
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6

A Real-Time Framework for the Vision
Subsystem in Autonomous Mobile Robots

Paulo Pedreiras1, Filipe Teixeira2, Nelson Ferreira2, Luís Almeida1,
Armando Pinho1 and Frederico Santos3

1LSE-IEETA/DETI, Universidade de Aveiro, Aveiro
2DETI, Universidade de Aveiro, Aveiro

3DEE, Instituto Politécnico de Coimbra, Coimbra
Portugal

1. Introduction

Interest on using mobile autonomous agents has been growing (Weiss, G., 2000), (K. Kitano;
Asada, M.; Kuniyoshi, Y.; Noda, I. & Osawa E., 1997) due to their capacity to gather
information on their operating environment in diverse situations, from rescue to demining
and security. In many of these applications, the environments are inherently unstructured
and dynamic, and the agents depend mostly on visual information to perceive and interact
with the environment. In this scope, computer vision in a broad sense can be considered as
the key technology for deploying systems with an higher degree of autonomy, since it is the
basis for activities like object recognition, navigation and object tracking.
Gathering information from such type of environments through visual perception is an
extremely processor-demanding activity with hard to predict execution times (Davison, J.,
2005). To further complicate the situation many of the activities carried out by the mobile
agents are subject to real-time requirements with different levels of criticality, importance
and dynamics. For instance, the capability to timely detect obstacles near the agent is a hard
activity, since failures can result in injured people or damaged equipment, while activities
like self-localization, although important for the agent performance, are inherently soft since
extra delays in these activities simply cause performance degradation. Therefore, the
capability to timely process the image at rates high enough to allow visual-guided control or
decision-making, called real-time computer vision (RTCV) (Blake, A; Curwen, R. &
Zisserman, A., 1993), plays a crucial role in the performance of mobile autonomous agents
operating in open and dynamic environments.
This chapter describes a new architectural solution for the vision subsystem of mobile
autonomous agents that substantially improves its reactivity by dynamically assigning
computational resources to the most important tasks. The vision-processing activities are
broken into separated elementary real-time tasks, which are then associated with adequate
real-time properties (e.g. priority, activation rate, precedence constraints). This separation
allows avoiding the blocking of higher priority tasks by lower priority ones as well as to set
independent activation rates, related with the dynamics of the features or objects being
processed, together with offsets that de-phase the activation instants of the tasks to further

Source: Vision Systems: Applications, ISBN 978-3-902613-01-1
Edited by: Goro Obinata and Ashish Dutta, pp. 608, I-Tech, Vienna, Austria, June 2007

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Vision Systems: Applications 84

reduce mutual interference. As a consequence it becomes possible to guarantee the
execution of critical activities and privilege the execution of others that, despite not critical,
have large impact on the robot performance.
The framework herein described is supported by three custom services:

• Shared Data Buffer (SDB), allowing different processes to process in parallel a set of
image buffers;

• Process Manager (PMan), which carries out the activation of the vision-dependent real-
time tasks;

• Quality of Service manager (QoS), which dynamically updates the real-time properties
of the tasks.

The SDB service keeps track of the number of processes that are connected to each image
buffer. Buffers may be updated only when there are no processes attached to them, thus
ensuring that processes have consistent data independently of the time required to complete
the image analysis.
The process activation is carried out by a PMan service that keeps, in a database, the process
properties, e.g. priority, period and phase. For each new image frame, the process manager
scans the database, identifies which processes should be activated and sends them wake-up
signals. This framework allows reducing the image processing latency, since processes are
activated immediately upon the arrival of new images. Standard OS services are used to
implement preemption among tasks.
The QoS manager monitors continuously the input data and updates the real-time
properties (e.g. the activation rate) of the real-time tasks. This service permits to adapt the
computational resources granted to each task, assuring that in each instant the most
important ones, i.e. the ones that have a greater value for the particular task being carried
out, receive the best possible QoS.
The performance of the real-time framework herein described is assessed in the scope of the
CAMBADA middle-size robotic soccer team, being developed at the University of Aveiro,
Portugal, and its effectiveness is experimentally proven.

Main

Processor

High bandwidth

sensors

Distributed sensing/

actuation system

External communication

(IEEE 802.11b)

Coordination

layer

Low-level

control layer

Figure 1. The biomorphic architecture of the CAMBADA robotic agents

The remainder of this chapter is structured as follows: Section 2 presents the generic
computing architecture of the CAMBADA robots. Section 3 shortly describes the working-
principles of the vision-based modules and their initial implementation in the CAMABADA
robots. Section 4 describes the new modular architecture that has been devised to enhance
the temporal behavior of the image-processing activities. Section 5 presents experimental
results and assesses the benefits of the new architecture. Finally, Section 6 concludes the
chapter.

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 85

2. The CAMBADA Computing Architecture

2.1 Background

Coordinating several autonomous mobile robotic agents in order to achieve a common goal
is currently a topic of intense research (Weiss, G., 2000), (K. Kitano; Asada, M.; Kuniyoshi,
Y.; Noda, I. & Osawa E., 1997). One initiative to promote research in this field is RoboCup
(K. Kitano; Asada, M.; Kuniyoshi, Y.; Noda, I. & Osawa E., 1997), a competition where
teams of autonomous robots have to play soccer matches.
As for many real-world applications, robotic soccer players are autonomous mobile agents
that must be able to navigate in and interact with their environment, potentially cooperating
with each other. The RoboCup soccer playfield resembles human soccer playfields, though
with some (passive) elements specifically devoted to facilitate the robots navigation. In
particular the goals have solid and distinct colors and color-keyed posts are placed in each
field corner. This type of environment can be classified as a passive information space
(Gibson, J., 1979). Within an environment exhibiting such characteristics, robotic agents are
constrained to rely heavily on visual information to carry out most of the necessary
activities, leading to a framework in which the vision subsystem becomes an integral part of
the close-loop control. In these circumstances the temporal properties of the image-
processing activities (e.g. period, jitter and latency) have a strong impact on the overall
system performance.

2.2 The CAMBADA robots computing architecture

The computing architecture of the robotic agents follows the biomorphic paradigm (Assad,
C.; Hartmann, M. & Lewis, M., 2001), being centered on a main processing unit (the brain)
that is responsible for the higher-level behavior coordination (Figure 1). This main
processing unit handles external communication with other agents and has high bandwidth
sensors (the vision) directly attached to it. Finally, this unit receives low bandwidth sensing
information and sends actuating commands to control the robot attitude by means of a
distributed low-level sensing/actuating system (the nervous system).
The main processing unit is currently implemented on a PC-based computer that delivers
enough raw computing power and offers standard interfaces to connect to other systems,
namely USB. The PC runs the Linux operating system over the RTAI (Real-Time
Applications Interface (RTAI, 2007)) kernel, which provides time-related services, namely
periodic activation of processes, time-stamping and temporal synchronization.
The agents software architecture is developed around the concept of a real-time database
(RTDB), i.e., a distributed entity that contains local images (with local access) of both local
and remote time-sensitive objects with the associated temporal validity status. The local
images of remote objects are automatically updated by an adaptive TDMA transmission
control protocol (Santos, F.; Almeida, L.; Pedreiras, P.; Lopes, S. & Facchinnetti, T., 2004)
based on IEEE 802.11b that reduces the probability of transmission collisions between team
mates thus reducing the communication latency.
The low-level sensing/actuating system follows the fine-grain distributed model (Kopetz,
H., 1997) where most of the elementary functions, e.g. basic reactive behaviors and closed-
loop control of complex actuators, are encapsulated in small microcontroller-based nodes,
interconnected by means of a network. This architecture, which is typical for example in the
automotive industry, favors important properties such as scalability, to allow the future
addition of nodes with new functionalities, composability, to allow building a complex

Vision Systems: Applications 86

system by putting together well defined subsystems, and dependability, by using nodes to
ease the definition of error-containment regions. This architecture relies strongly on the
network, which must support real-time communication. For this purpose, it uses the CAN
(Controller Area Network) protocol (CAN, 1992), which has a deterministic medium access
control, a good bandwidth efficiency with small packets and a high resilience to external
interferences. Currently, the interconnection between CAN and the PC is carried out by
means of a gateway, either through a serial port operating at 115Kbaud or through a serial-
to-USB adapter.

3. The CAMBADA Vision Subsystem

The CAMBADA robots sense the world essentially using two low-cost webcam-type
cameras, one facing forward, and the other pointing the floor, both equipped with wide-
angular lenses (approximately 106 degrees) and installed at approximately 80cm above the
floor. Both cameras are set to deliver 320x240 YUV images at a rate of 20 frames per second.
They may also be configured to deliver higher resolution video frames (640x480), but at a
slower rate (typically 10-15 fps). The possible combinations between resolution and frame-
rate are restricted by the transfer rate allowed by the PC USB interface.
The camera that faces forward is used to track the ball at medium and far distances, as well
as the goals, corner posts and obstacles (e.g. other robots). The other camera, which is
pointing the floor, serves the purpose of local omni-directional vision and is used for mainly
for detecting close obstacles, field lines and the ball when it is in the vicinity of the robot.
Roughly, this omni-directional vision has a range of about one meter around the robot.
All the objects of interest are detected using simple color-based analysis, applied in a color
space obtained from the YUV space by computing phases and modules in the UV plane. We
call this color space the YMP space, where the Y component is the same as in YUV, the M
component is the module and the P component is the phase in the UV plane. Each object
(e.g., the ball, the blue goal, etc.) is searched independently of the other objects. If known,
the last position of the object is used as the starting point for its search. If not known, the
center of the frame is used. The objects are found using region-growing techniques.
Basically, two queues of pixels are maintained, one used for candidate pixels, the other used
for expanding the object. Several validations can be associated to each object, such as
minimum and maximum sizes, surrounding colors, etc.
Two different Linux processes, Frontvision and Omnivision, handle the image frames
associated with each camera. These processes are very similar except for the specific objects
that are tracked. Figure 2 illustrates the actions carried out by the Frontvision process. Upon
system start-up, the process reads the configuration files from disk to collect data regarding
the camera configuration (e.g. white balance, frames-per-second, resolution) as well as object
characterization (e.g. color, size, validation method). This information is then used to
initialize the camera and other data structures, including buffer memory. Afterwards the
process enters in the processing loop. Each new image is sequentially scanned for the
presence of the ball, obstacles, goals and posts. At the end of the loop, information regarding
the diverse objects is placed in a real-time database.
The keyboard, mouse and the video framebuffer are accessed via the Simple DirectMedia
Layer library (SDL) (SDL, 2007). At the end of each loop the keyboard is pooled for the
presence of events, which allows e.g. to quit or dynamically change some operational
parameters

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 87

Initializations:
 - Read configuration files

 (Cameras, Objects)

 - Open and set-up camera devices

 - Initialize data structures

 - Initialize SDL

Sleep

Search Obstacles

Search Ball

Search Goals

Search Posts

Update RTDB

Handle keyboard events

New image

ready

Figure 2. Flowchart of the Frontvision process

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process execution time

Figure 3. Ball tracking execution time histogram

4. A Modular Architecture for Image Processing: Why and How

As referred to in the previous sections, the CAMBADA robotic soccer players operate in a
dynamic and passive information space, depending mostly on visual information to
perceive and interact with the environment. However, gathering information from such
type of environments is an extremely processing-demanding activity (DeSouza, G & Kak,
A., 2004), with hard to predict execution times. Regarding the algorithms described in
Section 3, it could be intuitively expected to observe a considerable variance in process

Vision Systems: Applications 88

execution times since in some cases the objects may be found almost immediately, when
their position between successive images does not change significantly, or it may be
necessary to explore the whole image and expand a substantial amount of regions of
interest, e.g. when the object disappears from the robot field of vision (Davison, J., 2005).
This expectation is in fact confirmed in reality, as depicted in Figure 3, which presents a
histogram of the execution time of the ball tracking alone. Frequently the ball is located
almost immediately, with 76.1% of the instances taking less than 5ms to complete. However,
a significant amount of instances (13.9%) require between 25ms and 35ms to complete and
the maximum observed execution time was 38,752 ms, which represents 77.5% of the inter-
frame period just to process a single object.

Figure 4. Modular software architecture for the CAMBADA vision subsystem

As described in Section 3, the CAMBADA vision subsystem architecture is monolithic with
respect to each camera, with all the image-processing carried out within two processes
designated Frontvision and Omnivision, associated with the frontal and omnidirectional
cameras, respectively. Each of these processes tracks several objects sequentially. Thus, the
following frame is acquired and analyzed only after tracking all objects in the previous one,
which may take, in the worst case, hundreds of milliseconds, causing a certain number of
consecutive frames to be skipped. These are vacant samples for the robot controllers that
degrade the respective performance and, worse, correspond to black-out periods in which
the robot does not react to the environment. Considering that, as discussed in Section 3,
some activities may have hard deadlines, this situation becomes clearly unacceptable.
Increasing the available processing power, either trough the use of more powerful CPUs or
via specialized co-processor hardware could, to some extent, alleviate the situation (Hirai,
S.; Zakouji, M & Tsuboi, T., 2003). However, the robots are autonomous and operate from
batteries, and thus energy consumption aspects as well as efficiency in resource utilization
render brut-force approaches undesirable.

4.1 Using Real-Time Techniques to Manage the Image Processing

As remarked in Section 1, some of the activities carried out by the robots exhibit real-time
characteristics with different levels of criticality, importance and dynamics. For example, the
latency of obstacle detection limits the robots maximum speed in order to avoid collisions
with the playfield walls. Thus, the obstacle detection process should be executed as soon as
possible, in every image frame, to allow the robot to move as fast as possible in a safe way.
On the other hand, detecting the corner poles for localization is less demanding and can
span across several frames because the robot velocity is limited and thus, if the localization

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 89

process takes a couple of frames to execute its output is still meaningful. Furthermore
prediction methods (Iannizzotto, G., La Rosa, F. & Lo Bello, L., 2004) combined with
odometry data may also be effectively used to obtain estimates of object positions between
updates. Another aspect to consider is that the pole localization activity should not block the
more frequent obstacle detection. This set of requirements calls for the encapsulation of each
object tracking activity in different processes as well as for the use of preemption and
appropriate scheduling policies, giving higher priority to most stringent processes. These
are basically the techniques that were applied to the CAMBADA vision subsystem as
described in the following section.

4.2 A Modular Software Architecture

Figure 4 describes the software modular architecture adopted for the CAMBADA vision
subsystem. Standard Linux services are used to implement priority scheduling, preemption
and data sharing.
Associated to each camera there is one process (ReadXC) which transfers the image frame
data to a shared memory region where the image frames are stored. The availability of a
new image is fed to a process manager, which activates the object detection processes. Each
object detection process (e.g. obstacle, ball), generically designated by proc_obj:x, x={1,2,…n}
in Figure 4, is triggered according to the attributes (period, phase) stored in a process
database. Once started, each process gets a link to the most recent image frame available and
starts tracking the respective object. Once finished, the resulting information (e.g. object
detected or not, position, degree of confidence, etc.) is placed in a real-time database
(Almeida, L.; Santos, F.; Facchinetti; Pedreiras, P.; Silva, V. & Lopes, L., 2004), identified by
the label “Object info”, similarly located in a shared memory region. This database may be
accessed by any other processes on the system, e.g. to carry out control actions. A display
process may also be executed, which is useful mainly for debugging purposes.

4.2.1 Process Manager

For process management a custom library called PMan was developed. This library keeps a
database where the relevant process properties are stored. For each new image frame, the
process manager scans the database, identifies which processes should be activated and
sends them pre-defined wake-up signals.
Table 1 shows the information about each process that is stored in the PMan database.
The process name and process pid fields allow a proper process identification, being used to
associate each field with a process and to send OS signals to the processes, respectively. The
period and phase fields are used to trigger the processes at adequate instants. The period is
expressed in number of frames, allowing each process to be triggered every n frames. The
phase field permits de-phasing the process activations in order to balance the CPU load over
time, with potential benefits in terms of process jitter. The deadline field is optional and
permits, when necessary, to carry out sanity checks regarding critical processes, e.g. if the
high-priority obstacle detection does not finish within a given amount of time appropriate
actions may be required to avoid jeopardizing the integrity of the robot. The following
section of the PMan table is devoted to the recollection of statistical data, useful for profiling
purposes. Finally, the status field keeps track of the instantaneous process state (idle,
executing).

Vision Systems: Applications 90

Process identification

 PROC_name Process ID string

 PROC_pid Process id

Generic temporal properties

 PROC_period Period (frames)

 PROC_phase Phase (frames)

 PROC_deadline Deadline (µs)

QoS management

 PROC_qosdata QoS attributes

 PROC_qosupdateflag QoS change flag

Statistical data

 PROC_laststart Activation instant of last instance

 PROC_lastfinish Finish instant of last instance

 PROC_nact Number of activations

 PROC_ndm Number of deadline misses

Process status

 PROC_status Process status

Table 1. PMan process data summary

The PMan services are accessed by the following API:

• PMAN_init: allocates resources (shared memory, semaphores, etc) and initializes the
PMan data structures;

• PMAN_close: releases resources used by PMan;

• PMAN_procadd: adds a given process to the PMan table;

• PMAN_procdel: removes one process from the PMan table;

• PMAN_attach: attaches the OS process id to an already registered process, completing
the registration phase;

• PMAN_deattach: clears the process id field from a PMan entry;

• PMAN_QoSupd: changes the QoS attributes of a process already registered in the
PMan table;

• PMAN_TPupd: changes the temporal properties (period, phase or deadline) of a
process already registered in the PMan table;

• PMAN_epilogue: signals that a process has terminated the execution of one instance;

• PMAN_query: allows to retrieve statistical information about one process;

• PMAN_tick: called upon the availability of every new frame, triggering the activation
of processes.

The PMan service should be initialized before use, via the init function. The service uses OS
resources that require proper shutdown procedures, e.g. shared memory and semaphores,
and the close function should be called before terminating the application. To register in the
PMan table, a process should call the add function and afterwards the attach function. This
separation permits a higher flexibility since it becomes possible to have each process
registering itself completely or to have a third process managing the overall properties of
the different processes. During runtime the QoS allocated to each process may be changed
with an appropriate call to QoSupd function. Similarly, the temporal properties of one

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 91

process can also be changed dynamically by means of the TPupd function. When a process
terminates executing one instance it should report this event via the epilogue call. This
action permits maintaining the statistical data associated with each process as well as
becoming aware of deadline violations. The query call allows accessing the statistical data of
each process registered in the database. This information can be used by the application for
different purposes like profiling, load management, etc. Finally, the tick call is triggered by
the process that interacts with the camera and signals that a new frame is ready for
processing. As a consequence of this call the PMan database is scanned and the adequate
processes activated.

4.2.2 Shared Data Buffers

As discussed previously, the robot application is composed by several processes which
operate concurrently, each seeking for particular features in a given frame. The complexity
of these activities is very dissimilar and consequently the distinct processes exhibit
distinctive execution times. On the other hand the execution time of each process may also
vary significantly from instance to instance, depending on the particular strategy followed,
on the object dynamics, etc.. Consequently, the particular activation instants of the processes
cannot be predicted beforehand. To facilitate the sharing of image buffers in this framework
a mechanism called Shared Data Buffers (SDB) was implemented. This mechanism is similar
to the Cyclic Asynchronous Buffers (Buttazzo, G.; Conticelli, F.; Lamastra, G. & Lipari, G.,
1997), and permits an asynchronous non-blocking access to the image buffers. When the
processes request access to an image buffer automatically receive a pointer to the most
recent data. Associated to each buffer there is a link count which accounts for the number of
processes that are attached to each buffer. This mechanism ensures that the buffers are only
recycled when there are no processes attached to them, and so the processes have no
practical limit to the time during which they can hold a buffer.
The access to the SDB library is made trough the following calls:

• SDB_init: reserves and initializes the diverse data structures (shared memory,
semaphores, etc);

• SDB_close: releases resources associated with the SDB;

• SDB_reserve: returns a pointer to a free buffer;

• SDB_update: signals that a given buffer was updated with new data;

• SDB_getbuf: requests a buffer for reading;

• SDB_unlink: access to the buffer is no longer necessary.
The init function allocates the necessary resources (shared memory, semaphores) and
initializes the internal data structures of the SDB service. The close function releases the
resources allocated by the init call, and should be executed before terminating the
application. When the camera process wants to publish a new image it should first request a
pointer to a free buffer, via the reserve call, copy the data and then issue the update call to
signal that a new frame is available. Reader processes should get a pointer to a buffer with
fresh data via the getbuf call, which increments the link count, and signal that the buffer is
no longer necessary via the unlink call, which decrements the buffer link count.

4.2.3 Dynamic QoS management

As in many other autonomous agent applications, the robotic soccer players have to deal
with an open and dynamic environment that cannot be accurately characterized at pre-

Vision Systems: Applications 92

runtime. Coping efficiently with this kind of ambiance requires support for dynamic
reconfiguration and on-line QoS management (Burns, A; Jeffay, K.; Jones, M. et al, 1996).
These features are generally useful to increase the efficiency in the utilization of system
resources (Buttazzo, G.; Lipari, G., Caccamo, M. & Abeni. L., 2002) since typically there is a
direct relationship between resource utilization and delivered QoS. In several applications,
assigning higher CPU to tasks increases the QoS delivered to the application. This is true, for
example, in control applications (Buttazzo, G. & Abeni, L., 2000), at least within certain
ranges (Marti, P., 2002), and in multimedia applications (Lee, C.; Rajkumar, R. & Mercer, C.,
1996). Therefore, managing the resources assigned to tasks, e.g. by controlling their
execution rate or priority, allows a dynamic control of the delivered QoS. Efficiency gains
can be achieved in two situations: either maximizing the utilization of system resources to
achieve a best possible QoS for different load scenarios or adjusting the resource utilization
according to the application instantaneous QoS requirements, i.e. using only the resources
required at each instant.

Process
Period
(ms)

Priority
Offset
(ms)

Purpose

Ball_Fr 50 35 0 Ball tracking (front camera)

BGoal / YGoal 200 25 50/150 Blue / Yellow Goal tracking

BPost / YPost 800 15 100/200 Blue / Yellow Post tracking

Avoid_Fr 50 45 0 Obstacle avoidance (front cam.)

Ball_Om 50 40 0 Ball tracking (omni camera)

Avoid_Om 50 45 0 Obstacle avoidance (omni camera)

Line 400 20 0 Line tracking and identification

Table 2. Process properties in the modular architecture

Both situations referred above require an adequate support from the computational
infrastructure so that the relevant parameters of tasks can be dynamically adjusted. Two of
the functions implemented by the PMAN library, namely PMAN_TPupd and
PMAN_QoSupd, allow changing dynamically and without service disruption the temporal
properties of each process (period, phase and deadline) and to manage additional custom
QoS properties (the Linux real-time priority in this case), respectively. The robots decision
level uses this interface to adjust the individual process attributes in order to control the
average CPU load and to adapt the rates and priorities of the diverse processes according to
the particular role that the robots are playing in each instant.

5. Experimental Results

In order to assess the performance of the modular approach and compare it with the initial
monolithic one, several experiments were conducted, using a PC with an Intel Pentium III
CPU, running at 550MHz, with 256MB of RAM. This PC has lower capacity than those
typically used on the robots but allows a better illustration of the problem addressed in this
chapter. The PC runs a Linux 2.4.27 kernel, patched with RTAI 3.0r4. The image-capture
devices are Logitech Quickcams, with a Philips chipset. The cameras were set-up to produce
320*240 images at a rate of 20 frames-per-second (fps). The time instants were measured
accessing the Pentium TSC. To allow a fair comparison all the tests have been executed over
the same pre-recorded image sequence.

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 93

5.1 Monolithic Architecture assessment

The code of the Frontvision and Omnivision processes (Section 3) was instrumented to
measure the start and finishing instants of each instance.

Process Max.
(ms)

Min.
(ms)

Avg.
(ms)

St.Dev.
(ms)

FrontVision 143 29 58 24

OmniVision 197 17 69 31

Table 3. FrontVision and OmniVision inter-activation statistical figures

Figure 5 presents the histogram of the inter-activation intervals of both of these processes
while Table 3 presents a summary of the relevant statistical figures.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

Figure 5. Histogram of the inter-activation time of the FrontVision (top) and OmniVision
(bottom) processes

The response time of both processes exhibits a substantial variance, with inter-activation
times ranging from 17ms to near 200ms and an average inter-activation time of 58ms and
69ms, respectively. Remembering that the image acquisition rate is 20 fps, corresponding to
50ms between frames, these figures indicate a poor performance. In fact the image
processing is part of the control loop and so the high jitter leads to a poor control
performance, a situation further aggravated by the significant amount of dropped frames,
which correspond to time lapses during which the robot is completely non-responsive to the
environment.

5.2 Modular Architecture

The different image-processing activities have been separated and wrapped in different
Linux processes, as described in Section 4. Table 2 shows the periods, offsets and priorities
assigned to each one of the processes.
The obstacle avoidance processes are the most critical ones since they are responsible for
alerting the control software of the presence of any obstacles in the vicinity of the robot,
allowing it to take appropriate measures when necessary, e.g. evasive maneuvers or
immobilization.
Therefore these processes are triggered at a rate equal to the camera frame rate and receive
the highest priority, ensuring a response-time as short as possible. It should be noted that
these processes scan restricted image regions only, looking for specific features, thus their
execution time is bounded and relatively short. In the experiments the measured execution

Vision Systems: Applications 94

time was bellow 5ms for each one of the processes, therefore this architecture allows
ensuring that every frame will be scanned for the presence of obstacles.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 40 45 50 55 60

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

 0

 5

 10

 15

 20

 25

 30

 35

 40 45 50 55 60

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

Figure 6. Front (left) and omni-directional (right) obstacle detection processes inter-
activation intervals

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50 60 70 80

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

Figure 7. Omni-directional (left) and frontal (right) camera ball tracking processes inter-
activation intervals

 0

 5

 10

 15

 20

 25

 200 250 300 350 400 450 500 550 600

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

 0

 5

 10

 15

 20

 400 500 600 700 800 900 1000 1100 1200

Nu
m

be
r o

f a
ct

iva
tio

ns
 (%

)

Time (ms)

Process interactivation time

Figure 8. Line (left) and yellow post (right) tracking processes inter-activation intervals

The second level of priority is granted to the Ball_Om process, which tracks the ball in the
omni-directional camera. This information is used when approaching, dribbling and kicking
the ball, activities that require a low latency and high update rate for good performance.

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 95

Therefore this process should, if possible, be executed on every image frame, thus its period
was also set to 50ms.
The third level of priority is assigned to the Ball_Fr process, responsible for locating the ball
in the front camera. This information is used mainly to approach the ball when it is at
medium to far distance from the robot. Being able to approach the ball quickly and
smoothly is important for the robot performance but this process is more delay tolerant than
the Ball_Om process, thus it is assigned a lower priority.

Process
Max.
(ms)

Min.
(ms)

Average
(ms)

Standard deviation
(ms)

Avoid_Fr 60.1 48.9 50.0 0.5

Avoid_Om 60.1 45.9 50.0 1.6

Ball_Om 60.1 46.0 50.0 1.6

Ball_Fr 80.0 19.9 50.0 2.1

Ygoal 362.2 61.1 207.9 58.3

BGoal 383.9 60.9 208.4 66.6

Line 564.7 235.6 399.9 71.9

BPost 1055.8 567.9 799.9 87.2

YPost 1156.4 454.4 799.6 114.3

Table 4. Modular architecture statistical data of inter-activation intervals

Some objects are stationary with respect to the play field. Furthermore, the robot localization
includes an odometry subsystem that delivers accurate updates of the robot position during
limited distances. This allows reducing the activation rate and priority of the processes
related with the extraction of these features, without incurring in a relevant performance
penalty. This is the case of BGoal and YGoal processes, which track the position of the blue
and yellow goals, respectively, which were assigned a priority of 25 and a period of 200ms,
i.e., every 4 frames.
The field line detection process (Line) detects and classifies the lines that delimit the play
field, pointing specific places in it. This information is used only for calibration of the
localization information and thus may be run sparsely (400ms). Post detection processes
(BPost and YPost) have a similar purpose. However, since the information extracted from
them is coarser than from the line detection, i.e., it is affected by a bigger uncertainty degree,
it may be run at even a lower rate (800ms) without a relevant performance degradation.
The offsets of the different processes have been set-up to separate their activation as much
as possible. With the offsets presented in Table 2, besides the obstacle and ball detection
processes run every frame, no more than two other processes are triggered simultaneously.
This allows minimizing mutual interference and thus reducing the response-time of lower
priority processes.
Figure 6, Figure 7 and Figure 8 show the inter-activation intervals of selected processes,
namely obstacle, ball, line and yellow post tracking, which clearly illustrate the differences
between the modular and the monolithic architectures regarding the processes temporal
behavior. The processes that receive higher priority (obstacle detection, Figure 6) exhibit a

Vision Systems: Applications 96

narrow inter-activation variance, since they are not blocked and preempt other processes
that may be running. Figure 7 shows the inter-activation intervals of the ball tracking
processes. As stated above, the ball tracking process on the omni-directional camera has a
higher priority since its data is used by more time sensitive activities. For this reason its
inter-activation interval is narrower than the ball tracking process related to the front
camera. As discussed in Section 4, the ball-tracking processes exhibit a significant execution
time variance, since in some cases they are able to find the ball almost immediately while in
other cases the whole image is scanned. For this reason the lower-priority ball-tracking
process (frontal camera) exhibits a significantly higher inter-activation jitter than the higher-
priority one. The same behavior is observed for the remaining processes, which see their
inter-activation jitter increase as their relative priorities diminish.
Table 4 shows statistical data regarding the inter-activation intervals of these processes,
which confirm, in a more rigorous way, the behavior observed above. The processes are
sorted by decreasing priorities exhibiting, from top to bottom, a steady increase in the gap
between maximum and minimum values observed as well as in the standard deviation. This
is expected since higher priority processes, if necessary, preempt lower priority ones
increasing their response-time.
Comparing the figures in Table 3 and Table 4, a major improvement can be observed with
respect to the activation jitter of the most time-sensitive processes, which, for the most
important tasks was reduced to 10ms (object avoidance and omni-directional ball tracking)
and 30ms (frontal ball tracking). Furthermore, the standard deviation of the activation jitter
of these processes is much lower (between 0.5ms and 2.1ms) and no frame drops have
occurred, a situation that may have a significant impact on control performance.
During runtime higher priority processes preempt the lower priority ones, delaying its
execution. This effect is clear in Table 4, with the goal, post and line processes exhibiting a
much higher variability in their inter-activation times. Therefore, it can be concluded that
the modular approach is effective, being able to privilege the execution of the processes that
have higher impact on the global system performance.

5.3 Dynamic Qos adaptation

During runtime the robotic soccer players have to perform different roles, e.g., when a
defender robot gets the ball possession and has a clear way in the direction of the opposite
team goal it should assume an attacker role and some other team mate should take the
defender role in its place. The relative importance of the image processing activities depends
on the particular role that the robots are playing, e.g., in the situation described above the
robot that is taking the defender role does not need to look for the ball in its vicinity, since
this one is in the possession of a team mate, while it could benefit from a higher accuracy on
the localization, achieved by tracking the field lines more often. Therefore, having the ability
to change the image-processing attributes during runtime has the potential to increase the
robot performance.
Another aspect that should not be neglected is that the environment strongly influences the
image processing time since, depending on its richness, the algorithms may have to explore
more or less regions of interest. As a result it is possible for the robotic players to perform
differently in distinct environments or even in different times in the same environment, e.g.,
due to illumination variation. In these cases it may be interesting to manage the execution

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 97

rates of the image-processing activities in order to take the best possible profit of the CPU
but without incurring in overloads that penalize the control performance.

 48

 50

 52

 54

 56

 58

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

In
te

ra
ct

iva
tio

n
tim

e
(m

s)

Time (ms)

Process interactivation time

 46

 48

 50

 52

 54

 56

 58

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

In
te

ra
ct

iva
tio

n
tim

e
(m

s)

Time (ms)

Process interactivation time

Figure 9. Inter-activation time of the high-priority frontal (left) and omnidirectional (right)
avoid processes during a mode change affecting lower priority processes, only

As discussed in Section 4.2.1, the PMAN library permits to change the QoS properties of the
processes, namely the period, phase, deadline and priority. To observe the impact of this
service a situation was created in which the decision level requested a change in the role of a
robot, from attacker to defender, as described before. Furthermore, a CPU overload was
detected and thus the need to remove a lower importance process. The resulting actions
were:

• to remove the ball tracking process in the omni-directional camera;

• to execute the front camera ball tracking process only once in each two frames;

• to execute the line tracking process for every frame;

• to raise its priority to 40, i.e., just below the obstacle avoidance processes.
Figure 9 and Figure 10 depict the inter-arrival time of the avoid, frontal camera ball-tracking
and line tracking processes.
The first fact to be observed is that the higher priority processes are not affected, except for a
small glitch on the instant of the QoS update, of similar magnitude as the jitter already
observed (less than 10ms, see Table 4). This glitch may be explained by the need to access
the PMAN table in exclusive mode and to call the Linux primitive sched_setscheduler()to
change the priority of the line process. These operations are made within the PMAN_tick
call, before the activation of the processes.
The second fact to be observed is that the line and frontal ball-tracking processes started to
behave as expected immediately after the mode change, with periods of one and two
frames, respectively.
The third fact to be observed is that the overload was controlled, and all the processes
started to behave more regularly. This effect can be observed in medium priority processes
(e.g. ball tracking) as well as in lower-priority processes (e.g. post seeking).
Therefore, it can be concluded that the PMAN services permit to change the process
attributes at run-time, allowing both mode changes and CPU load management without
disturbing the behavior of other processes not directly involved in the adaptation process
and, consequently, it is possible to carry out the reconfiguration dynamically, since there is
no service disruption.

Vision Systems: Applications 98

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

In
te

ra
ct

iva
tio

n
tim

e
(m

s)

Time (ms)

Process interactivation time

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

In
te

ra
ct

iva
tio

n
tim

e
(m

s)

Time (ms)

Process interactivation time

Figure 10. Inter-activation time of the frontal ball-tracking (left) and line (right) processes
during a mode change in which the period of the former process was increased (50ms to
100ms) and the period of the latter was reduced (400ms to 50ms)

6. Conclusion

Computer vision applied to guidance of autonomous robots has been generating large
interest in the research community as a natural and rich way to sense the environment and
extract from it the necessary features. However, due to the robots motion, vision-based
sensing becomes a real-time activity that must meet deadlines in order to support adequate
control performance and avoid collisions. Unfortunately, most vision-based systems do not
rely on real-time techniques and exhibit poor temporal behavior, with large variations in
execution time that may lead to control performance degradation and even sensing black-
out periods caused by skipped image frames.
In this chapter, the referred problem is identified in the scope of the CAMBADA middle-size
robotic soccer team, being developed at the University of Aveiro, Portugal. Then, a new
architectural solution for the vision subsystem is presented that substantially improves its
reactivity, reducing jitter and frame skipping.
The proposed architecture separates the vision-based object-tracking activities in several
independent processes. This separation allows, transparently and relying solely on
operative system services, to avoid the blocking of higher priority processes by lower
priority ones as well as to set independent activation rates, related with the dynamics of the
objects being tracked and with its impact on the control performance, together with offsets
that de-phase the activation instants of the processes to further reduce mutual interference.
As a consequence, it becomes possible to guarantee the execution of critical activities, e.g.,
obstacle avoidance and privilege the execution of others that, although not critical, have
greater impact on the robot performance, e.g., ball tracking.
Finally, many robotic applications are deployed in open environments that are hard to
characterize accurately at pre-runtime. The architecture herein proposed permits managing
dynamically the resources assigned to tasks, e.g. by controlling their execution rate or
priority, allowing a dynamic control of the delivered QoS. This approach permits either
maximizing the utilization of system resources to achieve a best possible QoS for different
load scenarios or adjusting the resource utilization according to the application
instantaneous requirements, granting a higher QoS to the tasks that have higher impact on
the global system performance.

A Real-Time Framework
for the Vision Subsystem in Autonomous Mobile Robots 99

The work described in this chapter is focused on robotic soccer robots but the results and
approach are relevant for a wider class of robotic applications in which the vision subsystem
is part of their control loop.

7. References

Almeida, L.; Santos, F.; Facchinetti; Pedreiras, P.; Silva, V. & Lopes, L. (2004). Coordinating
distributed autonomous agents with a real-time database: The CAMBADA project.
Lecture Notes in Computer Science, Volume 3280/2004, pp. 876-886, ISSN 0302-9743.

Assad, C.; Hartmann, M. & Lewis, M. (2001). Introduction to the Special Issue on
Biomorphic Robotics. Autonomous Robots, Volume 11, pp. 195-200, ISSN 0929-
5593.

Blake, A; Curwen, R. & Zisserman, A. (1993). A framework for spatio-temporal control in
the tracking of visual contours. International Journal of Computer Vision, Vol. 11 No.2,
pp. 127—145, ISSN0920-5691.

Burns, A; Jeffay, K.; Jones, M. et al (1996). Strategic directions in realtime and embedded
systems. ACM Computing Surveys, Vol. 28, No. 4, pp. 751–763, ISSN 0360-0300.

Buttazzo, G.; Conticelli, F.; Lamastra, G. & Lipari, G. (1997). Robot control in hard real-time
environment. Proceedings of the 4th International Workshop on Real-Time Computing
Systems and Applications, pp. 152—159, ISBN 0-8186-8073-3, Taiwan, Oct. 1997,
Taipei.

Buttazzo, G. & Abeni, L. (2000). Adaptive rate control through elastic scheduling.
Proceedings of the 39th IEEE Conference on Decision and Control, pp. 4883-4888, ISBN
0-7803-6638-7, Dec. 2000, Sydney, Australia.

Buttazzo, G.; Lipari, G., Caccamo, M. & Abeni. L. (2002). Elastic scheduling for flexible
workload management. IEEE Transactions on Computers, Vol. 51, No. 3, pp. 289–302,
ISSN: 0018-9340.

CAN (1992). Controller Area Network - CAN2.0. Technical Specification, Robert Bosch, 1992.
Davison, J. (2005). Active search for real-time vision, Proceedings of the 10th IEEE International

Conference on Computer Vision, Volume: 1, pp. 66- 73, ISBN 0-7695-2334-X.
De Souza, G. & Kak, A.(2004). A Subsumptive, Hierarchical, and Distributed Vision-Based

Architecture for Smart Robotics. IEEE Transactions on Systems, Man, and Cybernetics -
- Part B: Cybernetics, Vol. 34, pp. 1988-2002, ISSN 1083-4419.

Gibson, J. (1979). The Ecological Approach to Visual Perception, Lawrence Erlbaum Associates,
Inc.,, ISBN 0-89859-959-8, Boston, MA.

Hirai, S.; Zakouji, M & Tsuboi, T. (2003). Implementing Image Processing Algorithms on
FPGA-based Realtime Vision System, Proceedings of the 11th Synthesis and System
Integration of Mixed Information Technologies, pp.378-385, March 2003, Hiroshima.

Iannizzotto, G., La Rosa, F. & Lo Bello, L. (2004). Real-time issues in vision-based Human-
Computer Interaction. Technical Report, VisiLab, University of Messina , Italy.

Kitano, K.; Asada, M.; Kuniyoshi, Y.; Noda, I. & Osawa E. (1997). RoboCup: The Robot
World Cup Initiative, Proceedings of the First International Conference on Autonomous
Agents (Agents'97), W. Lewis Johnson and Barbara Hayes-Roth (Eds.), pp. 340—
347, ISBN 0-89791-877-0, USA, Aug. 1997, ACM Press, N.Y.

Kopetz, H. (1997). Real-Time Systems Design Principles for Distributed Embedded Applications,
Kluwer Academic Publishers, ISBN 0-7923-9894-7, Boston, MA.

Vision Systems: Applications 100

Lee, C.; Rajkumar, R. & Mercer, C. (1996). Experiences with processor reservation and
dynamic qos in real-time Mach. In Multimedia Japan 96, Japan, April 1996.

Marti, P. (2002). Analysis and Design of Real-Time Control Systems with Varying Control
Timing Constraints. PhD thesis, Universitat Politecnica de Catalunya, Barcelona,
Spain, July 2002.

RTAI (2007), RTAI for Linux, Available from http://www.aero.polimi.it/~rtai/, accessed:
2007-01-31.

Santos, F.; Almeida, L.; Pedreiras, P.; Lopes, S. & Facchinnetti, T. (2004). An Adaptive
TDMA Protocol for Soft Real-Time Wireless Communication Among Mobile
Computing Agents, Proceedings of the Workshop on Architectures for Cooperative
Embedded Real-Time Systems (satellite of RTSS 2004). Lisboa, Portugal, Dec. 2004.

SDL (2007), Simple DirectMedia Layer, Available from http://www.libsdl.org/index.php,
accessed: 2007-01-31.

Weiss, G. (2000). Multiagent systems. A Modern Approach to Distributed Artificial Intelligence,
MIT Press, ISBN 0-262-23203-0, Cambridge, MA.

Vision Systems: Applications

Edited by Goro Obinata and Ashish Dutta

ISBN 978-3-902613-01-1

Hard cover, 608 pages

Publisher I-Tech Education and Publishing

Published online 01, June, 2007

Published in print edition June, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Computer Vision is the most important key in developing autonomous navigation systems for interaction with

the environment. It also leads us to marvel at the functioning of our own vision system. In this book we have

collected the latest applications of vision research from around the world. It contains both the conventional

research areas like mobile robot navigation and map building, and more recent applications such as, micro

vision, etc.The fist seven chapters contain the newer applications of vision like micro vision, grasping using

vision, behavior based perception, inspection of railways and humanitarian demining. The later chapters deal

with applications of vision in mobile robot navigation, camera calibration, object detection in vision search, map

building, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Paulo Pedreiras, Filipe Teixeira, Nelson Ferreira, Luis Almeida Armando Pinho and Frederico Santos (2007). A

Real-Time Framework for the Vision Subsystem in Autonomous Mobile Robots, Vision Systems: Applications,

Goro Obinata and Ashish Dutta (Ed.), ISBN: 978-3-902613-01-1, InTech, Available from:

http://www.intechopen.com/books/vision_systems_applications/a_real-

time_framework_for_the_vision_subsystem_in_autonomous_mobile_robots

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

