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ViSyR: a Vision System for 
Real-Time Infrastructure Inspection 

Francescomaria Marino1 and Ettore Stella2

1Dipartimento di Elettrotecnica ed Elettronica (DEE) Politecnico di Bari 
2Istituto di Studi sui Sistemi Intelligenti per l'Automazione (ISSIA) CNR  

Italy

1. Introduction  

The railway maintenance is a particular application context in which the periodical surface 
inspection of the rolling plane is required in order to prevent any dangerous situation. 
Usually, this task is performed by trained personnel that, periodically, walks along the 
railway network searching for visual anomalies. Actually, this manual inspection is slow, 
laborious and potentially hazardous, and the results are strictly dependent on the capability 
of the observer to detect possible anomalies and to recognize critical situations.  
With the growing of the high-speed railway traffic, companies over the world are interested 
to develop automatic inspection systems which are able to detect rail defects, sleepers’ 
anomalies, as well as missing fastening elements. These systems could increase the ability in 
the detection of defects and reduce the inspection time in order to guarantee more 
frequently the maintenance of the railway network.  
This book chapter presents ViSyR: a patented fully automatic and configurable FPGA-based 
vision system for real-time infrastructure inspection, able to analyze defects of the rails and 
to detect the presence/absence of the fastening bolts that fix the rails to the sleepers.  
Besides its accuracy, ViSyR achieves impressive performance in terms of inspection velocity. 
In fact, it is able to perform inspections approximately at velocities of 450 km/h (Jump 
search) and of 5 km/h (Exhaustive search), with a composite velocity higher than 160 km/h 
for typical video sequences. Jump and Exhaustive searches are two different modalities of 
inspection, which are performed in different situations. This computing power has been 
possible thanks to the implementation onto FPGAs. ViSyR is not only affordable, but even 
highly flexible and configurable, being based on classifiers that can be easily reconfigured in 
function of different type of rails. 
More in detail, ViSyR's functionality can be described by three blocks: Rail Detection & 
Tracking Block (RDT&B), Bolts Detection Block (BDB) and Defects Analysis Block (DAB).  

• RD&TB is devoted to detect and track the rail head in the acquired video. So doing it 
strongly reduces the windows to be effectively inspected by the other blocks. It is based 
on the Principal Component Analysis and the Single Value Decomposition. This 
technique allows the detection of the coordinates of the center of the rail analyzing a 
single row of the acquired video sequence (and not a rectangular window having more 
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rows) in order to keep extremely low the time for I/O. Nevertheless, it allows an 
accuracy of 98.5%.  

• BDB, thanks to the knowledge of the rail geometry, analyses only those windows 
candidate to contain the fastening elements. It classifies them in the sense of 
presence/absence of the bolts. This classification is performed combining in a logical 
AND two classifiers based on different preprocessing. This “cross validated” response 
avoids (practically-at-all) false positive, and reveals the presence/absence of the 
fastening bolts with an accuracy of 99.6% in detecting visible bolts and of 95% in 
detecting missing bolts. The cases of two different kinds of fastening elements (hook 
bolts and hexagonal bolts) have been implemented.  

• DAB focuses its analysis on a particular class of surface defects of the rail: the so-called 
rail corrugation, that causes an undulated shape into the head of the rail. To detect (and 
replace) corrugated rails is a main topic in railways maintenance, since in high-speed 
train, they induce harmful vibrations on wheel and on its components, reducing their 
lifetime. DAB mainly realizes a texture analysis. In particular, it derives as significant 
attributes (features) mean and variance of four different Gabor Filter responses, and 
classifies them using a Support Vector Machine (SVM) getting 100% reliability in 
detecting corrugated rails, as measured in a very large validation set. The choice of 
Gabor Filter is derived from a comparative study about several approaches to texture 
feature extraction (Gabor Filters, Wavelet Transforms and Gabor Wavelet Transforms). 

Details on the artificial vision techniques basing the employed algorithms, on the parallel 
architectures implementing RD&TB and BDB, as well as on the experiments and test 
performed in order to define and tune the design of ViSyR are presented in this chapter. 
Several Appendixes are finally enclosed, which shortly recall theoretical issues recalled 
during the chapter. 

2. System Overview  

ViSyR acquires images of the rail by means of a DALSA PIRANHA 2 line scan camera 
[Matrox] having 1024 pixels of resolution (maximum line rate of 67 kLine/s) and using the 
Cameralink protocol [MachineVision]. Furthermore, it is provided with a PC-CAMLINK 
frame grabber (Imaging Technology CORECO) [Coreco]. In order to reduce the effects of 
variable natural lighting conditions, an appropriate illumination setup equipped with six 
OSRAM 41850 FL light sources has been installed too. In this way the system is robust 
against changes in the natural illumination. Moreover, in order to synchronize data 
acquisition, the line scan camera is triggered by the wheel encoder. This trigger sets the 
resolution along y (main motion direction) at 3 mm, independently from the train velocity; 
the pixel resolution along the orthogonal direction x is 1 mm. The acquisition system is 
installed under a diagnostic train during its maintenance route. A top-level logical scheme 
of ViSyR is represented in Figure 1, while Figure 2 reports the hardware and a screenshot of 
ViSyR's monitor. 
A long video sequence captured by the acquisition system is fed into Prediction Algorithm 
Block (PAB), which receives a feedback from BDB, as well as the coordinates of the railways 
geometry by RD&TB. PAB exploits this knowledge for extracting 24x100 pixel windows 
where the presence of a bolt is expected (some examples are shown in Figure 3).  
These windows are provided to the 2-D DWT Preprocessing Block (DWTPB). DWTPB 
reduces these windows into two sets of 150 coefficients (i.e., D_LL2 and H_LL2), resulting 
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respectively from a Daubechies DWT (DDWT) and a Haar DWT (HDWT). D_LL2 and H_LL2

are therefore provided respectively to the Daubechies Classifier (DC) and to the Haar 
Classifier (HC). The output from DC and HC are combined in a logical AND in order to 
produce the output of MLPN Classification Block (MLPNCB). MLPNC reveals the 
presence/absence of bolts and produces a Pass/Alarm signal that is online displayed (see 
the squares in Figure 2.b), and -in case of alarm, i.e. absence of the bolts- recorded with the 
position into a log file. 

Sampling Block 

(SB)

Gabor Filters Block 

(4 orientations) 

(GFB)

Fetarues Extraction 

Block 

(FEB)

SVM Block 

(SVMB)
4 Filter  
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Figure 1. ViSyR's Functional diagram. Rounded blocks are implemented in a FPGA-based 
hardware, rectangular blocks are currently implemented in a software tool on a general 
purpose host 

RD&TB employs PCA followed by a Multilayer Perceptron Network Classification Block 
(MLPNCB) for computing the coordinates of the center of the rail. More in detail, a 
Sampling Block (SB) extracts a row of 800 pixels from the acquired video sequence and 
provides it to the PCA Block (PCAB). Firstly, a vector of 400 pixels, extracted from the above 
row and centered on xc (i.e., the coordinate of the last detected center of the rail head) is 
multiplied by 12 different eigenvectors. These products generate 12 coefficients, which are 
fed into MLPNCB, which reveals if the processed segment is centered on the rail head. In 
that case, the value of xc is updated with the coordinate of the center of the processed 400-
pixels vector and online displayed (see the cross in Figure 2.b). Else, MLPNCB sends a 
feedback to PCAB, which iterates the process on another 400-pixels vector further extracted 
from the 800-pixel row.
The detected values of xc are also fed back to various modules of the system, such as SB, 
which uses them in order to extract from the video sequence some windows of 400x128 
pixels centered on the rail to be inspected by the Defect Analysis Block (DAB): DAB 
convolves these windows by four Gabor filters at four different orientations (Gabor Filters 
Block). Afterwards, it determines mean and variance of the obtained filter responses and 
uses them as features input to the SVM Classifier Block which produces the final report 
about the status of the rail. 
BDB and RD&TB are implemented in hardware on an a Xilinx Virtex IITM Pro XC2VP20 
(embedded into a Dalsa Coreco Anaconda-CL_1 Board) and on an Altera StratixTM EP1S60 
(embedded into an Altera PCI-High Speed Development Board - Stratix Professional 
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Edition) FPGAs, respectively. SB, PAB and DAB are software tools developed in MS Visual 
C++ 6.0 on a Work Station equipped with an AMD Opteron 250 CPU at 2.4 GHz and 4 GB 
RAM.

(a)

(b)
Figure 2. ViSyR: (a) hardware and (b) screenshot 

Figure 3. Examples of 24x100 windows extracted from the video sequence containing 
hexagonal headed bolts. Resolutions along x and y are different because of the acquisition 
setup 
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3. Rail Detection & Tracking 

RD&TB is a strategic core of ViSyR, since "to detect the coordinates of the rail" is 
fundamental in order to reduce the areas to be analyzed during the inspection. A rail 
tracking system should consider that:  

• the rail may appear in different forms (UIC 50, UIC 60 and so on);  

• the rail illumination might change; 

• the defects of the rail surface might modify the rai geometry;  

• in presence of switches, the system should correctly follow the principal rail. 
In order to satisfy all of the above requirements, we have derived and tested different 
approaches, respectively based on Correlation, on Gradient based neural network, on 
Principal Component Analysis (PCA, see Appendix A) with threshold and a PCA with 
neural network classifier. 
Briefly, these methods extract a window ("patch") from the video sequence and decide if it is 
centred or not on the rail head. In case the "patch" appears as "centred on the rail head", its 
median coordinate x is assigned to the coordinate of the centre of the rail xc, otherwise, the 
processing is iterated on a new patch, which is obtained shifting along x the former "patch". 
Even having a high computational cost, PCA with neural network classifier outperformed 
other methods in terms of reliability. It is worth to note that ViSyR’s design, based on a 
FPGA implementation, makes affordable the computational cost required by this approach. 
Moreover, we have experienced that PCA with neural network classifier is the only method 
able to correctly perform its decision using as "patches" windows constituted by a single 
row of pixels. This circumstance is remarkable, since it makes the method strongly less 
dependent than the others from the I/O bandwidth. Consequently, we have embedded into 
ViSyR a rail tracking algorithm based on PCA with MLPN classifier. This algorithm consists 
of two steps:  

• a data reduction phase based on PCA, in which the intensities are mapped into a 
reduced suitable space (Component Space); 

• a neural network-based supervised classification phase, for detecting the rail in the 
Component Space. 

3.1 Data Reduction Phase. 

Due to the setup of ViSyR's acquisition, the linescan TV camera digitises lines of 1024 pixels. 
In order to detect the centre of the rail head, we discarded the border pixels, considering 
rows of only 800 pixels. In the set-up employed during our experiments, rail having widths 
up to 400 pixels have been encompassed. 
Matrices A and C were derived according to equations (A.1) and (A.4) in Appendix A, using 
450 examples of vectors. We have selected L=12 for our purposes, after having verified that 
a component space of 12 eigenvectors and eigenvalues was sufficient to represent the 91% of 
information content of the input data. 

3.2 Classification Phase 

The rail detection stage consists of classifying the vector a’ -determined as shown in (A.8)- in 
order to discriminate if it derives from a vector r’ centred or not on the rail head. We have 
implemented this classification step using a Multi Layer Perceptron Neural (MLPN) 
Network Classifier, since: 
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• neural network classifiers have a key advantage over geometry-based techniques 
because they do not require a geometric model for the object representation [A. Jain et 
al. (2000)]; 

• contrarily to the id-tree, neural networks have a topology very suitable for hardware 
implementation.

Inside neural classifiers, we have chosen the MLP, after having experimented that they are 
more precise than their counterpart RBF in the considered application, and we have adopted 
a 12:8:1 MLPN constituted by three layers of neurons (input, hidden and output layer), 
respectively with 12 neurons n1,m (m=0..11) corresponding to the coefficients of a’ derived by  
r’ according to (A.7); 8 neurons n2,k (k=0..7): 
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and a unique neuron n3,0 at the output layer (indicating a measure of confidence on the fact 
that the analyzed vector r’ is centered or not on the rail head): 
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In (1) and (2), the adopted activation function f(x), having range ]0, 1[, has been: 
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while the weights w1,m,k and w2,k,0 have been solved using the Error Back Propagation 
algorithm with an adaptive learning rate [Bishop. (1995)] and a training set of more than 800 
samples (see Paragraph 7.3). 

3.3 Rail Detection and Tracking Algorithm  

The Rail Detection and Tracking Algorithm consists of determining which extracted vector 
r’ is centred on the rail.  
Instead of setting the classifier using a high threshold at the last level and halting the 
research as soon as a vector is classified as centred on the rail ("rail vector"), we have 
verified that better precision can be reached using a different approach.  
We have chosen a relatively low threshold (=0.7). This threshold classifies as "rail vector" a 
relatively wide set of vectors r’, even when these ones are not effectively centred on the rail 
(though they contain it). By this way, in this approach, we halt the process not as soon as the 
first "rail vector" has been detected, but when, after having detected a certain number of 
contiguous "rail vectors", the classification detects a "no rail". At this point we select as true 
"rail vector" the median of this contiguous set. In other words, we accept as "rail vector" a 

relatively wide interval of contiguous vectors, and then select as xC the median of such 

interval.
In order to speed-up the search process, we analyse each row of the image, starting from a 

vector r’ centered on the last detected coordinate of the rail centre xC. This analysis is 

performed moving on left and on right with respect to this origin and classifying the 
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vectors, until the begin (xB) and the end (xE) of the "rail vectors" interval are detected. The 

algorithm is proposed in Figure 4. 

xC = 512;       // presetting of the coordinate of the centre of the rail 
do Start image sequence to End image sequence;
    set r’ (400-pixel row) centered on xC;
    do:
        determine a’ (12 coefficients) from r’
        input a’ to the classifier and classify r’  
        set the new r’ shifting 1-pixel-left the previous r’ 
    while(r' is classified as rail) 
// exit from do-while means you have got the begin of the "rail vectors" interval 
    xB = median coordinate of r’;      
    r’ (400-pixel row) centred on xC;
    do:
        determine a’ (12 coefficients) from r’
        input a’ to the classifier and classify r’ 
        set the new r’ shifting 1-pixel-right the previous r’
    while(r' is classified as rail) 
// exit from do-while means you have got the end of the "rail vectors" interval 
    xE = median coordinate of r’;      
    output xC = (xB+xE)/2;
end do

Figure 4. Algorithm for searching the rail center coordinates 

4. Bolts Detection 

Usually two kinds of fastening elements are used to secure the rail to the sleepers: 
hexagonal-headed bolts and hook bolts. They essentially differ by shape: the first one has a 
regular hexagonal shape having random orientation, the second one has a more complex 
hook shape that can be found oriented only in one direction.  
In this paragraph the case of hexagonal headed bolts is discussed. 
It is worth to note that they present more difficulties than those of more complex shapes 
(e.g., hook bolts) because of the similarity of the hexagonal bolts with the shape of the stones 
that are on the background. Nevertheless, detection of hook bolts is demanded in Paragraph 
7.6.
Even if some works have been performed, which deal with railway problems -such as track 
profile measurement (e.g., [Alippi et al. (2000)]), obstruction detection (e.g., [Sato et al.
(1998)]), braking control (e.g., [Xishi et al. (1992)]), rail defect recognition (e.g., [Cybernetix 
Group], [Benntec Systemtechnik Gmbh]), ballast reconstruction (e.g., [Cybernetix Group]), 
switches status detection (e.g., [Rubaai (2003)]), control and activation of signals near 
stations (e.g., [Yinghua (1994)), etc.- at the best of our knowledge, in literature there are no 
references on the specific problem of fastening elements recognition. The only found 
approaches, are commercial vision systems [Cybernetix Group], which consider only 
fastening elements having regular geometrical shape (like hexagonal bolts) and use 
geometrical approaches to pattern recognition to resolve the problem. Moreover, these 
systems are strongly interactive. In fact, in order to reach the best performances, they 
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require a human operator for tuning any threshold. When a different fastening element is 
considered, the tuning phase has to be re-executed. 
Contrariwise, ViSyR is completely automatic and needs no tuning phase. The human 
operator has only the task of selecting images of the fastening elements to manage. No 
assumption about the shape of the fastening elements is required, since the method is 
suitable for both geometric and generic shapes.  

ViSyR’s bolts detection is based on MLPNCs and consists of:

• a prediction phase for identifying the image areas (windows) candidate to contain the 
patterns to be detected; 

• a data reduction phase based on DWT; 

• a neural network-based supervised classification phase, which reveals the 
presence/absence of the bolts. 

4.1 Prediction Phase  

To predict the image areas that eventually may contain the bolts, ViSyR calculates the 
distance between two adjacent bolts and, basing to this information, predicts the position of 
the windows in which the presence of the bolt should be expected. 
Because of the rail structure (see Figure 5), the distance Dx between rail and fastening bolts 
is constant -with a good approximation- and a priori known.  
By this way, the RD&TB's task, i.e., the automatic railway detection and tracking is 
fundamental in determining the position of the bolts along the x direction. In the second 
instance PAB forecasts the position of the bolts along the y direction. To reach this goal, it 
uses two kinds of search:  

• Exhaustive search; 

• Jump search. 

Dy

Dx Dx

Left  
Bolts Right  

Bolts

Figure 5. Geometry of a rail. A correct expectation for Dx and Dy notably reduces the 
computational load 

In the first kind of search, a window exhaustively slides on the areas at a (well-known) 
distance Dx from the rail-head coordinate (as detected by RD&TB) until it finds 
contemporaneously (at the same y) the first occurrence of the left and of the right bolts. At 
this point, it determines and stores this position (A) and continues in this way until it finds 
the second occurrence of both the bolts (position B). Now, it calculates the distance along y
between B and A (Dy) and the process switches on the Jump search. In fact, the distance 
along y between two adjacent sleepers is constant ad known. Therefore, the Jump search 
uses Dy to jump only in those areas candidate to enclose the windows containing the 
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hexagonal-headed bolts, saving computational time and speeding-up the performance of the 
whole system. If, during the Jump search, ViSyR does not find the bolts in the position 
where it expects them, then it stores the position of fault (this is cause of alarm) in a log-file 
and restarts the Exhaustive search. A pseudo-code describing how Exhaustive search and 
Jump search commutate is shown in Figure 6. 

do Start image sequence to End image sequence;
  repeat
    Exhaustive search;
    if found first left and right bolt store this position (A);
  until found second left and right bolt;
  store this position (B);
  determine the distance along y between B and A;
  repeat 
    Jump search
  until the bolts are detected where they were expected;
end do

Figure 6. Pseudo code for the Exhaustive search - Jump search commutation 

4.2 Data Reduction Phase  

For reducing the input space size, ViSyR uses a features extraction algorithm that is able to 
preserve all the important information about input patterns in a small set of coefficients. 
This algorithm is based on 2-D DWTs [Daubechies (1988), Mallat (1989), Daubechies (1990 
a), Antonini et al. (1992)], since DWT concentrates the significant variations of input patterns 
in a reduced number of coefficients. Specifically, both a compact wavelet introduced by 
Daubechies [Daubechies (1988)], and the Haar DWT (also known as Haar Transform [G. 
Strang, & T. Nuguyen (1996)]) are simultaneously used, since we have verified that, for our 
specific application, the logical AND of these two approaches avoids -almost completely- 
the false positive detection (see Paragraph 7.5). 
In pattern recognition, input images are generally pre-processed in order to extract their 
intrinsic features. We have found [Stella et al. (2002), Mazzeo et al. (2004)] that orthonormal 
bases of compactly supported wavelets introduced by Daubechies [Daubechies (1988)] are 
an excellent tool for characterizing hexagonal-headed bolts by means of a small number of 
features1 containing the most discriminating information, gaining in computational time. As 
an example, Figure 7 shows how two decomposition levels are applied on an image of a 
bolt.

LL2

HL2

LH2

HH2 LH1

HL1 HH1

Figure 7. Application of two levels of 2-D DWT on a subimage containing an hexagonal-
headed bolt 

                                                                
1 These are the coefficients of the LL subband of a given decomposition level l; l depending on the image 
resolution and equal to 2 in the case of VISyR's set-up. 



Vision Systems: Applications 122

Due to the setup of ViSyR’s acquisition, PAB provides DWTPB with windows of 24x100 
pixels to be examined (Figure 3). Different DWTs have been experimented varying the 
number of decomposition levels, in order to reduce this number without losing in accuracy. 
The best compromise has been reached by the LL2 subband consisting only of 6x25 
coefficients. Therefore, BDB has been devoted to compute the LL2 subbands both of a Haar 
DWT [G. Strang, & T. Nuguyen (1996)] and of a Daubechies DWT, since we have found that 
the cross validation of two classifiers (processing respectively D_LL2 and H_LL2, i.e., the 
output of DDWT and HDWT, see Figure 1) practically avoids false positive detection (see 
Paragraph 7.5). BDB, using the classification strategy described in the following Paragraph, 
gets an accuracy of 99.9% in recognizing bolts in the primitive windows.  

4.3 Classification Phase  

ViSyR’s BDB employs two MLPNCs (DC and HC in Figure 1), trained respectively for 
DDWT and HDWT. DC and HC have an identical three-layers topology 150:10:1 (they differ 
only for the values of the weights). In the following, DC is described; the functionalities of 
HC can be straightforwardly derived.

The input layer is composed by 150 neurons '_ mnD  (m=0..149) corresponding to the 

coefficients D_LL2(i, j) of the subband D_LL2 according to: 

( )25mod,25/_ 2
' mmnD m D_LL=  (4) 

The hidden layer of DC consists of 10 neurons ''_ knD  (k=0..9); they derive from the 

propagation of the first layer according to: 
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whilst the unique neuron '''

0_ nD  at the output layer is given by: 
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4where '
,_ kmwD  and ''

0,_ kwD  are the weights respectively between first/second and 

second/third layers. The activation function ( )xf  is the same as (3). 

In this scenario, '''

0_ nD  ranges from 0 to 1 and indicates a measure of confidence on the 

presence of the object to detect in the current image window, according to DC.  

The outputs from DC and HC ( '''

0_ nD  and '''

0_ nH ) are combined as follows: 

( ) ( )9.0_9.0_Presence '''
0

'''
0 >>= nHANDnD (7)

in order to produce the final output of the Classifier. 
The biases and the weights were solved using the Error Back Propagation algorithm with an 
adaptive learning rate [Bishop (1995)] and a training set of more than 1,000 samples (see 
Paragraph 7.3).
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5. Defects Analysis Block 

The Defects Analysis Block, at the present, is able to detect a particular class of surface 
defects on the rail, the so-called rail corrugation. As it is shown in some examples of Figure 
8.b, this kind of defect presents a textured surface. 

      
 (a)  (b) 

Figure 8. (a) Examples of rail head; (b) Examples of rail head affected by corrugation 

A wide variety of texture analysis methods based on local spatial pattern of intensity have 
been proposed in literature [Bovik et al. (1990), Daubechies (1990 b)]. Most signal processing 
approaches submit textured image to a filter bank model followed by some energy 
measures. In this context, we have tested three filtering approaches to texture feature 
extraction that in artificial vision community have already provided excellent results [Gong 
et al. (2001), Jain et al. (2000)] (Gabor Filters, Wavelet Transform and Gabor Wavelet 
Transform), and classified the extracted features by means both of a k-nearest neighbor 
classifier and of a SVM, in order to detect the best combination "feature 
extractor"/"classifier".  
DAB is currently a "work in progress". Further steps could deal with the analysis of other 
defects (e.g., cracking, welding, shelling ,blob, spot etc.). Study of these defects is already in 
progress, mainly exploiting the fact that some of them (as cracking, welding, shelling) 
present a privileged orientation. Final step will be the hardware implementation even of 
DAB onto FPGA. 

5.1 Feature Extraction  

For our experiments we have used a training set of 400 rail images of 400x128 pixels 
centered on the rail-head, containing both “corrugated” and "good" rails, and explored three 
different approaches, which are theoretically shortly recalled in Appendixes B, C and D. 
Gabor Filters. In our applicative context, we have considered only circularly symmetric 
Gaussians (i.e., σσσ == yx

), adopting a scheme which is similar to the texture 

segmentation approach suggested in [Jain & Farrokhnia (1990)], approximating the 
characteristics of certain cells in the visual cortex of some mammals [Porat & Zeevi (1988)].  

We have submitted the input image to a filter Gabor bank with orientation 0, π/4, π/2 and 

3π/4 (see Figure 9), σ=2 and radial discrete frequency F= 322  to each example of the 

training set. We have discarded other frequencies since they were found too low or too high 
for discriminating the texture of our applicative context. 
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a b 

c d 

Figure 9. Gabor Filters at different orientations: (a) 0; (b) π/4; (c) π/2; (d) 3π/4

The resulting images ( )yxi ,θ
 (see Figure 10) represent the convolution of the input image 

( )yxi , with the Gabor filters ),( yxhθ
 where sub index θ indicates the orientation: 

( ) ( ) ( )yxiyxhyxi ,,, ∗= θθ
(8)

Figure 10. Examples of Gabor Filters (F= 322 , σ=2) applied to a corrugated image 

Wavelet Transform. We have applied a “Daubechies 1” or “haar” Discrete Wavelet 
transform to our data set, and we have verified that, for the employed resolution, more than 
three decomposition levels will have not provided additional discrimination.  
Figure 11 shows how three decomposition levels are applied on an image of a corrugated 
rail.
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Figure 11. Example of “Daubechies 1” Discrete Wavelet transform (three decomposition 
levels) of the corrugated image 

Gabor Wavelet Transform. A lot of evidence exists for the assumption that representation 
based on the outputs of families of Gabor filters at multiple spatial locations, play an 
important role in texture analysis. In [Ma & Manjunath (1995)] is evaluated the texture 
image annotation by comparison of various wavelet transform representation, including 
Gabor Wavelet Transform (GWT), and found out that, the last one provides the best match 
of the first stage of visual processing of humans. Therefore, we have evaluated Gabor 
Wavelet Transform also because it resumes the intrinsic characteristics both Gabor filters 
and Wavelet transform. 

.

.

.

.

.

.

Jet il,n(x, y)

Gabor Wavelet filter bank

corrugated image i(x, y)

Figure 12. Example of Gabor Wavelet transform of the corrugated image 

We have applied the GWT, combining the parameters applied to the Gabor Filter case and 

to the DWT case, i.e., applying three decomposition levels and four orientations (0, π/2, 3/4 
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π and π, with σ=2 and radial discrete frequency F= 322 ). Figure 12 shows a set of 

convolutions of an image affected by corrugation with wavelets based kernels. The set of 
filtered images obtained for one image is referred to as a “jet”. 
From each one of the above preprocessing techniques, we have derived 4 (one for each 
orientation of Gabor filter preprocessing), 9 (one for each subband HH, LH, HL of the three 
DWT decomposition levels) and 12 pre-processed images ( )yxip ,  (combining the 3 scales 

and 4 orientations of Gabor Wavelet Transform preprocessing). Mean and variance: 

( )dxdyyxipp = ,μ (9)

( ) dxdyyxi ppp

2

),( −= μσ  (10) 

of each pre-processed image ( )yxip ,  have been therefore used to build the feature vectors to 

be fed as input to the classification process.  

5.2 Classification  

We have classified the extracted features using two different classifiers as described in 
Paragraph 7.8. Considering the results obtained both by k-Nearest Neighbour and Support 
Vector Machine (see Appendix E), Gabor filters perform better compared to others features 
extractors. In this context, we have discarded Neural Networks in order to better control the 
internal dynamic. 
Moreover, Gabor filter bank has been found to be preferred even considering the number of 
feature images extracted to form the feature vector for each filtering approach. In fact, the 
problem in using Wavelet and Gabor Wavelet texture analysis is that the number of feature 
images tends to become large. Feature vectors with dimension 8, 18, 24 for Gabor, Wavelet 
and Gabor Wavelet filters have been used, respectively. In addition, its simplicity, its 
optimum joint spatial/spatial-frequency localization and its ability to model the frequency 
and orientation sensitive typical of the HVS, has made the Gabor filter bank an excellent 
choice for our aim to detect the presence/absence of a particular class of surface defects as 
corrugation.

6. FPGA-Based Hardware Implementation 

Today, programmable logics play a strategic role in many fields. In fact, in the last two 
decades, flexibility has been strongly required in order to meet the day-after-day shorter 
time-to-market. Moreover, FPGAs are generally the first devices to be implemented on the 
state-of-art silicon technology.  
In order to allow ViSyR to get real time performance, we have directly implemented in 
hardware BDB and RD&TB. In a prototypal version of our system, we had adopted -for 
implementing and separately testing both the blocks- an Altera’s PCI High-Speed 
Development Kit, Stratix™ Professional Edition embedding a Stratix™ EP1S60 FPGA. 
Successively, the availability in our Lab of a Dalsa Coreco Anaconda-CL_1 Board 
embedding a Virtex II™ Pro XC2VP20 has made possible the migration of BDB onto this 
second FPGA for a simultaneous use of both the blocks in hardware. 
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A top-level schematic of BDB and RDT&B are provided in Figure 13.a and 13.b respectively, 
while Figure 14 shows the FPGAs floorplans. 

(a)

(b)
Figure 13. A top-level schematic of (a) RD&TB and (b) BDB, as they can be displayed on 
Altera’s QuartusII™ CAD tool 
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Therefore, even if FPGAs were initially created for developing little glue-logic, they 
currently often represent the core of various systems in different fields. 

(a) (b) 

Figure 14. Floorplans of (a) Altera StratixTM EP1S60 and (b) Xilinx Virtex IITM Pro 20 after 
being configured 

6.1 RD&TB: Modules Functionalities  

The architecture can be interpreted as a memory: the task starts when the host “writes” a 
800-pixel row to be analyzed. In this phase, the host addresses two shift registers inside the 
DOUBLE_WAY_SLIDING_MEMORY (pin address[12..0]) and sends the 800 bytes via the 
input line DataIn[31..0] in form of 200 words of 32 bits. 
As soon as the machine has completed his job, the output line irq signals that the results are 
ready. At this point, the host “reads” them addressing the FIFO memories inside the 
OUTPUT_INTERFACE.  
A more detailed description of the modules is provided in the follow.  
Input Interface 
The PCI Interface (not explicitly shown in Figure 13.a) sends the input data to the 
INPUT_INTERFACE block, through DataIn[63..0]. INPUT_INTERFACE separates the input 
phase from the processing phase, mainly in order to make the processing phase 
synchronous and independent from delays that might occur during the PCI input. 
Moreover, it allows of working at a higher frequency (clkHW signal) than the I/O (clkPCI 
signal).
Double Way Sliding Memory 
As soon as the 800 pixel row is received by INPUT_INTERFACE, it is forwarded to the 
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DOUBLE_WAY_SLIDING_MEMORY, where it is duplicated into 2 shift registers. These 
shift registers slide in opposite way in order to detect both the end and the begin of the rail 
interval according to the search algorithm formalized in Figure 4. 
For saving hardware resources and computing time, we have discarded the floating point 
processing mode and we have adopted fixed point precision (see Paragraph 7.7).  
By this way, DOUBLE_WAY_SLIDING_MEMORY: 

• extracts r’ according the policy of Figure 4; 

• partitions r in four segments of pixels and inputs them to PREPROCESSING_PCA in 
four trances via 100byte[799..0].

PCA Preprocessing 
PREPROCESSING_PCA computes equation (A.7) in four steps. In order to do this, 
PREPROCESSING_PCA is provided with 100 multipliers, that in 12 clock cycles (ccs) 
multiply in parallel the 100 pixels (8 bits per pixel) of r’ with 100 coefficients of um(12 bits per 
coefficient, m=1..12). These products are combined order to determine the 12 coefficients al

(having 30 bits because of the growing dynamic) which can be sent to PCAC via 
Result[29..0] at the rate of 1 coefficient per cc. 
This parallelism is the highest achievable with the hardware resources of our FPGAs. 
Higher performance can be achieved with more performing devices. 
Multi Layer Perceptron Neural Classifier  
The results of PREPROCESSING_PCA has to be classified according to (1), (2) and (3) by a 
MLPN classifier (PCAC). 
Because of the high hardware cost needed for arithmetically implementing the activation 
function f(x) -i.e., (3)-, PCAC divides the computation of a neuron into two steps to be 
performed with different approaches, as represented in Figure 15. 

LUT 1,0

[storing w1,m,0]

MAC1,0

* +

MAC1,7

* +

AF_LUT ...

...

am+1

*

MAC2,0

~
+

LUT 1,7

[storing w1,m,7]

LUT 2,0

[storing w2,m,0]

n2,k    step (a) n2,k    step (b) n3,0    step (a) n3,0    step (b) 

>T

Figure 15. PCAC functionality 

Specifically, step (a): 

+= wnbiasx
(11)
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is realized by means of Multiplier-and-ACcumulators (MACs), and step (b): 

( )xfn = (12)

is realized by means of a Look Up Table (for what concerns neurons n2,k) and comparers (for 
what concerns neuron n3,0). More in detail: 

• neurons n2,k, step (a): PCAC has been provided with 8 Multiplier-and-ACcumulators 
(MACs), i.e., MAC1,k (k=0..7), each one initialized with biask. As soon as a coefficient al

(l=1..12) is produced by PREPROCESSING_PCA, the multipliers MAC1, k multiply it in 
parallel by w1,m,k (m=l+1, k=0..7). These weights have been preloaded in 8 LUTs during 
the setup, LUT1, k being related to MAC1, k and storing 12 weights. The accumulation 
takes 12 ccs, one cc for each coefficient al coming from PREPROCESSING_PCA; at the 
end of the computation, any MAC1, k will contain the value xk.

• neurons n2,k, step (b): The values xk  are provided as addresses to AF_LUT through a 
parallel input/serial output shift register. AF_LUT is a Look up Table which maps at 
any address x the value of the Activation Function f(x). The adopted precision and 
sampling rate are discussed in Paragraph 7.4.  

• neuron n3,0, step (a): This step is similar to that of the previous layer, but it is performed 
using a unique MAC2, 0 which multiplies n2,k (k=0..7) by the corresponding w2,k,0 at the 
rate of 1 data/cc.  

• neuron n3,0, step (b): Since our attention is captured not by the effective value of n3,0, but 
by the circumstance that this might be greater than a given threshold T=0.7 (the result 
of this comparison constitutes the response of the classification process), we implement 
step (b) simply by comparing the value accumulated by MAC2, 0 with f -1(T).

Output Interface 
Because of its latency, PCAC classifies each pattern 5 ccs after the last coefficient is provided 
by PREPROCESSING_PCA. At this point, the single bit output from the comparer is sent to 
OUTPUT_INTERFACE via PCACOut. 
This bit is used as a stop signal for two counters. Specifically, as soon as a value "1" is gotten 
on PCACOut, a first counter CB is halted and its value is used for determining which 
position of the shift of the DOUBLE_WAY_SLIDING_MEMORY is that one centered at the 
begin of the "rail vector" interval. Afterward, as soon as a value "0" is received from 
PCACOut, a second counter CE is halted signaling the end of the "rail vector" interval. At 
this point, Irq signals that the results are ready, and the values of CB and CE packed in a 64 
bits word are sent on DataOut[63..0]. Finally, the host can require and receive these results 
(signal read).  

6.2 BDB: Modules Functionalities

Similarly to RD&TB, even BDB can be interpreted as a memory which starts its job when the 
host “writes” a 24x100 pixel window to be analysed. In this phase, the host addresses the 
dual port memories inside the INPUT_INTERFACE2  (pins address[9..0]) and sends the 2400 
bytes via the input line data[63..0] in form of 300 words of 64 bits. As soon as the machine 
has completed his job, the output line irq signals that the results are ready. At this point, the 
host “reads” them addressing the FIFO memories inside the OUTPUT_INTERFACE. 

                                                                
2 In addition, INPUT_INTERFACE aims at the same goals of decoupling the input phase from the 
processing phase, as previously said in the case of RD&TB. 
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Daubechies DWT Preprocessing 
Daubechies 2-D DWT preprocessing is performed by the cooperation of the 
SHIFTREGISTERS block with the DAUB_LL2_FILTER block.  
Even in this case, we have discarded the floating point processing mode and we have 
adopted fixed point precision (see Paragraph 7.7). Moreover, since we are interested 
exclusively on the LL2 subband, we have focused our attention only on that.  
It can be shown that, for the 2-D DWT proposed by Daubechies in [Daubechies (1988)] 
having the 1-D L filter:  

0,035226 -0,08544 -0,13501 0,45988 0,80689 0,33267 (13)

the LL2 subband can be computed in only one bi-dimensional filtering step (instead of the 
classical twice-iterated two monodimensional steps shown in Figure 23 in Appendix C), 
followed by a decimation by 4 along both rows and columns. Figure 16 reports the applied 
symmetrical 16x16 kernel. 

Figure 16. Symmetrical 16x16 kernel for directly computing in one 2-D step the LL2 subband 
of the DWT based on the 1-D low-pass filter . The filtering has to be followed by decimation 
by 4 along both rows and columns 

We decided of computing LL2 directly in only one 2-D step, because: 

• this requires a controller much simpler than the one used by the separable approach 
(Figure 23, in Appendix C); 

• separable approach is greatly efficient in computing all the four subbands of each level. 
But ViSyR’s classification process does not need other subbands than LL2;

• when fixed point precision is employed, each step of the separable approach produces 
results with different dynamic, so doing, the hardware used at a certain step becomes 
unusable for implementing the further steps;  

• the error (due to the fixed point precision) generated in a unique step does not 
propagate itself and can be easily controlled. Conversely, propagation occurs along four 
different steps when LL2 is computed by means of separable approach.  



Vision Systems: Applications 132

In this scenario, SHIFTREGISTERS implements a 16x16 array which slides on the 24x100 
input window shifting by 4 along columns at any clock cycle (cc). This shift along columns is 
realized by a routing among the cells as that one shown in Figure 17, that represents the jth

row (j=0..15) of SHIFTREGISTERS.  

p(m+4,8), p(m+4,4), p(m+4,0)     ...     p(m,8), p(m,4), p(m,0)

p(m+4,9), p(m+4,5), p(m+4, 1)     ...     p(m,9), p(m,5), p(m,1)

p(m+4,10), p(m+4,6), p(m+4,2)     ...   p(m,10), p(m,6), p(m,2)

p(m+4,11), p(m+4,7), p(m+4,3)     ...   p(m,11), p(m,7), p(m,3)

Not used

j,0 j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8 j,9 j,10 j,11 j,12 j,13 j,14 j,15

Figure 17. The jth row of the array of 16x16 shift registers in the SHIFTREGISTERS block. 
Each square represents an 8-bit register 

The shift by 4 along the rows is performed by INPUT_INTERFACE which feeds into the jth

row of the array only the pixels p(m, n) of the 24x100 input window (m=0..23, n=0..99) 
where:

 j mod 4=m mod 4 (14) 

At any cc, sixteen contiguous rows of the input window are fed in parallel into 
SHIFTREGISTERS at the rate of 64 bytes/cc (4 bytes of each row for 16 rows) through 
IN[511..0]. Simultaneously, all the 256 bytes latched in the 16x16 array are inputted in 
parallel into DAUB_LL2_FILTER through OutToDaubLL256bytes[2047..0]. 
DAUB_LL2_FILTER exploits the symmetry of the kernel (see Figure 16), adding the pixels 
coming from the cells (j, l) to those ones coming from the cells (l, j) (j=0..15, l=0..15); 
afterwards, it computes the products of these sums and of the diagonal elements of the 
array by the related filter coefficients, and, finally, it accumulates these products.  
As a result, DAUB_LL2_FILTER produces the LL2 coefficients after a latency of 11 ccs and at 
the rate of 1 coefficient/cc. These ones are now expressed in 35 bits, because of the growing 
of the dynamic, and are input into MLPN_CLASSIFIER via InFromDaub[34..0].  
We are not interested in higher throughput, since -because of FPGA hardware resources- 
our neural classifier employs 10 multipliers and can manage 1 coefficient per cc. 
Haar DWT Preprocessing 
Computationally, Haar Transform is a very simple DWT since its 1-D filters are: L=[1/2, 
1/2] and H=[1/2, -1/2]. Therefore, any coefficient H_LL2(i, j) can be computed in one step 
according to: 
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In order to compute (15), we exploit the same SHIFTREGISTERS block used for performing 
Daubechies DWT and a HAAR_LL2_FILTER block. HAAR_LL2_FILTER trivially adds[3] the 
data coming from OutToHaar16bytes[255..0] which are the values of the pixels p(m, n) of the 
4x4 window centered on the 16x16 sliding array implemented by SHIFTREGISTERS.  
By this way, after a latency of 2 cc, HAAR_LL2_FILTER produces 1 coefficient (expressed by 
12 bits) per cc and provides it to MLPN_CLASSIFIER via HaarLL2[11..00]. Higher 
performance is unnecessary, since the data flow of this block is parallel at that of 

                                                                
[3] The scaling by 16 is simply performed by a shift left of the fixed point of 4 positions.
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DAUB_LL2_FILTER.
Multi Layer Perceptron Neural Classifier  
As we have seen in Paragraph 4, the MLPN_CLASSIFIER implements two classifiers (DC 
and HC, see Figure 1) . Their structure is similar to that already described in Figure 15. The 
logical AND of their output is sent to the OUTPUT_INTERFACE via DCOutXHCOut. 
Output Interface 
The result of the classification is extended in a word of 64 bits by and sent to the host 
DataOut[63..0].

7. Experimental Results and Performance  

In order to design and test ViSyR's processing core, a benchmark video sequence of more 
than 3,000,000 lines, covering a rail network of about 9 km was acquired. These were used in 
order to conduct several experiments aiming firstly at defining some methodological 
strategies and then at designing and testing the resulting system. In the following, several of 
the above experiments are described. 

7.1 Rail Detection Methodologies Definition  

Firstly, the approach to be used for the rail head detection algorithm has been selected 
comparing different approaches. In order to do this, methods based on Correlation, on 
Gradient based neural network, on PCA with threshold, PCA with neural network classifier, 
were implemented in software. A subset of the benchmark video sequence was sampled at a 
rate of 1000 lines, taking care of including among them, several lines showing rail switches. 
The obtained vector, of more than 300 lines, was manually inspected, detecting the real 
value of xc, to be used as reference in order to evaluate the precision reachable by the tested 
methods. Among those, PCA with neural network classifier resulted the most accurate. 
In Figure 18 are reported the coordinates of xc both real (i.e., manually extracted) and 
automatically estimated by the realized system. The average of the absolute error was 6.04 
pixels. The only evident discontinuities occur in concomitance of three rail switches, 
resulting in the spikes of Figure 18.b which reports the magnified error. We would put in 
evidence that, five other switches have been correctly analyzed. Anyway, except in these 
cases, the errors are almost always less than 10 pixels, and never more than 20. This error 
makes the method fully efficient for our practical purpose.  
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Figure 18. (a): Real and estimated coordinates of xC . (b): error. RS denotes rail switch 
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7.2 Single Value Decomposition Matrices Construction Definition  

Matrices A and C were derived according to (A.1) and (A.4) using 450 examples of vectors ri

extracted from the acquired video sequence. After having determined the eigenvectors uj

and their eigenvalues λj, we verified that 12 eigenvectors were enough to represent the 91% 
of the information content of input data.  

7.3 MLPN Classifiers Training Value  

Error Back Propagation algorithm with an adaptive learning rate [Bishop (1995)] was used 
to determine the biases and the weights of the PCAC classifier. The adopted training set 
contained 262 different 400-pixels vectors centered on the rail (positive examples) and 570 
negative examples consisting of 400-pixels vectors extracted from the video sequence, for 
what concerned RD&TB, while, for BDB, 391 positive examples of hexagonal-headed bolts 
with different orientations, and 703 negative examples consisting of 24x100 pixels windows 
extracted from the video sequence were used.  

7.4 Activation Function Design  

The analytical hardware implementation of the activation function f(x) -equation (3)- needs 
huge resources, as well as, introduces much latency. We have implemented it by a look up 
table AF_LUT, storing 4096 values f(x') computed onto 4096 equidistant values in [-5, 5] and 
assuming: 
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AF_LUT was filled using words of 5 bits, that was found the best compromise in terms of 
detection accuracy and hardware cost.  

7.5 False Positive Elimination  

In defining the preprocessing strategy, we observed that, though the classifier DC, based on 
Daubechies DWT, reached a very high detection rate (see Paragraph 7.9), it also produced a 
certain number of False Positives (FPs) during the Exhaustive search.  
In order to reduce these errors, a “cross validation” strategy was introduced. Because of its 
very low computational overhead, Haar DWT was taken into account and tested. HC, a 
neural classifier working on the LL2 subband of the Haar DWT, was designed and trained: 
HC reached the same detection rate of DC, though revealing much more FPs.  
Nevertheless, the FPs resulting from HC were originated from different features (windows) 
than those causing the FPs output from DC. This phenomenon is put in evidence by Figure 
19, where a spike denotes a detection (indifferently true and false positives) at a certain line 
of the video sequence revealed by DC (Figure 19.a) and by HC (Figure 19.b) while they 
analyzed in Exhaustive search (i.e., without jump between couple of bolts) 4,500 lines of 
video sequence. Figure 19.c shows the logical AND between the detections (both True and 
False Positive) of DC and HC. In other words, it shows the results of (7). 
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(a)

(b)

(c)
Figure 19. Detected couples of bolts vs video sequence, analyzed in Exhaustive search (i.e., 
without jump between couples of detected bolts). (a) Daubechies Classifier; (b) Haar 
Classifier; (c) Crossed validation 

 True Positive 
(TP)

False Positive 
(FP)

FP/TP FP/Analyzed 
Lines

Haar DWT 22 (100%) 90 409% 000
00.200

Daubechies DWT 22 (100%) 26 118% 000
08.57

AND (Daubechies, Haar) 22 (100%) 2 9% 000
04.4

Table 1. False Positive (Exhaustive Search) 

As it is evidenced, only 2 FPs over 4,500 analyzed lines (90,000 processed features) are 
revealed by the crossed validation obtained by the logical AND of DC and HC. Numerical 
results are reported in Table 1.  
It should be noted that the shown ratio FP/TP is related to the Exhaustive search, but it 
strongly decreases during the Jump search, which skips a large number of lines that of 
course do not contain bolts.  
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7.6 Hook Bolts Detection

In order to test the generality of our system in detecting other kinds of bolts, we have tested 
ViSyR even on the hook bolts. Firstly, a second rail network employing hook bolts (see 
Figure 20) and covering about 6 km was acquired.  

                        
(a) (b)

Figure 20. Sample image patterns of the (a) right hook bolts and (b) left hook bolts 

Two training sets TS1 and TS2 were extracted. They contained 421 negative examples, and 
respectively 172 positive examples of left hook bolts (TS1), and 172 examples of right hook 
bolts (TS2). Therefore, TS1 and TS2, were used for training the MLPN Classifiers devoted to 
inspect respectively the left and on the right side of the rail. Finally, the remaining video 
sequence was used to test the ability of ViSyR even in detecting hook bolts.  

7.7 Hardware Design Definition  

The report (file log) obtained from the above experiment was used as term of comparison 
for the reports of similar experiments aiming at defining the number of bits per words to be 
used in the hardware design. The fully-software prototype of ViSyR was modified changing 
the floating point operating mode into the fixed point mode. Different versions of ViSyR 
were compiled with different precisions (i.e., number of bits). For what concerned RD&TB, 
12 bits for the eigenvectors coefficients and 28 bits for the weights of the classifier, allowed 
an accuracy only 0.6% lower than that one achievable using floating point precision while 23 
bits for the filter coefficients and with 25 bits for the weights of both the classifiers led to 
detect visible bolts with accuracy only 0.3% lower than that obtained using floating point 
precision. These settings were considered acceptable, and the hardware design was 
developed using these specifications. 

7.8 Rail Corrugation Analysis and Classification Strategy  

As said in Paragraph 5, feature vectors have been respectively determined considering mean 
and variance of:

• each Gabor filter output image ( )yxi ,θ
, one for orientation θ (0, π/2, π, ¾ π), getting a 

feature vector composed by 8 features;  

• each HL, LH and HH subbands of each decomposition level, getting a feature vector 
composed by 18 features; 

• each image of the jet (consisting of three decomposition levels -as in the wavelet 
transform case- per four orientations -as in the Gabor Filter case-), getting a feature 
vector composed by 24 features. 

In order to test the performances of a k-Nearest Neighbor classifier, we have used a leave-
one-out (LOO) procedure. Table 2 shows the number of misclassifications for different 
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values of K, for a training set of Gabor filtered images (GF), Wavelet filtered images (WF) 
and Gabor-Wavelet filtered images (GWF).  

K

3 5 7 9 11 13 15

GF 3 3 6 5 5 4 5

WF 3 4 10 13 14 14 16

GWF 3 5 4 5 5 4 5

Table 2. KNN Classifier: Number of misclassifications for different values of K 

In order to make independent the results from the kind of classifier, we have performed a 
comparison with the SVM classifier. In a preliminary step, we have evaluated the optimal 
regularization parameter C and polynomial kernel K(x,y) in order to configure the SVM 
classifier and get the best performance in terms of accuracy for the whole system. The 
results, using the LOO procedure, are presented in Table 3 for a regularization parameter 
C=150 and a polynomial kernel K(x,y)=[(xy)/k] where k is a normalization factor for the dot 
product.

C=150, K(x,y)=[(xy)/k] 

GF 0

WF 12

GWF 10

Table 3. SVM Classifier: Number of misclassifications for C=150 and K(x,y)=[(xy)/k] 

7.9 Accuracy and Computing Performance  

The accuracy of RD&TB was measured on a test set of more than 1,500 vectors (832 positives 
i.e., rails, 720 negatives i.e., non rails). 99.8% of positives and 98.2% of negatives were 
correctly detected. The accuracy in detecting the presence/absence of bolts was also 
measured. A fully-software prototype of ViSyR, employing floating point precision, was 
executed in “trace” modality in order to allow an observer to check the correctness of the 
automatic detections. This experiment was carried out over a sequence covering 3,350 bolts. 
ViSyR detected 99.9% of the visible bolts, 0.1% of the occluded bolts and 95% of the 
absences. These performances have been possible also thanks to the crossed classification 
strategy described in Paragraph 4. 
Even more accurate was the recognition rate in case of hook bolts, since together with a 
100% of detected absent and present bolts, the system also achieved an acceptable rate 
detection of partially occluded hook bolts (47% and 31% respectively for left and right), 
whereas, it was not so affordable in case of occluded hexagonal bolts. This circumstances is 
justified since the hexagonal shape could cause miss classification because its similarity with 
the stones on the background. 
Moreover, a better behavior in terms of detection of occluded hook bolts even speeds up the 
velocity. In fact, though the velocities reached during the Jump and the Exhaustive search 
does not present significant differences with respect those obtained with the hexagonal bolts 
the system remains (in the case of hook bolts) for longer time intervals in the Jump search, 
because of the higher detection rate. This leads to a higher global velocity.  
For what concerns DAB, the comparative study aiming at define the most accurate  feature 
extractor-classifier paradigm, it was found that a SVM classifier with C=150 and 
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K(x,y)=[(xy)/k], cascaded to a Gabor Filter, as described in Paragraph 5 reached 100% of 
detection both of corrugated and non-corrugated rails. 

Table 4 resumes ViSyR's accuracy. 

  Detection Rate 

rail vectors 99.8% 
RD&TB

non-rail vectors 98.2% 

visible hexagonal bolts 99.6% 

occluded hexagonal bolts 0.1% 

absent hexagonal bolts 95% 

visible left hook bolts 100% 

occluded left hook bolts 47% 

absent left hook bolts 100% 

visible right hook bolts 100% 

occluded right hook bolts 31% 

BDB

absent right hook bolts 100% 

corrugated rails 100% 
DAB

non-corrugated rails 100% 

Table 4. Detection accuracy 

Computing performance was measured too, for what concerns the functionality of RD&TB 
and BDB (i.e. the ViSyR's modules already implemented in hardware). In particular, over 
than 15,000 couples of bolts have been detected in more than 3,000,000 lines at the velocity of 
166 km/h. This performance is given by the combination of the Jump search and of the 
Exhaustive search, being the velocities reached during these phases approximately of 4 
km/h and 444 km/h, and obviously depends on the distribution of the two kinds of search 
for the inspected video sequence. For instance, Figure 21 shows how the two types of search 
commutate during the process, for the tested video sequence.  
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Figure 21. The way in which the system commutates during (a) the Exhaustive search and 
(b) the Jump search 

The maximum elapsed time in the Exhaustive search is less than 3”. This means that the 
Exhaustive search finds a couple of bolts (left and right) after less than 3” in the worst cases. 
At this point the control switches on the Jump search that, because of its philosophy, is 
much faster. When activated, Jump search works uninterruptedly up to 17”, for the 
analyzed sequence (Figure 21.b). Obviously, if the system remains in the Jump phase for a 
long time, performance can increase subsequently. Next work will be addressed in this 
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direction, for example, automatically skipping those areas where the fastening elements are 
covered by asphalt (i.e., level crossing, where Exhaustive search is executed in continuous).  

8. Conclusive Remarks 

This paper has presented ViSyR, a visual system able to autonomously detect the bolts that 
secure the rail to the sleepers and to monitor the rail condition.  
Thanks to a FPGA-based hardware implementation, it performs its inspection at velocities 
that can reach 460 km/h. In addition to this computing power ViSyR is also characterized by 
an impressive accuracy and is highly flexible and configurable, being the decision level of 
both RD&TB, BDB and DAB based on classifiers that can be easily reconfigured in function 
of different type of rails and bolts to be inspected and detected.  
ViSyR constitutes a significant aid to the personnel in the railway safety issue because of its 
high reliability, robustness and accuracy. Moreover, its computing performance allows a 
more frequent maintenance of the entire railway network. 
A demonstrative video of ViSyR is available at: 
 http://ftp-dee.poliba.it:8000/Marino/ViSyR_Demo.MOD 
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Appendix A. Principal Component Analysis (PCA) 

Let i j row-images, each one having N pixels, object of the analysis. 

Let R a set of P images rk (k=1..P, P ≥ N). Such images rk, having Q pixels with Q <N, have 
been extracted from the images ij, and chosen in order to select instances of the objects.  

Figure 22. Rail head row image example 

Let A the Q rows and P columns matrix: 

 A=[h1 ,…., hP]  (A.1)  

with:

 hk = rk - μ  (A.2)  

where:

μ= [μ1,..,μ P]T  (A.3)  

with μk denoting the average of intensities in rk.
From A, the covariance matrix: 

 C=AAT  (A.4)  

can be built. The QxQ matrix C contains information about mutual relationships among rail 
images rk.
In Principal Component Analysis [Gong et al. (2001), Jain et al. (2000).] the eigenvectors uj

(j=1..N) of C define a new reference space in which the variance among data is maximized. 
Moreover, an ordering relationship on uj components can be induced sorting the 
eigenvectors uj in such way that: 

λq > λq+1    (q=1, .., Q-1)  (A.5)  

where the eigenvalues λj of C, represent the variances of each one of uj. In other words, (A.5) 
means that the set of projections of the input data on uq has variance higher than that one of 
the set of projections of the input data on uq+1.

By thresholding the eigenvalues λj it is possible to select the corresponding L<Q
eigenvectors sufficient enough to represent the biggest part of the informative content of the 

input data. Let λl (l=1..L, L<Q) the selected components, a generic vector r’ can be expressed 
by:

''
1

µur +≈
=

L

l
lla   (A.6)  

where μ’ is the average vector of r’. From a computational point of view the eigenvectors 
and eigenvalues of C can be estimated by a Single Value Decomposition (SVD) of matrix A
where the coefficients al are evaluated by the inner product: 

 al = (r’-μ’)ulT  (A.7)  
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In this scenario, the vector 

 a’=[a1 ,…., aL]T (A.8)

can be considered a feature containing most of information content of r’.  

Appendix B. Gabor Filter  

In the complex spatial 2D domain, Gabor filter is given by:  

( ) ( ) xjFeyxgyxh ′⋅′′= π2,, (B.1)
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and x' and y' are the rotated coordinates: 

( ) ( )θθθθ cossin,sincos, yxyxyx +−+=′′ (B.3)

xσ and
yσ  are the standard deviations of Gaussian envelope along the x and y directions, F

frequency of sinusoidal plane and and θ  is the orientation [Wen at al. (1994)]. 
Thus (B.1) is a complex sinusoidal grating modulated by a 2D gaussian function [25].  
Gabor functions have been found useful because reach the lower bounds of the uncertainty 
inequalities π41≥ΔΔ ux  and π41≥ΔΔ vy  and achieve optimally joint resolution in space and 

spatial frequency [Bovik et al. (1990)].  

Appendix C. Wavelet Transforms 

The wavelet transform [Daubechies (1988), Mallat (1989), Daubechies (1990 a), Antonini et al.
(1992)], is a mathematical technique that decomposes a signal in the time domain by using 
dilated/contracted and translated versions of a single finite duration basis function, called 
the prototype wavelet. This differs from traditional transforms (e.g., Fourier Transform, 
Cosine Transform, etc.), which use infinite duration basis functions. One-dimensional (1-D) 
continuous wavelet transform of a signal x(t) is: 

−
= dt

a

bt
tx

a
baW ψ)(

1
),( (C.1)

where −

a

bt
ψ

 is the complex conjugate of the prototype wavelet, −

a

bt
ψ ; a is a time 

dilation and b is a time translation.
Due to the discrete nature (both in time and amplitude) of most applications, different 
Discrete Wavelet Transforms (DWTs) have been proposed according to the nature of the 
signal, the time and the scaling parameters.  
The two-dimensional (2-D) DWT works as a multi-level decomposition tool. A generic 2-D 
DWT decomposition level j is shown in Figure 23.  
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It can be seen as the further decomposition of a 2-D data set LLj-1 (LL0 being the original 
input image) into four subbands LLj, LHj, HLj and HHj. The capital letters and their position 
are related respectively to the applied mono-dimensional filters (L for Low pass filter, H for 
High pass filter) and to the direction (first letter for horizontal, second letter for vertical). 
The band LLj is a coarser approximation of LLj-1. The bands LHj and HLj record the changes 
along horizontal and vertical directions of LLj-1, respectively, whilst HHj shows high 
frequency components. Because of the decimation occurring at each level along both the 
directions, any subband at the level j is composed by NjxMj elements, where Nj=N0/2j and 
Mj=M0/2j.

1-D Filters along rows

LL j

(Mj xNj samples) 
input to the level j+1

H

L

LH j

(Mj xNj samples) 

HL j

(Mj xNj samples) 

H

L

HH j

(Mj xNj samples) 

H Mj-1 xNj samples

L Mj-1 xNj samples

LL j-1
(Mj-1xNj-1 samples)

output from the level j-1

1-D Filters along columns

Figure 23. 2-D DWT: The jth level of subband decomposition.  represents decimation by 2 

Appendix D. Gabor Wavelet Transform 

As seen in Appendix C, Wavelet transform can be chosen as mathematical model for its 
adaptability in resolution both in frequency and space domains relating to a scale 
parameter, while Gabor filters assure the lower limits of uncertainty inequalities (as 
described in Appendix B) in the space frequency domain. As consequence, Gabor functions 
can be considered as mother function of the Wavelet transform. On these bases, a set of 2D 
Gabor Wavelet filters can be defined through a projection of the signal into a family of M
Gabor Wavelet functions { }

Mnnn ψψψ ,,,
21

=Ψ derived from a process of contractions and 

dilations of a function, the so-called mother Gabor-Wavelet. 
In two dimensions the Gabor Wavelet Functions [Lee (1996)] take the form: 
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where n is a parametric vector [ ]yxyx sscc ,,,, θ , with cx and cy representing the contractions of 

the GWT along x and y respectively, sx and sy represent the dilations along the two scales, 

and θ the orientation.  
In addition, the dilations sx and sy can be selected as sx= sy=2l for l=0,…, L-1, with L is the 
number of decomposition levels, and sx cx = sy cy =k. As consequence, (D.1) can be written as:  
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and the responses of Gabor-Wavelet filters ( )yxil ,n,
 can be defined as: 

( ) ( ) ( )yxiyxyxil ,,,, ∗= nn ψ (D.3)

where l is a certain level into pyramidal structure.  

Appendix E. Support Vector Machine (SVM) 

Support Vector Machine (SVM) [Vapnik (1998)] is based on the structural risk minimization 
principle from computational learning theory, or better on minimization of the 
misclassification probability of vectors with unknown distribution of data. With respect to 
the neural approach, SVM allows a better control of dynamics of the classifier. Examples of 
use of the SVM are given in [Bahlmann et al. (2002), Papageorgiou & Poggio. (1999) Drucker 
et al. (1997), Osuna et al. (1997)]. The basic idea of SVM consists of imagining some hyper-
planes that divide the hyper-space containing the vectors v to be classified into two sub-
hyper-spaces where positive examples of v (classified with +1) and negative examples of v
(classified with -1) of the training set { }NS vvv ...,,, 21=  are respectively located.  

There are many possible classifiers that can separate the data with hyper-planes 0=+⋅ bvw ,

but there is only one that maximizes the distance between the closest vectors to the hyper-
plane and the hyper-plane itself. SVM finds the optimal separating hyper-plane:  

0** =+⋅ bvw (E.1)

maximizing the margin and minimizing the number of misclassified patterns. In (E.1), the 
optimal weight vector is expressed as linear combination of the examples of the training set 
S:
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0* >iλ are said "support vectors". The classification of new vectors v involves the evaluation 

of the decision function y=sign(f(v)) where: 
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meaning that v can be classified by evaluating the dot product between v and some 
elements (support vectors) of the training set S. 
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