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Genetic Algorithm for Linear Feature Extraction 

Alberto J. Pérez-Jiménez & Juan Carlos Pérez-Cortés1

Universidad Politécnica de Valencia 
Spain

1. Introduction 

Feature extraction is a commonly used technique applied before classification when a 
number of measures, or features, have been taken from a set of objects in a typical statistical 
pattern recognition task. The goal is to define a mapping from the original representation 
space into a new space where the classes are more easily separable. This will reduce the 
classifier complexity, increasing in most cases classifier accuracy. Feature extraction 
methods can be divided into linear and non-linear, depending on the nature of the mapping 
function (Lerner et al., 1998). They can also be classified as supervised or unsupervised, 
depending on whether the class information is taken into account or not. Feature extraction 
can also be used for exploratory data analysis, where the aim is not to improve classification 
accuracy, but to visualise high dimensional data by mapping it into the plane or the 3-
dimensional space. 
The best known linear methods are Principal Component Analysis, or PCA (unsupervised) 
(Fukunaga, 1990), Linear Discriminant Analysis or LDA (supervised) (Fukunaga, 1990; 
Aladjem, 1991; Siedlecki et al., 1988), and Independent Component Analysis or ICA 
(unsupervised) (Cardoso, 1993). Schematically, PCA preserves as much variance of the data 
as possible, LDA attempts to group patterns of the same class, while separating them from 
the other classes, and ICA obtains a new set of features by extracting the less correlated (in a 
broad sense) directions in the data set. On the other hand, well-known non-linear methods 
are: Sammon’s Mapping (unsupervised) (Sammon, 1969; Siedlecki et al. 1988), non-linear 
discriminant analysis or NDA (supervised) (Mao & Jain, 1995), Kohonen’s self-organising 
map (unsupervised) (Kohonen, 1990) and evolutionary extraction (supervised) (Liu & 
Motoda, 1998). Sammon’s mapping tries to keep the distances among the observations using 
hill-climbing or neural network methods (Mao & Jain, 1995; Sammon, 1969), NDA obtains 
new features from the coefficients of the second hidden layers of a multi-layer perceptron 
(MLP) (Mao & Jain, 1995) and Kohonen Maps project data in an attempt to preserve the 
topology. Finally, evolutionary extraction uses a genetic algorithm to find combinations of 
original features in order to improve classifier accuracy. These new features are obtained by 
multiplying, dividing, adding or subtracting the original features. 
In the linear methods, the mapping function is known and simple; therefore, the task is 
reduced to finding the coefficients of the linear transformation by maximising or minimising 
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a criterion. If a proper criterion function is selected, many standard linear algebra methods 
can be applied. However, in many cases a linear mapping may not be powerful enough to 
obtain good results, making it necessary to consider non-linear mappings. 
Non-linear mappings present different functional forms and this often makes their 
application more problem-dependent. Furthermore, since closed-form optimisation 
methods for many non-linear functions are not known or, are in general less stable and 
powerful than their linear counterparts when they do exist, non-parametric estimation 
techniques such as neural networks or iterative optimisation procedures such as hill-
climbing or genetic algorithms are commonly used. 
In this paper, a new linear supervised feature extraction method referred to as GLP (genetic 
linear projections) is proposed. The goal of this method is to find the coefficients of a set of 
linear projections by maximising a certain criterion function. The success confidence rate in 
the new feature space, a criterion that is directly related to the estimated accuracy of a 
Nearest Neighbour classifier, is proposed as the function to maximise. Because no closed-
form solution exists to maximise this criterion, a well-known numerical optimisation 
method, genetic algorithms (GA) (Holland, 1975; Goldberg, 1989), has been employed. 
In Section 2, we describe the GLP algorithm. In Section 3, we present a comparison between 
a linear method (PCA), a non-linear method (NDA) and the proposed GLP algorithm over 
several data sets in terms of both feature extraction and data projection purposes. Finally, 
we present some conclusions and further works in section 4. 

2. Genetic Linear Projection (GLP) 

2.1 Linear feature extraction 

In linear feature extraction, new features are obtained by means of linear projections (LP). A 
LP is defined as follow 

 LP(x) = c1x1 + c2x2 + … cdxd (1)

where x is a d-dimensional vector with components xi and ci are the projection coefficients 
representing the projection axis. By representing the coefficients as a vector, c={c1, c2, … cd}T,
the application of a LP can be redefined as 

 LP(x) = cTx (2)

Each LP defines a new feature to represent x. To define m new features, we need m LPs that 
can be arranged as a m×d matrix (C). By defining the transformation matrix C in this way, a 
new representation of x, y={y1, y2, … ym}T, can be obtained by means of 

 y = Cx (3)

Ideally C should be selected in order to minimise the Bayes error (Duda & Hart, 1973) in the 
new space. Moreover, this expression depends on the a posteriori probability of classes, and 
in general, is not straightforward to obtain. Even when this expression exists, usually no 
tractable expression for the gradient can be obtained. For this reason, linear feature 
extraction methods often employ other less suitable, but simpler, class separability measures 
in order to use closed-form solutions, or they employ gradient-based numerical optimisation 
methods in order to obtain C.



Genetic Algorithm for Linear Feature Extraction 425

2.2 Criteria 

In this work, we propose to obtain C by optimising a criterion function that is directly 
related to the Bayes error. The estimated error rate, Ê, of a k-Nearest Neighbour classifier (k-
NN) can be a good option. Under certain convergence conditions, the error rate of a k-NN
classifier offers an optimistic, but very close estimation of the Bayes error (Devijver & 
Kittler, 1982). The Ê can be easily calculated by error count over a test set by the expression, 

n

e
E =ˆ  (4) 

where n is the size of the test set, and e is the number of observations that are not correctly 
classified by the k-NN classifier. The estimated success rate of a classifier, Â, is directly 
related to Ê and can be calculated as Â=1-Ê.
Another interesting criterion can be defined using the conditional probability of an 
observation x belonging to a class wi, )|( xwP i

. Most statistic classifiers can provide an 

estimation of this value that can be used as a confidence measure for the classified 

observations. In a k-NN classifier, a maximum likelihood estimation of )|( xwP i , )|(ˆ xwP i ,

can be obtained as 

k

k
xwP i

i
=)|(ˆ (5)

where k is the number of neighbours employed by the k-NN classifier, and ki is the number 

of neighbours of class wi. We formulate the estimated success confidence rate, aĈ , of a classifier 

as
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In the case the value )|(ˆ xwP i  is always 1, the definition of aĈ  equals the value of Â. The 

criterion can be seen as a confidence measure of the estimated success rate of a classifier. 

When projecting data, the use of aĈ as the optimisation criterion has advantages with 

respect to Â (or Ê). Two projections with the same Â value can have different values of aĈ .

In this situation, the k-NN classifier implemented in the feature space with a better  aĈ value

is expected to show more confidence in its decisions. For this reason, we propose the success 

confidence rate, aĈ , as the criterion to estimate the linear transformation matrix C.
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2.3 Genetic optimisation 

Since no closed-form method is known to optimise the proposed criterion, and since there is 
no tractable expression for its gradient, random numerical optimisation methods must be 
used. 
The number of parameters to be estimated by the optimisation method is m×d, with m being 
the number of LPs or new features to obtain, and with d being the dimensionality of the 
original data. If we want to project high-dimensional data, the number of parameters to 
estimate will be large. For this reason, we propose a GA as an appropriate paradigm to carry 
out the optimisation. 
GAs have proven to be specially useful in large search spaces (Goldberg, 1989). We have 
used a GA with the following properties: 

• An individual is composed of m chromosomes representing the m LPs to search. Each 
chromosome contains d genes, and each gene contains a binary string of b bits that 
encodes a coefficient of the LP in fixed point format. 

• The fitness function is defined as the computed success confidence rate, aĈ , of a k-NN

classifier trained with the projected data obtained from the LPs coded in the individual. 

• The genetic selection scheme uses a rank-based strategy (Mitchell, 1996). In this 
strategy, the probability of being selected is computed from the rank position of the 
individuals. In our case, this method gave a faster convergence than a fitness-
proportionate method. 

• The following settings are used for the rest of the parameters: crossover probability is 
0.6, mutation probability is 0.001, population size is 100 and the maximum number of 
generations is 300.

Finally, since estimating the success confidence rate of a k-NN classifier is a time-consuming 
task, a fast neighbour search by means of kd-trees (Friedman et al., 1977) was implemented 
to reduce the computational cost. Additionally, a micro-grain parallel GA (Shyh-Chang et 
al., 1994) was implemented, allowing the use of several computers to compute individual 
fitness functions, obtaining a linear speedup. 
We refer to the described method as Genetic Linear Projections (GLP). 

3. Comparative study 

3.1 Methodology 

In this section, the GLP method is compared with the well-known PCA (linear, 
unsupervised), and the NDA by means of neural networks (non-linear, supervised). The 
comparison addresses both, feature extraction and data projection (mapping) applications. 
The three methods are applied to sixteen data sets in order to obtain different numbers of 
new features (see Table 1). Since the results obtained by NDA and GLP are not 
deterministic, for this methods five runs are performed with each parameter combination. 
PCA obtains an eigenvector matrix ( ) and an eigenvalue diagonal matrix ( ) from the 
covariance matrix of the original data by means of a closed-form method. The columns of 
correspond to orthonormal linear projections (eigenvectors) in the directions of maximal 
scatter. The values in the diagonal of  (eigenvalues) allow us to sort these directions 
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depending on the scatter. To reduce a d-dimensional original space to an m-dimensional
space, with m<d, we only have to keep the m eigenvectors with the largest eigenvalues. 
The NDA method is based on training a two-hidden layer neural network. This is 
accomplished using the backpropagation algorithm with momentum, obtaining the new 
features from the response of the units of the second hidden layer. The number of units of 
the second hidden layer must be selected to equal the number of desired new features. 
In order to detect possible overfitting problems with the three methods, each data set is split 
into a training set (70%) and a test set (30%). The methods are applied to the training sets, 
testing the performance of the obtained projections in the test sets. In order to estimate the 

success confidence rate, aĈ , a leaving-one-out procedure is employed in the training set for 

small data sets (less than 5000 patterns). A hold-out procedure is used with bigger data sets. 
In the case of feature extraction, the performance of the methods is compared in terms of the 
success rate improvement obtained, as well as in terms of the reduction obtained in the 
number of features. Because the estimate of the success rate is obtained by error count 
(Duda & Hart, 1973), the 95% confidence intervals are provided to correctly compare the 
results. 
For data projection purposes, the performance of these methods is first compared by means 
of visual judgement over the 2-dimensional projections obtained from the data sets, and 
then by means of the success rate of a k-NN classifier computed for each data set in the 
original and projected spaces. This quantitative criterion gives us an idea of how well the 
class structure is preserved by the projections (Mao & Jain, 1995). 

3.2 Corpora 

The corpora are selected from well-known data sets from the UCI repository (Blake & Merz, 
1998). A self-designed synthetic data set, cookies, is also used. This data set has been created 
to represent a well-known case in which PCA does not work well because the maximal 
scatter axes are not the most significant. This corpus consists of two 10-dimensional normal 
distributions with covariance matrices 

,

100

010

000001.0

21 =Σ=Σ

and means µ1=(+0.1, 0, 0, …), µ1=( 0.1, 0, 0, …). Each class has 1000 patterns. These 
distributions represent two hyperspheres that are flattened (like cookies) in the dimension 
that separates them.  
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Table 1 summarises the features (size, dimensionality, number classes, ...) of every data set 
used. 

Corpora Size Dim. Classes k New features 

german 1000 24 2 23 [1,2 - 20] 

glass 214 9 6 3 [1,2 - 8 ] 

cookies 2000 10 2 21 [1,2 - 10] 

ionosphere 351 34 2 1 [1,2 - 30] 

iris 151 4 3 15 [1,2,4] 

digits 3000 196 10 3 [1,2 - 100] 

bupa 345 6 2 23 [1,2 - 6] 

pima 768 8 2 19 [1,2 - 8] 

segment 2310 19 7 1 [1,2 - 15] 

sonar 208 60 2 1 [1,2 - 60] 

vehicle 846 18 4 3 [1,2 - 15] 

wine 178 13 3 15 [1,2 - 10] 

waveform 5000 21 3 27 [1,2 - 20] 

page blocks 5473 10 5 3 [1,2 - 10 ] 

sat 6435 36 6 5 [1,2 - 35] 

musk 6598 166 2 3 [1,2 - 100] 

Table 1. Data set features: size, dimensionality, number of classes, optimum k value for the 
k-NN classifier and a list of the new number of features searched for the different methods 
(values with dashes mean that several numbers in the interval have been searched for).   
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Corpora Original PCA NDA GLP 

0.7278 0.7307 0.9882 0.8198 
german 

0.7285
(24)

0.7086
(15)

0.7183
(6)

0.7461
(6)

0.7308 0.7244 0.7485 0.8160 
glass 

0.5690
(9)

0.6897
(4)

0.7255
(8)

0.7843
(8)

0.4993 0.4993 1.0000 1.0000
cookies 

0.4728
(10)

0.4729
(10)

1.0000
(1)

1.0000
(2)

0.8833 0.9083 1.0000 0.9876
ionosphere 

0.8198
(34)

0.8378
(8)

0.9174
(1)

0.8899
(2)

0.9725 0.9725 0.9818 0.9909 
iris

0.9268
(4)

0.9268
(4)

0.9750
(4)

0.9500
(4)

0.9522 0.9603 0.9948 0.9581 
digits

0.9504
(196)

0.9559
(40)

0.9122
(15)

0.9578
(100)

0.6901 0.6901 0.8092 0.7557 
bupa

0.5922
(6)

0.5922
(6)

0.7229
(6)

0.6627
(6)

0.7623 0.7605 0.8680 0.8272
pima

0.7014
(8)

0.7330
(6)

0.7352
(8)

0.7589
(4)

0.9599 0.9599 0.9876 0.9826
segment

0.9607
(19)

0.9607
(15)

0.9757
(6)

0.9729
(10)

0.8392 0.8531 1.0000 1.0000
sonar 

0.8462
(60)

0.8462
(10)

0.7458
(1)

0.7966
(10)

0.7141 0.7059 0.9397 0.8362
vehicle

0.7179
(18)

0.7265
(15)

0.8308
(6)

0.7594
(10)

0.9590 0.9836 1.0000 1.0000
wine

0.9464
(13)

0.9464
(6)

0.9811
(1)

1.0000
(2)

0.8396 0.8541 0.9429 0.8649 
waveform

0.8531
(21)

0.8720
(2)

0.8375
(10)

0.8578
(15)

0.9611 0.9616 0.9746 0.9650
page blocks 

0.9685
(10)

0.9685
(8)

0.9685
(4)

0.9710
(8)

0.9092 0.9116 0.9555 0.9107
sat 

0.8965
(36)

0.8944
(15)

0.8944
(10)

0.8991
(25)

0.9676 0.9673 1.0000 0.9783
musk

0.9641
(166)

0.9656
(90)

0.9946
(4)

0.9759
(15)

Table 2. The best success rates obtained by PCA, GLP and NDA on the training set (top) and 
the test set (bottom). The results on the original feature space are also shown. The values in 
brackets represent the number of features. Values in boldface represent the methods that 
obtain the highest reduction, maintaining or improving the original correct classification 
rate.
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3.3 Results 

Tables 2 and 3 present the best runs obtained for the three methods. The success rate is 
presented instead of the success confidence rate (the criterion used to optimise) because we 
are interested in the final classifier performance. Analysing the results and considering their 
95% confidence intervals (see Table 3) it can be observe that a significant classifier 
improvement was only obtained by NDA in three data sets (cookies, vehicle and musk), and 
by GLP in one data set (cookies). In all the other cases, only feature reduction was achieved, 
i.e., the classifier obtained similar results to the original space but with fewer features. 
By analysing all the runs (not only the best ones), and taking into account the confidence 
intervals, it can be observed that the three methods obtained a similar reduction with the 
exception of PCA, which obtained a worse reduction in five data sets (cookies, ionosphere,
segment, sonar and vehicle). For instance, Figure 1 shows the results for the vehicle, cookies and 
segment data sets, for different numbers of features. It also shows that a similar reduction 
was obtained by NDA and GLP in these cases, while PCA yielded significantly worse 
results. 
It is interesting to note that, although only one linear projection was enough to separate the 
classes of cookies data set, PCA and GLP had problems. PCA was not able to do it because 
the maximal scatter direction was not the optimal in this case. GLP failed because random 
optimisation methods have problems finding very isolated solutions. Nevertheless GLP was 
able to find a good solution with two or more linear projections while PCA continued to fail. 
In the data projection context, looking at the success rate obtained by the classifiers when 
projecting data sets into a 2-dimensional space (see Table 4), it can be observed that NDA 
and GLP outperformed PCA in most of the data sets. NDA obtained better results than GLP 
for high dimensional data sets (i.e. the digits data set, see Figure 2). Visual analysis of 
obtained projections confirmed these results showing that GLP and NDA produced less 
overlapping views than PCA (see Figures 2,  3 and 4). 
Finally, with respect to the time complexity of methods, although the estimation of the 

success confidence rate, aĈ , was optimised by using kd-trees, and although the GA was 

parallelised to speed up the algorithm, the off line cost of GLP was higher than the cost for 
the other two methods. The method with the lowest cost is LDA because the 
transformations are obtained by means of a closed-form method and there is no need for 
several runs as in NDA or GLP. 
Regarding the on line costs, GLP and LDA generate linear transformations and have an 
application cost that is lower than the application of the non-linear transformations 
generated by the neural network on NDA. 

4. Conclusions 

From the results obtained, we can conclude that although NDA obtains good results with 
non-linear projections in all data sets, similar results can be obtained using GLP in most of 
them. This indicates to us that, in practice, linear projections can obtain results just as good 
as non-linear projections in most cases. Even though PCA employs linear projections as 
well, it performs worse in some data sets probably because it is an unsupervised method. 
Classical linear, supervised feature extraction methods like LDA have important limitations: 
first, the number of new features is limited by the number of classes; and second, numerical 
problems arise when working with high dimensional or small data sets, restricting its use. 
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The proposed GLP method does not have these limitations. The main drawback of the GLP 
method is it computational cost; however, this is an off line process. Once the  

Corpora Original PCA NDA GLP 
0.6925 0.6955 0.9776 0.7895 

0.7278 
0.7598 

0.7307 
0.7626 

0.9882 
0.9951 

0.8198 
0.8478 

0.6760 0.6551 0.6620 0.6935 german
0.7285 0.7794 0.7086 0.7607 0.7183 0.7670 0.7461 0.7949 

0.6529 0.6529 0.6743 0.7474 
0.7308 0.8008 0.7244 0.8008 0.7485 0.8187 0.8160 0.8771 

0.4482 0.5594 0.6091 0.6603 glass 
0.5690 0.7006 0.6897 0.7976 0.7255 0.8370 0.7843 0.8749 

0.4728 0.4728 0.9974 0.9974 
0.4993 0.5258 0.4993 0.5258 1.0000 

1.0000 
1.0000 

1.0000 

0.4328 0.4328 0.9939 0.9939 cookies 
0.4728 0.5142 0.4729 0.5142 

1.0000 
1.0000 

1.0000 
1.0000 

0.8391 0.8672 0.9851 0.9646 
0.8833 0.9227 0.9083 0.9429 1.0000 

1.0000 
0.9876 

0.9975 

0.7319 0.7535 0.8435 0.8089 ionosphere 
0.8198 0.8874 0.8378 0.9028 0.9174 0.9601 0.8899 0.9395 

0.9329 0.9329 0.9481 0.9655 
0.9725 0.9977 0.9725 0.9977 0.9818 0.9998 0.9909 1.0000 

0.8173 0.8173 0.8823 0.8485 iris
0.9268 0.9860 0.9268 0.9860 0.9750 0.9994 0.9500 0.9946 

0.9424 0.9512 0.9906 0.9486 
0.9522 0.9611 0.9603 0.9684 0.9948 

0.9974 
0.9581 0.9663 

0.9337 0.9400 0.8918 0.9425 digits
0.9504 0.9633 0.9559 0.9681 

0.9122 
0.9299 

0.9578 0.9700 

0.6305 0.6305 0.7537 0.7003 
0.6901 0.7506 0.6901 0.7506 0.8092 

0.8567 0.7557 0.8119 

0.4910 0.4910 0.6316 0.5703 bupa
0.5922 

0.6880 
0.5922 

0.6880 
0.7229 

0.8112 
0.6627 

0.7594 

0.7252 0.7233 0.8382 0.7941 
0.7623 0.7988 0.7605 0.7971 0.8680 

0.8970 0.8272 0.8596 

0.6408 0.6728 0.6728 0.7004 pima
0.7014 0.7625 0.7330 0.7906 0.7352 0.7906 0.7589 0.8145 

0.9490 0.9490 0.9810 0.9751 
0.9599 0.9688 0.9599 0.9688 0.9876 

0.9924 
0.9826 

0.9885 

0.9438 0.9438 0.9610 0.9575 segment 
0.9607 0.9742 0.9607 0.9742 0.9757 0.9856 0.9729 0.9834 

0.7716 0.7872 0.9749 0.9749 
0.8392 0.8967 0.8531 0.9081 1.0000 

1.0000 
1.0000 

1.0000 

0.7233 0.7233 0.6150 0.6682 sonar 
0.8462 0.9198 0.8462 0.9198 0.7458 0.8447 0.7966 0.8834 

0.6763 0.6676 0.9168 0.8038 
0.7141 0.7506 0.7059 0.7425 0.9397 

0.9570 
0.8362 

0.8651 

0.6597 0.6680 0.7823 0.7055 vehicle 
0.7179 

0.7738 
0.7265 

0.7812 
0.8308 

0.8777 
0.7594 

0.8139 

0.9084 0.9430 0.9707 0.9707 
0.9590 0.9868 0.9836 0.9980 1.0000 1.0000 1.0000 1.0000 

0.8434 0.8434 0.8993 0.9328 wine
0.9464 0.9882 0.9464 0.9882 0.9811 0.9995 1.0000 1.0000 

0.8271 0.8419 0.9346 0.8531 
0.8396 0.8517 0.8541 0.8655 0.9429 

0.9503 
0.8649 

0.8760 

0.8344 0.8540 0.8177 0.8393 waveform
0.8531 0.8709 0.8720 0.8885 0.8375 0.8557 0.8578 0.8753 

0.9545 0.9551 0.9692 0.9587 
0.9611 0.9670 0.9616 0.9675 0.9746 

0.9794 0.9650 0.9706 

0.9593 0.9593 0.9593 0.9621 page blocks 
0.9685 0.9768 0.9685 0.9768 0.9685 0.9768 0.9710 0.9789 

0.9004 0.9030 0.9492 0.9020 
0.9092 0.9174 0.9116 0.9198 0.9555 

0.9614 0.9107 0.9189 

0.8825 0.8803 0.8803 0.8852 sat 
0.8965 0.9101 0.8944 0.9082 0.8944 0.9082 0.8991 0.9125 

0.9620 0.9618 0.9992 0.9737 
0.9676 0.9724 0.9673 0.9722 1.0000 

1.0000 
0.9783 

0.9823 

0.9550 0.9566 0.9901 0.9680 musk 
0.9641 0.9719 0.9656 0.9732 

0.9946 
0.9972 

0.9759 0.9821 

Table 3. The bests success rates obtained by PCA, GLP and NDA on the training set (top) 
and the test set (bottom). The results on the original feature space are also shown. Small 
values represent the 95% confidence intervals for the correct classification rate. Values in 
boldface represent values that are significantly different from the original.   
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transformations are computed, the cost of applying them to new data is lower than applying 
the neural network trained by the NDA method. Moreover, the process of training an NDA 
neural network is not straightforward in many cases, having convergence problems. 
From the point of view of data projection, it can be concluded that NDA projections 
outperform our GLP method when the intrinsic dimensionality is high. In these cases, the 
NDA projection is able to obtain a good view of the class structure even in a 2-dimensional 
projection. Nevertheless, we consider that NDA has one important drawback. Because non-
linear transformations are used, an important distortion of the original space occurs, 
especially when projecting into a 2-dimensional space in an attempt to preserve the class 
structure (see Figure 3). In this situation, a synthetic view of the configuration of real 
clusters is obtained. The GLP method uses linear transformations, thereby producing less 
distorted and more meaningful views of the original space (distortion can appear because 
the new axes are not necessarily orthogonal). The PCA method is linear and unsupervised; 
therefore, the projections computed do not always show a good view of the class structure if 
the discriminant axes are not the ones with the highest variance. 

Corpora Original PCA NDA GLP 

german 0.7278 0.7178 0.9075 0.7885

glass 0.7308 0.6731 0.6454 0.6626

cookies 0.4993 0.3986 1.0000 0.9959 

ionosphere 0.8833 0.7125 0.9901 0.9769

iris 0.9725 0.9266 0.9709 0.9745

digits 0.9522 0.4364 0.8508 0.6336

bupa 0.6901 0.5331 0.7756 0.7206

pima 0.7623 0.7130 0.8586 0.7825

segment 0.9599 0.6402 0.9412 0.9135

sonar 0.8392 0.5664 0.9879 0.9289

vehicle 0.7141 0.4935 0.7921 0.7438

wine 0.9590 0.9508 0.9968 0.9936 

waveform 0.8396 0.8541 0.8909 0.8514

page blocks 0.9611 0.9369 0.9641 0.9530

sat 0.9092 0.8322 0.8756 0.8380

musk 0.9676 0.8913 0.9993 0.9296

Table 4. Mean values for the correct classification rate obtained over the training sets when 
looking for two new features (exploratory analysis). The bests results for each data set are in 
boldface.  
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Fig. 1. Correct classification rate results for vehicle (top), cookies (middle) and segment
(bottom) data set. The 95% confidence intervals are shown.  

Fig. 2. Projections obtained for the digits data set by PCA (top), GLP (middle) and NDA (bottom).  
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Fig. 3. Projections obtained for the cookies data set by PCA (top), GLP (middle) and NDA 
(bottom).
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Fig. 4. Projections obtained for the segment data set by PCA (top), GLP (middle) and NDA 
(bottom).
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