. Thus, if we can measure 
the level of similarity between an image and its approximation, the optimum approximation 
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(i.e. the approximation with the highest similarity) indicates how accurately the pattern of 
interest is actually “seen” in the image. 
Alternative methods of quantifying similarity between an image and its pattern 
approximation have been given in past papers (Sluzek, 2005; Sluzek, 2006). Unfortunately, 
the complexity of both methods is as high as the complexity of building the approximations. 
It has been eventually found that highly satisfactory results can be achieved in a simpler 
way by comparing moments of circular images (these moment have to be computed 
anyway) and moments of their approximations (those moments can be immediately 
calculated from the parameters of the approximation). Thus, the similarity between a 
circular image I and its approximation AI can be quantified using one of the following 
similarity functions:

( ) ( ) ( )
( )

α
− + − + −

= −
+ +

20 20 02 02 11 11
1

20 02 11

( , )
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where mpq and mapq are moments of I and AI (respectively) and K, α are arbitrarily selected 
positive values. 

Figure 3. Top row: a sequence of windows moving across a high-quality corner image. Bottom
row: corresponding corner approximations and the similarity levels (for the last window the 
corner approximation does not exist) 

If at certain location an image contains a fragment similar to the pattern of interest, a high 
level of similarity between the content of a scanning window located there and its 
approximation is expected. However, a high similarity level would be found not only for the 
actual location but also for neighbouring locations. The similarity, nevertheless, reaches a 
local maximum at the location. Figure 3 illustrates this effect. 
Moreover, if an image contains a certain pattern, the similarity between the window content 
and the approximations exists for a certain range of radii of the scanning window and the 
approximations are consistent over this range of radii (instead, the scanning window may 
remain the same, but the image is resized correspondingly over the range of scales). An 
example showing such a consistency both for the configuration and intensity parameters for 
a selected fragment of a digital image (containing a T-junction) is given in Figure 4. 
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Thus, our proposal of the novel type of keypoints is based on the above discussion. 

Figure 4. Top row: a sequence of 15-pixel windows over a gradually enlarged image of a T-
junction. Bottom row: corresponding T-junction approximations and the similarity levels 

Definition 1 
For a given image, pixel (x,y) is (subject to additional requirements explained below) an 
approximation-based model keypoint (shortly model keypoint) defined by a circular pattern TP if 
for the scanning windows located at (x,y): 
1. TP pattern-based approximation exists for each radius R from a certain range (R1, R2).
2. The approximations have consistently similar parameters over the whole range of radii 

(R1, R2).
3. If several neighbouring pixels satisfying (1) and (2) exist, the model keypoint is located 

at the pixel where the similarity between the scanning windows and their 
approximations reaches a local maximum. 

Typically recommended additional requirements (introduced for practical reasons) are as 
follows: 

• Similarities between the window contents and the approximations should be 
sufficiently high (keypoints that inaccurately depict the pattern are less useful than the 
accurate ones). 

• Contrasts between intensity parameters of the produced approximation (see Figure 1) 
should exceed a predefined threshold (keypoints that can be hardly seen usually have 
no practical importance). For 256-level images, the recommended thresholds are in 15-
25 range. 

• The similarity functions can by additionally modified proportionally to the contrasts 
between intensities of the produced approximation (less accurate keypoints with better 
contrasts might be more important than poorly contrasted keypoints of high accuracy). 

• Pattern-specific constraints may exist. For example, the angular width of a corner 
approximation should not be too close to 180º (it becomes an edge then) or to 0º (it 
effectively becomes a line tip). 
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It should be noted that the proposed definition of approximation-based model keypoints is 
not limited by the proposed method of computing the approximations. In fact, the definition 
is applicable to any other technique where image fragments similar to selected patterns of 
interest are searched for. 
We propose to use the above-defined model keypoints for model images of the objects of 
interest. First of all, such keypoints are stable prominent features that are likely to be 
preserved in any other image that contains the same fragmnent of the object even if the 
viewing conditions are changed. Secondly, the number of such high-quality keypoints is 
usually limited (for a single pattern) even in complex objects. However, if several different 
patterns are used, the model image can still contain enough keypoints for a reliable 
detection under partial occlusions. Nevertheless, keypoint candidates from inspected 
images are matched to a limited number of potential counterparts (those of the same pattern 
only). Computational complexity of model keypoint detection is quite high because we have 
to examine each location using scanning windows in numerous scales covering the whole 
range (R1, R2). Although the moment calculations are reusable, the equations for parameter 
estimations should be solved separately for each radius. Since model-building operations 
are usually performed offline, this disadvantage is acceptable. In the next sub-section the 
issue of online keypoint detection is discussed. This would be important in a real-time 
search for objects of interest, i.e. in robotic vision applications. 

      

Figure 5.  Corner-based model keypoints and 90° T-junction-based model keypoints detected 
in simple images of good quality. Scanning window radii range from 5 to 20 pixels 

Figs 5 and 6 show a few examples of images with model keypoints detected for corner and 

90° T-junction patterns. Window radii ranging from 5 to 20 pixels have been used. It should 
be noticed that in simple images of good quality the model keypoints look prominent to 
human vision as well. For more complex images, however, many model keypoints look 
inconspicuously (see Figure 6). Nevertheless, they are also stable features that are 
consistently present (at least many of them) when the image is distorted. 
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A B 

Figure 6. Corner-based model keypoints (A) and 90° T-junction-based model keypoints (B) 
detected in a more complex image of normal quality. Scanning window radii range from 5 
to 20 pixels 

2.3 Scene Keypoints for Object Detection 

Computational complexity of model keypoints may be too high for real-time applications of 
machine vision. If, however, similar keypoints can be detected online in inspected images, 
model keypoints would be very reliable references for matching content of images to the 
available models. Therefore, we propose a simplified variant of model keypoints, so-called 
scene keypoints. The definition of scene keypoints is very similar to Def. 1. 
Definition 2 
For a given image, pixel (x,y) is an approximation-based scene keypoint of radius R (shortly scene 
keypoint) defined by a circular pattern TP if for the scanning windows located at (x,y): 
1. The approximations by TP pattern exist for the scanning radius R and for another 

radius Rsub, where Rsub is a predefined constant percentage of R (the recommended 
value for Rsub is approx. 70% of R).

2. The approximations parameters obtained for R and Rsub radii are similar. 
3. If several neighbouring pixels satisfying (1) and (2) exist, the scene keypoint is located 

at the pixel where the similarity between both scanning windows and their 
approximations reaches a local maximum. 

Usually, the practical constraints defined and explained after Def. 1 are also applicable to 
the above definition. 
Computational complexity of detecting scene keypoints is much lower. Moments of only 
two windows (R and Rsub radius) are computed at each location, and reusability of moment 
calculations both at the current location and for neighbour pixels can be exploited. The 
equations for parameter identification are also used only twice. 

Figs 7 and 8 contain exemplary images with scene keypoints detected (for corners and 90° T-
junctions) using windows of radii 10 and 7 pixels. Obviously, for the same images the 
number is scene keypoints is larger than the number of model keypoints because the 
detection algorithm is much less restrictive. Even though for perfect-quality images 
(compare Figure 5 to Figure 7) we would expect the same keypoints, the presence of 
additional keypoints can be explained by digital effects and mathematical properties of the 
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moments used. Nevertheless, each model keypoint is also always detected as a scene 
keypoint 

      

A B 

Figure 7. Corner-based 90° scene keypoints (A) and T-junction-based scene keypoints (B) 
detected in the images from Figure 5. Scanning window radii are 7 and 10 pixels 

   

A B 

Figure 8. Corner-based scene keypoints (A) and 90° T-junction-based scene keypoints (B) 
detected in the image from Figure 6. Scanning window radii are 7 and 10 pixels 

Matching scene keypoints extracted from analysed images to the database model keypoints 
is the fundamental operation in the proposed object detection framework. The following 
section discusses practical aspects of matching. In particular, the adaptability of the method 
(through selection of thresholds and matching rules) is highlighted. 

3. Matching Keypoints for Object Detection 

Matching keypoints extracted from images to the database keypoints is used in the majority 
of works where the goal is to identify objects that might be partially occluded or 
overlapping (e.g. Lowe, 2004; Mikolajczyk & Schmid, 2004; Islam, 2006; etc.). Unfortunately, 
the numbers of keypoints are usually very large. Typical scenes used for experiments (e.g. 
Islam, 2006) contain hundreds of keypoints, while the number of keypoints in databases 
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with just a few objects captured from a reasonable number of viewpoints can easily reach 
tens of thousands. Thus, the matching procedures become a serious computational problem. 
In order to optimise the matching and to avoid too many potential matches, researches 
either propose multidimensional descriptors of the keypoints and/or use carefully designed 
matching schemes. For example, 128 gradient-based directional descriptors are used in 
Lowe, 2004, while in Islam, 2006 only five moment descriptors are used but an efficient 
hashing technique has been developed to speed up keypoint matching. 
In the proposed method, the abovemetioned problems are significantly simplified. Even if 
the overall number of model keypoints is large, they are divided into different categories 
(defined by different patterns) that can be handled independently. Scene keypoints are 
similarly divided into the same categories (even though the total number of scene keypoints 
for typical images may look larger than the numbers seen in other works). Eventually, each 
scene keypoint is only matched to the model keypoints in the same category which greatly 
reduced the computational efforts and  allows parallelisation of the matching process. 
Descriptors of both model and scene keypoints are obviously parameters of the 
corresponding pattern approximations. Such descriptors can be used more selectively than 
other descriptors (e.g. Koenderink & van Doorn, 1987; Lowe, 2004; Islam, 2006, etc.) that are 
based on general properties of image intensities. Generally, the processes of keypoint 
detection and matching can be adaptively tuned to various applications. Three issues are 
highlighted below (the problem is scale invariance is separately discussed in Subsection 3.1). 
Thresholds
The number of extracted keypoints depends on several threshold values (see Subsections 2.2 
and 2.3) defining the acceptable accuracy of pattern approximations and the minimum 
levels of visual prominence (contrasts) of the scene keypoints. It is possible, for example, to 
demand high accuracy and to accept very low contrasts. Then the method would be able to 
identify only those image fragments that are very accurately approximated by the patterns 
used. However, such fragments may not be even visible to a human eye. Typically, such 
requirements can be used for search in poorly illuminated scenes (detection of frauds in 
images may be another application). Alternatively, only highly-contrasted approximations 
could be accepted as keypoints with less demands regarding the accuracy of the 
approximations. This would be potentially useful for detecting objects that may be seen 
differently than in the database images (but the scenes are expected to be well illuminated). 
Moreover, the level of acceptable differences between the descriptors of model keypoints 
and scene keypoints determines the overall behaviour of the method (high numbers of 
keypoints with possibly many false positives versus high confidence keypoints only). 
Configuration parameters 
The configuration parameters of keypoint approximations have a higher priority as they 
specify geometry of the local structures of the observed scenes. However, the parameters 

defining rotations of the patterns (e.g. β2 angle in Figs 1A, 1B and 1D) should be carefully 
used for matching (unless the search is for objects at certain orientations). Generally, the 
orientation parameters are used only in later stages (see Section 4). Moreover, parameters 

indicating distances (e.g. β1 in Figs 1B and 1C) should be measured both absolutely and 
relatively to the window radius (for scale invariance, more in Subsection 3.1). 
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Figure 9.  Examples of windows matched using different patterns and for diversified 
conditions (optimum approximations also shown for references): 
(A) Low accuracy of approximations acceptable. High similarity for angular widths and 

intensities required. Orientation match ignored. 
(B) Low accuracy of approximations acceptable. High similarity between angular widths 

required. Only relational match for intensities. Orientation match ignored. 
(C) Low accuracy of approximations acceptable. Similarity between angular widths 

ignored.  Only relational match for intensities. Orientation match  required. 
(D) No contrast thresholds in approximations. Low accuracy of approximations 

acceptable. All configuration parameters matched. Intensity matching not used. 
(E) High accuracy of approximations required. All configuration parameters matched. 

Intensities matched proportionally. 
(F) Good accuracy of approximations required. High similarity between line widths 

required. Intensity matching not used 

Intensity parameters 
The intensity parameters of keypoint approximations can be used more selectively that the 
configuration parameters (and their significance is usually lower). In the extreme scenarios 
they are not used in the matching process at all (i.e. only the local structures of the objects 
are important) although the other extreme is to match them accurately (to detect keypoints 
viewed in the same illumination conditions). Typically, either only relations between the 
intensities are verified (e.g. a scene corner keypoint can match a given model corner 
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keypoint if the acute section is lighter than the obtuse one – see Figure 1A) or the 
proportions between the intensities of keypoints should match to a certain level. 
To illustrate the above issues, Figure 9 presents exemplary pairs of circular windows (they 
are in the same scale as scale invariance is discussed in Subsection 3.1) that can be matched 
under various (sometimes not very realistic) assumptions. The windows are already placed 
at the local maxima of similarity functions so that if keypoints are extracted they would be 
found at the same locations. The corresponding pattern approximations are also given to 
highlight that matching is actually performed between the approximations rather than 
between the original contents of windows. 

3.1 Scale Invariance in Keypoint Matching 

Although the examples given in Figure 9 address the issue of matching circular windows of 
the same radius, the same approach can be used for matching scene keypoints of the same 
size. The only difference is that the match should be satisfactorily established both for the 
outer windows (of radius R) and for their sub-windows (of radius Rsub). However, matching 
objects shown in arbitrary scales to their models (i.e. matching scene keypoints to the model 
keypoints) can be done only under additional assumptions. 
If a “visual correspondence” between a fragment of a model image and a fragment in an 
inspected image exists, it can be generally confirmed by a match between the corresponding 
model keypoint (defined for the radius range (R1, R2) – see Def. 1) and the scene keypoint 
(defined by radii R and Rsub ) only when: 

1 2    and     subR R R Rσ σ≤ ≤  (7) 

where σ is the relative scale between the model image and the processed image. 
The relative scale defines how much the size of an object (measured in the image units) has 
been changed against the size of the same object in the model image. The relative scale is 
jointly determined by the image resolution, the camera-object distance and the camera focal 
length. Detailed analysis of relative scale issues in the context of object detection in given in 
(Saiful, 2006). 
In Section 2, we extract exemplary model keypoints using the range of radii (R1, R2) from 5 
to 20 pixels, while exemplary scene keypoints are found using 10 and 15 pixels. From Eq. (7) 
we can immediately calculate that for such conditions images of objects of interest can be 
prospectively matched to the model images if the relative scale changes from 1.3 to 0.33. It 
means that the objects can be only insignificantly enlarged, but the up to three times 
reduced in size. These results correspond to requirements of typical applications (e.g. in 
mobile robotics) where exemplary objects of interest are available so that their images can be 
captured from a close proximity. In the actual search operations, however, those objects 
would be usually seen from a longer distance, i.e. the size reduction in captured images is 
more likely to happen. 

Moreover, the approximation parameters representing distances (e.g. β1 and β2 in Figure 1C) 
should be matched is a special way. They are invariant under usage of variable-radius 
windows in terms of absolute distances, but they are not invariant relatively to the radius. 
Thus, if a scene keypoint is captured in an unknown scale, such parameters cannot be 
directly matched to the values in model keypoints. However, they can be later used for 
verifying the validity of the matches (see Sub-section 4.1). 
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It should be finally remarked that the selection of radius ranges over which the model 
keypoints are built affects both scale-sensitivity and robustness of object detection. With 
wider (R1, R2) the scale invariance of obviously expanded to more scales. However, the 
number of model keypoints can be reduced as the pattern approximations must be stable 
over a wider range of radii. Therefore, the abilities to detect objects (both fully and partially 
visible ones) deteriorate. For occluded objects, fewer locations corresponding to model 
keypoints are seen, while for fully visible objects fewer correspondences can be found to 
verify hypotheses about the presence of objects. Limited (R1, R2) results in the opposite 
effects, i.e. the scale invariance is reduced to a narrower range, but the method is potentially 
able to detect objects under stronger occlusions and/or in poorer visibility conditions. 

4. Framework for Object Detection 

4.1 Hypothesis Building and Verification 

Generally, keypoint-based object detecting algorithms are voting schemes where an object of 
interest is considered found if a sufficient number of keypoints are consistently matched to 
the corresponding model keypoints (e.g. Wolfson & Rigoutsos, 1997). In our method, we 
propose to use such a method already presented in (Islam, 2006). The method has been 
applied to different types of keypoints, but it is also naturally applicable (after minor 
modifications) to the keypoints proposed in this paper. 
To detect presence of the objects of interest in processed images, several steps are performed 
as outlined below. Detailed explanations of the steps are given in (Islam, 2006). 
In the first step, clusters of scene keypoints matching the model keypoints are created using 
Generalised Hough Transform (GHT) similarly to Ulrich et al., 2003. The accumulator of u×v
size is used, where u is the number of objects and v is the number of model images for each 
object. A scene keypoint falls into an accumulator bin if it matches a model keypoint from 
the corresponding image. Usually, scene keypoints match several model keypoints 
(depending on the matching strategy the numbers can be larger or smaller – see Section 3). 
Each bin that collects a sufficient number of scene keypoints should be considered a 
hypothesis regarding a presence of the object (seen from a particular viewpoint). All such 
hypotheses are subsequently verified. It should be noted that eventually several hypotheses 
can be accepted. If they use different sets of points, such multiple hypotheses indicate the 
presence of multiple objects in the scene. If two or more accepted hypotheses use similar 
clusters of scene keypoints and yet produce different results, it means that either partially 
occluded different objects have similar model keypoints in the visible parts, or different 
objects accidentally share similar model keypoints. 
Simple examples illustrating advantageous and disadvantageous aspects of using such 
hypotheses are given in Figure 10. The examples are taken from (Islam, 2006) so that 
different types of keypoints are used, but the same effects can be expected for the proposed 
keypoints as well. 
Hypotheses are verified using the concept of shape graphs and scene graphs. Shape graphs are 
built for model images while scene graphs are built for analysed images; otherwise they are 
identically defined fully connected graphs. Nodes of the graph for a given cluster of 
keypoints represent the keypoints (scene keypoints for a scene graph and the matching 
model keypoints for a shape graph). Each edge of the graph is labelled by the distance 
between the adjoined nodes (keypoints). 
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An iterative algorithm is used to find the maximum sub-graphs of a scene-graph and a 
shape-graph for which all corresponding pairs of edges have approximately proportional 
label values. This iterative algorithm converges very fast and in most cases only a few 
iterations are needed. The generated sub-graphs specify the final set of scene and model 
keypoints used to confirm the validity of the hypothesis. The selected keypoints not only 
match the model keypoints but also their spatial distributions are similar. 

A B 

C D 
Figure 10. Model images (A and C) successfully matched to test images (B and D, 
respectively). Clusters of matching keypoints are shown 

The minimum number of nodes in the subgraphs (i.e. the number of consistently matched 
keypoints) required for confirmation of the object’s identity may depend on the set of objects 
under consideration. However, our experiments and statistical analysis show that usually 5 
keypoints are enough. It can be noticed, that the incorrect match between Figure 10C and 
Figure 10D is confirmed only by three keypoints. 
The hypotheses verification can be additionally supported by the analysis of configuration 
parameters of scene keypoints. In particular, only those keypoints from a single cluster 
would be used for building a scene-graph which are consistently rotated with respect to the 
corresponding model keypoints (see the last column of Table 2). This is a very powerful 
constraint that greatly reduces the complexity of the hypothesis verification procedure. 
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4.2 Exemplary Results 

The following example illustrates the process of object detection (i.e. hypothesis verification) 
briefly explained above. Selected issues regarding keypoint matching are also highlighted. 

A B 

C D 
Figure 11. The model image (A) and the test image (B). Corner scene keypoints shown in (C) 

and 90° T-junction scene keypoints are given in (D) 

An exemplary model image and a test image are given in Figure 11. Location of corner scene 

keypoints and 90° T-junction scene keypoints detected in the test image are also shown. 
The selected example deliberately uses a piece of cloth as the object of interest to show that 
the method has a potential to deal with some non-rigid objects as well. Match results have 
been obtained using only two types of scene keypoints shown in Figs 11C and 11D. To 
compensate for non-rigidity of the object, the shape/scene graphs labels have been 
compared only for the longest edges (so that minor local shape distortions do not affect the 
hypothesis verification). The additional assumptions are as follows: 

• Intensity parameters in scene keypoints and the corresponding model keypoints differ 
approximately similarly. 

• Angular widths in the corner scene keypoints are similar to the angles in the matching 
model keypoints. 

• All scene keypoints should be similarly rotated relatively to the orientations of 
corresponding model keypoints. 
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Figure 12. Matched keypoints in the model and test images (⊕ corner keypoints,  90° T-
junction keypoints 

A D E I J Y 
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Table 1. Distance ratios for the corresponding fragment of the shape graph (denominator 
values) and the  scene graph (numerator values) for Figure 12 images 

Figure 12 presents pairs of finally matched keypoints, and Table 1 shows a fragment of the 
shape/scene graph (only the most distant keypoints are included). Although certain 
variations of the ratio between the corresponding distances in the shape and scene graphs 
can be noticed, the average ratio is consistently near 0.6 which can be assumed the 
approximation of the relative scale between the model image and the test one. This value 
corresponds to the visual assessment of Figs 11A and 11B. 
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Corner approximations 

Keypoint 
type Intensities

Angular
width

Orientation
difference 

model 187 and 57 134°
A scene 160 and 60 149°

32°

model 194 and 46 90°
B scene 165 and 60 104°

24°

model 186 and 45 153°
C scene 151 and 44 157°

25°

model 187 and 48 147°
D scene 135 and 38 146°

29°

model 121 and 18 140°
E scene 91 and 20 154°

41°

model 162 and 35 149°
F scene 136 and 56 152°

36°

model 162 and 38 151°
G scene 117 and 21 154°

36°

model 171 and 53 142°
H scene 137 and 31 153°

24°

model 154 and 10 142°
I scene 123 and 7 151°

26°

model 174 and 48 145°
J scene 143 and 35 156°

37°

model 26 and 172 158°
K scene 19 and 149 158°

29°

model 20 and 169 158°
L scene 14 and 139 160°

32°

90° T-junction approximations 

Keypoint 
type Intensities

Orientation
difference 

model 91, 45 and 179 
X scene 95, 61 and 136 

41°

model 142, 4 and 73 
Y scene 138, 9 and 75 

32°

Table 2. Approximation parameters for the model and scene keypoints used for the match 
shown in Figure 12 

As a further reference, Table 2 compares parameters of corner approximations and T-
junction approximations obtained for model and scene keypoints used for the hypothesis 
confirmation. It shows a relatively high consistency for the orientation differences (ranging 

from 24° to 42°) for all keypoints and high level of similarity for the angular widths of corner 
keypoints. The differences between the corresponding intensities are wider (which is 
unavoidable for images captured in different conditions) but they are consistent as well. In 
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particular, if the intensities differ they change in a similar way for all intensities of a given 
approximation. 

5. Concluding Remarks 

We have presented principles and exemplary results of a novel technique for detection of 
known objects in inspected images. The method is based on new types of keypoints which 
are the focus of this paper. The proposed keypoints are significantly different from typical 
gradient-based keypoints used in the alternative techniques. Our keypoints are based on 
moment-derived pattern approximations of circular patches. Though currently only a few 
patterns are used (i.e. corners, T-junctions and round tips of thick lines) a wide range of 
other patterns can be added using the approach presented in our previous works (e.g. 
Sluzek, 2005). The keypoints are characterised by intensity and configuration descriptors 
(e.g. angular widths and orientation of the approximations) that are generally robust under 
illumination changes, noise, texturisation, and other typical real-world effects. More 
importantly, the keypoints are also scale-invariant within a certain range of scales. This has 
been obtained by using two different methods for keypoint building in model images and in 
analysed images. 
Model images of database (known) objects are processed in multiple scales in order to 
identify model keypoints that are invariantly characterised within the assumed range of 
scales. The operation may be computationally expensive, but it is typically performed either 
offline or in the preliminary phase of deployment when timing constraints are not critical. 
However, the scene keypoints extracted from inspected image are based (unlike keypoints 
used in other scale-invariant techniques) on a single-scale image scanning and processing. 
Additionally, the efficiency of keypoint matching is improved by a simultaneous usage of 
several keypoint types. Even if the overall number of keypoints (both model and scene ones) 
is comparable to the numbers typically extracted and used by other methods, scene 
keypoints of a certain category are matched only against the corresponding subset of model 
keypoints of the same category. Therefore, the computational costs of image analysis are 
relatively low and the method is suitable for real-time applications (e.g. for exploratory 
robotics which is considered the primary application area). 
Several improvements of the method are currently envisaged First, we propose to enhance 
the efficiency of keypoint matching by adding (without any significant computational costs) 
more keypoint descriptors. For that purpose, moment-based expressions invariant under 
similarity transformations and linear intensity changes are considered. Although generally 
such invariants (proposed for colour images and areas of arbitrary shapes in Mindru et al., 
2004) are rather complex, we intend to apply them to circular images only. For circular 
images, the following expressions have been found invariant under similarity 
transformations and linear intensity changes. For other shapes of the processed areas they 
are not invariant, however. 

( )

2 2
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2 2 2

10 01

( ) 4m m m

R m m

− +

+

     and    
2

20 02 00

2 2

10 01

2( )+ −

+
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 (8) 

where R is the circle radius. 
Another prospective continuation of the method is to use colour equivalents of the proposed 
keypoints (with three colour channels processed separately or jointly). We also consider 
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hardware accelerators for the moment calculations. Selected moment-computing procedures 
have been already implemented in FPGA as a feasibility study. The results indicate that with 
a support of an FPGA accelerator a real-time detection of scene keypoints in a TV video 
stream is feasible. 
The primary area of intended applications for the proposed method is intelligent robotics 
(exploratory robots in particular). The ultimate goal would be a system that can be shown a 
physical “known object” and subsequently such objects present in complex cluttered scenes 
can be detected. However, other areas of applications should be highlighted as well. As 
some recently published results suggest (e.g. Prasad et al., 2004) image retrieval and/or 
search in visual databases seems to be a potential application area. Using the proposed 
keypoints, not only the search for known objects or images can be conducted, but also some 
image-related frauds can be revealed (e.g. detection of almost invisible highly accurate 
approximations may indicate image doctoring).  
Surveillance and/or security systems are another envisaged area for the developed 
technique. Since such systems are equipped with more and more embedded intelligence, a 
system that can identify “known intruders” or “particularly dangerous intruders” is a 
possible scenario. Development of a sensor network with vision capabilities that can 
eventually incorporate the proposed method has been reported in our recent papers (e.g. 
Sluzek et al., 2005). 
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