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1. Introduction     

Genetic algorithms are wide class of global optimization methods. As well as neural 
networks and simulated annealing, genetic algorithms are an example of successful using of 
interdisciplinary approach in mathematics and computer science. Genetic algorithm 
simulates natural selection and evolution process, which are well studied in biology. In most 
cases, however, genetic algorithms are nothing else than probabilistic methods, which are 
based on principles of evolution. The idea of genetic algorithm appears first in 1967 in J. D. 
Bagley’s thesis (Bagley, 1967). The theory and applicability was then strongly influenced by 
J. H. Holland, who can be considered as the pioneer of genetic algorithms (Holland, 1992). 
Since then, this field has witnessed a tremendous development. 
There are many applications where genetic algorithms are used. Wide spectrum of problems 
from various branches of knowledge can be considered as optimization problem. This 
problem appears in economics and finances, cybernetics and process control, game theory, 
pattern recognition and image analysis, cluster analysis etc. Also genetic algorithm can be 
adapted for multicriterion optimization task for Pareto-optimal solutions search. But most 
popular applications of genetic algorithm are still neural networks learning and fuzzy 
knowledge base generation. 
There are three ways in using genetic algorithms with neural networks: 
1. Weight learning. Optimal net weights are found with genetic algorithm when 

conventional methods (e.g. backpropagation) are not applicable. It is suitable when 
continuous activation function of neuron (such as sigmoid) is used, so error function 
become multiextremal and conventional method can find only local minimum. 

2. Architecture optimization. Genetic algorithm is used for finding optimal net 
architecture from some parameterized class of net architectures. 

3. Learning procedure optimization. In this expensive but effective method genetic 
algorithm is used for finding optimization parameters of learning function (weight 
correction function). Usually this method is used with architecture optimization 
simultaneously. 

Genetic fuzzy systems are other popular application of genetic algorithms. Fuzzy system 
design consists of several subtasks: rule base generation, tuning of membership function 
and tuning of scaling function. All this tasks can be considered as optimization problem, so 
genetic algorithm is applicable (Cordon et al., 2004). 

Source: Vision Systems: Segmentation and Pattern Recognition, ISBN 987-3-902613-05-9,
Edited by: Goro Obinata and Ashish Dutta, pp.546, I-Tech, Vienna, Austria, June 2007

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



Vision Systems - Segmentation and Pattern Recognition 408

The optimization problem solved by genetic algorithms in general can be formulated as: 

 )(max xf
Xx

 (1) 

where X is search space, objective function f is total function in X, f: X . Some particular 
cases of this problem are well studied and solution methods are well known. For instance it 
is mentioned linear and convex programming problem. In general, however, this problem is 
very complex and non-solvable. It means that solution cannot be obtained in finite iteration 
steps.
We restrict problem (1) and consider case of compact and simple structure of set X, e.g. X is 
hypercube and it is known that f reach maximum inside X. In this case complexity of 
optimization task is depended from complexity of objective function f only. In common case 
f is non-smooth (non-differentiable) multiextremal function. Even through f is differentiable 
and conventional optimization methods e.g. gradient descent are applicable there are no 
guarantee that global optimum will be found.  
There are two wide classes of optimization methods to solve global optimization problem: 
deterministic and stochastic. First obtain solution via almost complete search all over the X,
so these methods are slow and non-efficient, but guarantee optimum finding. Also using of 
these methods requires some restrictions on objective function, so in several cases 
deterministic methods are not applicable. Second class is stochastic methods, which are 
faster and more efficient and universal than deterministic but has one essential shortcoming: 
maximization of objective function is not guarantee. Most of stochastic algorithms evaluate 
objective function in some random points of search space. Then sample of these points is 
processed and some pointes are saved for the next iteration. 
As the practice shows in many instances it is acceptable to find not best but just well 
solution, so stochastic methods and genetic algorithms particularly are very effective. 

2. Basic Ideas and Concepts 

We consider optimization problem (1). Genetic algorithm does not work with problem (1) 
directly, but with coded version of them. Search space X is mapped into set of string S.
Function c(x): X S is called coding function. Conversely, function d(s): S X is called 

decoding function and c d(s) = s should be done for any string s. In practice, coding 

functions, which have to be specified depending on the needs of the actual problem, are not 

necessarily bijective, so d c  is not identical map over X, but it is over D = d(S).

Usually, S is finite set of binary strings: 

mS }1,0{=  (2) 

where m is obviously length of string. Generally simple binary code or Gray code is used. 
Note that S is finite, but X is commonly not. So, we quantize search space and algorithm 
finds solution approximately, but solution precision can be made as high as needed by 
increasing m.
Thus, we replace problem (1) with follows: 

 )(max sf
Ss

 (3) 
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where under f(s) we imply f(d(s)).
Terminology particularly borrowed from natural genetic and evolution theory is commonly 
used in framework of genetic algorithms. Below we give some of most often used terms. 
Member of set S is called individual. Individual in genetic algorithm is identified with 
chromosome. Information encoded in chromosome is called genotype. Phenotype is values of 
source task variables corresponding to genotype. In other words phenotype is decoded 
genotype. In simple genetic algorithm chromosomes are binary string of finite length. Gene
is a bit of this string. Allele is value of gene, 0 or 1. Population is finite set of individuals. 
Objective function of optimization problem is called fitness function.
Fitness of individual is value of fitness function on phenotype corresponding individual. 
Fitness of population is aggregative characteristic of fitness of individuals. Fitness of best 
individual or average fitness of individuals is commonly used as population fitness in 
genetic algorithms. 
In process of evolution one population is replaced by another and so on, thus we select 
individuals with best fitness. So in the mean each next generation (population) is fitter than 
it predecessors. Genetic algorithm produces maximal fitness population, so it solve 
maximization problem. Minimization problem obviously reduced to maximization problem. 
In simple genetic algorithm size of population n and binary string length m is fixed and 
don’t changes in process of evolution. We can write basic structure of simple genetic 
algorithm in the following way: 
Compute initial population; 
WHILE stopping condition not fulfilled DO BEGIN 
 select individuals for reproduction; 
 create offsprings by crossing individuals; 
 eventually mutate some individuals; 
 compute new generation; 
END
As obvious from the above stated algorithm, the transition from one generation to the next 
consists of three basic components: 
Selection: Mechanism for selecting individuals for reproduction according to their fitness. 
Crossover: Method of merging the genetic information of two individuals. In many respects 
the effectiveness of crossover is depended on coding. 
Mutation: In real evolution, the genetic material can by changed randomly by erroneous 
reproduction or other deformations of genes, e.g. by gamma radiation. In genetic 
algorithms, mutation realized as a random deformation of binary strings with a certain 
probability. 
These components are called genetic operators. We consider these operators more detailed 
below.
Compared with conventional continuous optimization methods, such as gradient descent 
methods, we can state the following significant differences: 
1. Genetic algorithms manipulate coded versions of the problem parameters instead of 

the parameters themselves, i.e. the search space is S instead of X itself. So, genetic 
algorithm finds solution approximately. 

2. 2. While almost all conventional methods search from a single point, genetic algorithm 
always operates on a whole population of points (strings-individuals). It improves 
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robustness of algorithm and reduces the risk of becoming trapped in a local stationary 
point.

3. Normal genetic algorithms do not use any auxiliary information about the objective 
function value such as derivatives. Therefore, they can be applied to any kind of 
continuous or discrete optimization problem. 

4. Genetic algorithms use probabilistic transition operators while conventional methods 
for continuous optimization apply deterministic transition operators. More specifically, 
the way a new generation is computed from the actual one has some random. 

3. Simple genetic algorithm 

Here we consider simpler genetic algorithm in more detail. As previously noted let m is 
binary string space dimension, n is population size. The generation at time t is a list of n
binary strings, which we will denote with 

 ),...,,(= ,,2,1 tnttt bbbB  (4) 

Stated above basic structure of genetic algorithm can be written more detailed in the 
following way: 
t := 0; 
Compute initial population B0;
WHILE stopping condition not fulfilled DO BEGIN 
 FOR i:=1 TO n DO 
  select bi,t+1 from Bt

 FOR i:=1 TO n STEP 2 DO 
  with probability pc perform crossover of bi,t+1 and bi+1,t+1

 FOR i:=1 TO n DO 
  with probability pm eventually mutate bi,t+1

t:=t+1;
END
We don’t give concrete expression for stopping condition because these conditions have no 
features in comparison with other global optimization methods. So, as such conditions we 
can take restriction on number of iterations or some phenotype convergence conditions. Last 
can be formulated in terms of maximal or average fitness.  
Commonly used procedure to compute initial population consist in random selection of n
points uniformly distributed over the search space. If additional information about decision 
region is presented, it can be used for initial population computation. 

3.1 Selection 

Selection is the component which guides the algorithm to the solution by preferring 
individuals with high fitness over low-fitted ones. It realizes “The fittest will survive” 
principle. Selection can be a deterministic operation, but in most implementations it has 
random components. 
One variant, which is very popular nowadays, is the following scheme, where the 
probability to choose a certain individual is proportional to its fitness. It can be regarded as 
a random experiment with 
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Of course, this formula only makes sense if all the fitness values are positive. If this is not the 
case, a increasing transformation : + must be applied. In simple case shift  = x+M
can be used, where M is sufficiently great. M is chosen based upon some information about 
fitness function. If there no such information other transformations must be applied, such as 
exponential  = ax or shifted arctangent = arctan(x)+ /2. Then the probabilities can be 
expressed as 
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Everywhere below we suppose that function f is positive. 
We can force the property (5) to be satisfied by applying a random experiment which is, in 
some sense, a generalized roulette game. In this roulette game, the slots are not equally 
wide, i.e. the different outcomes can occur with different probabilities. Figure 1 gives a 
graphical interpretation of this roulette wheel game. 

Fig. 1. A graphical representation of roulette wheel selection 

For obvious reasons, this method is often called proportional selection. Mean of copies of 
individual bi,t which will be selected for follows crossover can be expressed as 

npbcopiesofnumber titi ,, =)(  (7) 

It is easy to see that ill-fitted individuals have slim chance to leave offsprings, so they leave 
population very early. In some cases, this can be the cause of premature convergence of 
algorithm into local maxima. On the other hand, refinement in the end phase can be slow 
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since the individuals have similar fitness values. These problems can be overcome by using 
alternative selection schemes: 
Linear rank selection. Rank of the fitness as the basis of selection is used instead of the 
values themselves. 
Tournament selection. In this scheme, a small group of individuals is sampled from the 
population and the individual with best fitness is chosen for reproduction. This selection 
scheme is also applicable when the fitness function is given in implicit form, i.e. when we 
only have a comparison relation which determines which of two given individuals is better. 

3.2 Crossover 

In sexual reproduction, as it appears in the real world, the genetic material of the two 
parents is mixed when the gametes of the parents merge. Usually, chromosomes are 
randomly split and merged, with the consequence that some genes of a child come from one 
parent while others come from the other parents. 
This mechanism is called crossover. It is a very powerful tool for introducing new genetic 
material and maintaining genetic diversity, but with the outstanding property that good 
parents also produce well-performing children or even better ones. 
Basically, crossover is the exchange of genes between the chromosomes of the two parents. 
In the simplest case, this process in genetic algorithms is realized by cutting two strings at a 
randomly chosen position (crossing point) and swapping the two tails. This process, which 
called one-point crossover, is visualized in Figure 2. In genetic algorithm selected 
individuals paired in some way and then crossing over with probability pc.

Fig. 2. One-point crossover of binary strings 

One-point crossover is a simple and often-used method for genetic algorithms which 
operate on binary strings. For other problems or different coding function, other crossover 
methods can be useful or even necessary. We mention some of them, for more details see 
(Goldberg, 1989). 
N-point crossover. Instead of only one, N breaking points are chosen randomly. Every 
second section is swapped. Among this class, two-point crossover is particularly important. 
Segmented crossover. Similar to N-point crossover with the difference that the number of 
breaking points can vary. 
Uniform crossover. For each position, it is decided randomly if the positions are swapped. 
Shuffle crossover. First a randomly chosen permutation is applied to the two parents, then 
N-point crossover is applied to the shuffled parents, finally, the shuffled children are 
transformed back with the inverse permutation. 
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3.3 Mutation 

Mutation is powerful factor of variability and consists in random deformation of genetic 
material. In real world these deformations take place as result of radioactivity, ultraviolet 
radiation or viruses influence. In real reproduction, the probability that a certain gene is 
mutated is almost equal for all genes. Mutation in genetic algorithm is analogue of natural 
one: each gene of chromosome is inverted with probability pm, so this mutation is called 
uniform mutation. Also, in genetic algorithms alternative mutation methods are used. We 
mention some of them, more detailed see (Goldberg, 1989). 
Inversion of single bits. With probability pm, one randomly chosen bit is negated. 
Bitwise inversion. The whole string is inverted bit by bit with probability pm.
Random mutation. With probability pm, the string is replaced by a randomly chosen one.  

4. Variants 

We consider simple variant of genetic algorithm, but it is sufficiently effective. Thus, there 
are some ways to improve efficiency and robustness. In this section we consider some of this 
ways.
Elitism is very effective element that realizes “best must survive” principle. It can be added 
into any selection scheme and consists in follows: best individual from parent population is 
compared with best individual from offspring population and best of them is added into 
next generation. Elitism guarantees that next generation fitness will be better or equal than 
parent generation fitness. Elitism is often-used element, but it should, however, be used 
with caution, because it can lead to premature convergence. 
Adaptive genetic algorithms are algorithms whose parameters, such as the population size, the 
crossing over probability, or the mutation probability are varied while the genetic algorithm 
is running. A simple variant could be the following: The mutation rate is changed according 
to changes in the population; the longer the population does not improve, the higher the 
mutation rate is chosen. Vice versa, it is decreased again as soon as an improvement of the 
population occurs. 
Hybrid genetic algorithms are used when additional auxiliary information such as derivatives 
or other specific knowledge is known about objective function. So, conventional method, 
such as gradient descent is applicable. The basic idea is to divide the optimization task into 
two complementary parts. The coarse, global optimization is done by the genetic algorithm 
while local refinement is done by the conventional method. A number of variants is 
reasonable:
1. The genetic algorithm performs coarse search first. After it is completed, local 

refinement is done. 
2. The local method is integrated in the genetic algorithm. For instance, every k

generations, the population is doped with a locally optimal individual. 
3. Both methods run in parallel: All individuals are continuously used as initial values for 

the local method. The locally optimized individuals are re-implanted into the current 
generation. 

In self-organizations genetic algorithms not only data is object of evolution. Parameters of 
genetic algorithm, such as coding function or genetic operator parameters, are optimized 
too. If this is done properly, the genetic algorithm could find its own optimal way for 
representing and manipulating data automatically. 
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5. Analysis 

As stated above, genetic algorithm is stochastic optimization method and not guarantees 
convergence to solution. Therefore, we consider convergence in terms of mean. 
Convergence analysis becomes complicated by using three stochastic operators: selection, 
crossover and mutation that have many variations, so there are many different algorithms. 
We consider simple genetic algorithm with fixed population size n operates in space of 
binary string with fixed length m. It is assumed that one-point crossover, uniform mutation 
and proportional selection are used. 

5.1 The Schema Theorem 

Analysis of genetic algorithm we start from classic result of Holland – the so-called Schema 
Theorem. But at first we’ll make some definitions. 
Definition 1. A string H = h1…hm over the alphabet {0, 1, *} is called a (binary) schema of 
length m. An hi = 0 or 1 is called a specification of H, an hi = * is called wildcard. Schemata can 
be considered as specific subsets of {0, 1}m.
If we interpret binary strings space as hypercube with dimension m, then schemata can be 
interpreted as hyperplanes (see Figure 3). 

Fig. 3. Schemata as hyperplanes in hypercube 

Obviously number of schemata is 3m.
Definition 2. A string S = s1…sm over the alphabet {0, 1} fulfills the schema H = h1…hm if and 
only if it matches H is all non-wildcard positions: 

iij hshji =≠∈∀ :*}|{  (8) 

Definition 3. The number of specifications of a schema H is called order and denoted as 

|*},1|{|)( ≠≤≤= ihmiiHO  (9) 

Definition 4. The distance between the first and the last specification 
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(H) = max {i | hi  *} – min {i | hi  *} (10) 

is called the defining length of a schema H.
Also let us make some notations: 
The number of individuals which fulfill H at time step t are denoted as rH,t.
The observed average fitness at time t is denoted as: 
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The observed average fitness of schema H in time step t is denoted as: 
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The following theorem holds. 
Theorem (Schema Theorem—Holland 1975). 
The following inequality holds for every schema H:
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where E is mean of number of next generation individuals fulfills schema H. More generally 
statement of schema theorem can be formulated as follows: 
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where estimations Pc and Pm depend only from schema H on one hand and crossover and 
mutation methods correspondingly on another. Such estimations can be obtained for all 
considered variants of crossover and mutation operators. One can see (Holland, 1992) for 
full proof of schema theorem. 
The schema theorem answer the question what schemata has more chance to survive, but 
say nothing about convergence in essence. 

5.2 Building blocks hypothesis 

As obviously follow from schema theorem high-fitness schemata with low order and short 
length have more chance to survive in process of evolution. Let pm is sufficiently small, then 
(13) takes the form: 
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If population size is sufficiently great, then deviations from average E(rH,t+1) are very small. 
If we disregard them follows statement take place: 
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 (16) 
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It is obviously follows from this recurrent expression that number of individuals fulfills 
high-fitness schemata with low (H) and O(H) exponentially grows in process of evolution. 
Such schemata, i.e. well-fitted schemata with short length and low order, are called building 
blocks. Goldberg conjecture follows: A genetic algorithm creates stepwise better solutions by 
recombining, crossing, and mutating short, low-order, high-fitness schemata. This conjecture is 
called building blocks hypothesis (Goldberg, 1989).  
If building blocks hypothesis is true, key role for convergence play coding method. Coding 
must be realized building blocks hypothesis concept. For example consider two examples of 
fitness function. First is an affine linear fitness function: 

i

m

i
iscasf +=

=1
)(  (17) 

where si is ith allele of chromosome s.
Second function correspond “needle-in-haystack” problem: 
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=
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xf  (18) 

In the linear case, the building block hypothesis seems justified, i.e. the fitness is computed 
as a linear combination of all genes. It is easy to see that the optimal value can be 
determined for every gene independently. For the second function, however, it cannot be 
true, since there is absolutely no information available which could guide a genetic 
algorithm to the global solution through partial, sub-optimal solutions. In other words, the 
more the positions can be judged independently, the easier it is for a genetic algorithm. On 
the other hand, the more positions are coupled, the more difficult it is for a genetic 
algorithm (and for any other optimization method). There is a special term derived from 
biology for this phenomena – epistasis. High epistatic problem are very difficult to solve. 
Genetic algorithms are appropriate for medium epistatic problems, and low epistatic problem 
can be solved much more efficiently with conventional methods. 
Follow question may arise after analysis: what a genetic algorithm really processes, strings 
or schemata? The answer is both. Nowadays, the common interpretation is that a genetic 
algorithm processes an enormous amount of schemata implicitly and simultaneously. This 
is accomplished by exploiting the currently available, incomplete information about these 
schemata continuously, while trying to explore more information about them and other, 
possibly better schemata. 

5.3 The Convergence Theorem 

The Schema Theorem clarifies some aspects of the mechanism how genetic algorithm works.  
Building blocks hypothesis conjecture some assumption about convergence, but it isn’t 
proven. Some results about convergence were obtained by author. Although genetic 
algorithm not guarantees solution finding, it converge in the mean. Below we formulate 
Theorem of Convergence of genetic algorithms. 
As stated above, we consider simple genetic algorithm with fixed population size n operates 
in space of binary string with fixed length m. It is assumed that one-point crossover with 
probability pc, uniform mutation with probability pm and proportional selection are used. 
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Also we assume that elitism is incorporated in selection procedure, so best individual 
always survive. Hence, the following theorem holds: 
Theorem.  

Let pm  0.5, and S = )1( m

mp−  (2 – (1 – pc)n) < 1. 

Then,

 *))((lim fBf k
k

=
∞→

 (19) 

where Bk is the population after the kth iteration step of the genetic algorithm, f(Bk) is the 
maximal fitness over the population Bk, and f* is the required optimal value. 
E(f(Bk))converges to f* non-decreasingly. Proof of this theorem can be found in (Sharapov & 
Lapshin, 2006).  
There is an interesting corollary corresponding case of zero pc.
Corollary. Let pm  0.5, pc = 0.  
Then,

 *))((lim fBf k
k

=
∞→

 (20) 

where Bk is the population after the kth iteration step of the genetic algorithm, f(Bk) is the 

maximal fitness over the population Bk, and f* is the required optimal value and 
]2/[m

mC is 

binomial coefficient. E(f(Bk))converges to f* non-decreasingly. Evidently, crossover absence 
gives us everywhere convergent algorithm. 

6. Real-coded evolutionary optimization methods 

Most of optimization problems have real-valued parameters (i.e. X is subset of N, where N
is problem dimension). It is clear that discretization approach applied in simple genetic 
algorithm has several shortcomings: 
1. Continuum set of possible values is reduced to finite set of binary strings. So we limit 

considered search space, and if solution of task is located outside considered region, 
we will not find it. 

2. The accuracy of the solution is limited by the discretization width 1/(2m–1), where m is 
length of binary string. Although precision can be improved by increasing m, it will 
require more computer power and time. Computational complexity grows 
exponentially with m growth. 

3. It is complicated to choose appropriate coding method. Most often, no reasonable 
building blocks exist. 

For these reasons, variants of genetic algorithms which are especially adapted to real-valued 
optimization problems have been proposed. 

6.1 Real-coded genetic algorithms 

Structure of real-coded genetic algorithm is not to differ from one considered in section 3. 
But chromosomes in real-coded genetic algorithms are represented as N-dimensional 
vectors of real numbers, where N is dimension of optimization problem: 

),...,( 1 Nxxb =  (21) 
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All selection schemes are applicable without any modifications. Crossover and mutation 
must be adapted. 
In real-coded genetic algorithms follows crossover operators are used most-often: 
Flat crossover. Two parents b1 = (x1,1, …, x1,N) and b2 = (x2,1, …, x2,N) are given, a vector of 
random values from the unit interval  = ( 1, . . . , N) is chosen. The offspring b’ = (x’1, …, 
x’N) is computed as a vector of linear combinations in the following way (for all i = 1, …, N):

iiiii xxb ,2,1 )1(' −+=  (22) 

 Second offspring from pair is computed analogously. 
BLX-  crossover (Herrera et al., 1998) is an extension of flat crossover which allows an 
offspring allele x’i to be also located outside the interval [min(x1,i , x2,i), max(x1,i , x2,i)]. In 
BLX-  crossover, each offspring allele x’i is chosen as a uniformly distributed random value 
from the interval 

]),max(,),[min( ,2,1,2,1 IxxIxx iiii ⋅+⋅−
 (23) 

where I = max(x1,i , x2,i) – min(x1,i , x2,i).  
The parameter  has to be chosen in advance. For  = 0, BLX-  crossover becomes identical 
to flat crossover. 
Simple and discrete crossover is analogous to considered above classical one-point and 
uniform crossover. 
The following mutation operators are most common for real-coded genetic algorithms: 
Random mutation. For a randomly chosen gene i of an individual b = (x1, …, xN), the allele xi

is replaced by a randomly chosen value from a predefined interval [ai, bi].
Non-uniform mutation. In non-uniform mutation, the possible impact of mutation 
decreases with the number of generations (Michalewicz, 1996). Assume that tmax is the 
predefined maximum number of generations. Then, with the same setup as in random 
mutation, the allele xi is replaced by one of the two values 
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The choice which of the two is taken is determined by a random experiment with two 
outcomes that have equal probabilities 0.5 and 0.5. The random variable (t, x) determines a 
mutation step from the range [0, x] in the following way: 

 )1(),( )/1( max
rttxxt −−⋅=  (25) 

In this formula,  is a uniformly distributed random value from the unit interval. The 
parameter r determines the influence of the generation index t on the distribution of 
mutation step sizes over the interval [0, x]. 

6.2 Evolutionary strategies 

Evolutionary strategies are real-coded global optimization methods were developed in late 
1960s mainly by I. Rechenberg independently from Holland’s work on genetic algorithms.  
Chromosome in evolutionary strategies is represented by 2N dimensional vector, where N is 
dimension of problem: 
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),...,;,...,( 11 NNxxb =  (26) 

The first half (x1, …, xN) corresponds to the potential solution of the optimization problem 
like in real-coded genetic algorithms. The second half ( 1, …, N) defines the vector of 
standard deviations for the mutation operation. 
As usual, there are two means of modifying genetic material in evolutionary strategies: a 
recombination operation that could be understood as some kind of crossover and mutation. 
Unlike genetic algorithms, mutation plays a more central role in evolutionary strategies. 
Usually as recombination operator flat or discrete crossover applied in real-coded genetic 
algorithm (see previous section) are used. Most often in evolutionary strategies flat 
recombination with  = 0.5 is used (so-called intermediate recombination). 
Mutation in evolutionary strategies consists of two phases. Firstly, normal distributed noise 
is added to each allele xi. More specifically, for all i = 1, …, N, the mutated allele is given as 

),0(' 2
iii Nxx +=

 (27) 

where N(0, 2i) is normally distributed random variable with zero mean and standard 
deviation i.
Secondly, we added logarithmically normal distributed noise to i alleles: 

))1,0()1,0('exp(' iii NN +⋅=
 (28) 

The factor exp ( ’ N(0,1)) is an overall factor increasing or decreasing the “mutability” of the 
individual under consideration. Note that N(0,1) is chosen only once for the whole 
individual when it is mutated. The factor exp ( Ni(0,1)) locally adapts the mutation step 
sizes. Note that, in this second factor, the normally distributed random value Ni(0,1) is 
chosen separately for each gene. The adaptation of mutation step sizes in evolutionary 
strategies has the particular advantage that no parameters have to be chosen in advance. 
Instead, they evolve during the run of an evolutionary strategy in a self-organizing way. 
The two parameters  and ’ have to be chosen in advance. Schwefel has proposed to choose 
these parameters in the following way (Schwefel, 1995): 
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Selection in evolutionary strategies also has some features in comparison with genetic 
algorithms. The nowadays commonly accepted selection and sampling schemes in 
evolutionary strategies are the following: 
(µ + )-strategy: a number of µ parents are selected from the current generation. These µ
parents are used to generate a number of  offsprings, which have been generated by some 
recombination and/or mutation operations. Out of the union of parents and offsprings (in 
total, a number of µ + ), the best µ are kept for the next generation. Note that the (µ + 
)-strategy inherently incorporates elitism. 

(µ, )-strategy: in this scheme, which is nowadays considered the standard 
selection/sampling strategy in evolutionary strategies, again µ parents are selected from the 
current generation and used to generate  offsprings (with the additional restriction µ). 
The parents are discarded completely and the best µ offsprings are kept for the next 
generation. The (µ, )-strategy does not incorporate elitism. 
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Note that both strategies only use the ranking of fitness values. Therefore, they can be 
applied both to minimization and maximization problems, without any need for scaling or 
transforming fitness values. 

6.3 Evolutionary programming 

Idea of evolutionary programming were proposed by L.J.Fogel in the middle of 1960s and 
later extended by his son D.B. Fogel (Fogel, 1992). Evolutionary programming solves same 
tasks in similar ways as real-coded genetic algorithms and evolutionary strategies. An 
important difference evolutionary programming from real-coded genetic algorithms and 
evolutionary strategies is consists in following: evolutionary programming does not use 
crossover or any other kind of exchange of genetic material between individuals. Offsprings 
are generated by mutation only.  
We consider modified evolutionary programming method (Fogel, 1992). As well as 
evolutionary strategies, in this variant of evolutionary programming individual is 
represented by 2N dimensional vector of real values, where N is dimension of problem: 

),...,;,...,( 11 NN vvxxb =  (30) 

The second half of the vector (v1, …, vN) contains the variances of the mutation step sizes, as 
the mutation is done in the following way: 
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Unfortunately, it is not guaranteed that v’i is positive. Therefore, additional measures have 
to be taken to avoid that v’i gets 0 or negative. The parameter  defines volatility of mutation 
factors vi. Ni(0,1) is a value of standard normally distributed random variable which is 
chosen separately for each gene. 
Evolutionary programming uses a kind of combination of tournament and linear rank 
selection. The fitness of an individual b is compared with q other randomly picked 
competitors taken from the union of µ parents and  offsprings. The score wi of the 
individual b is computed as the number of individuals within the q selected ones that have a 
lower fitness than b. The parents and offsprings are ranked according to their score and the 
best µ are selected for the next generation. Note that this selection scheme inherently 
incorporates elitism. Moreover, for large q, it behaves almost in the same way as the (µ + )-
strategy used in evolutionary strategies. 

6.4 Analysis of convergence of real-coded methods 

We will not investigate convergence detailed here and will make only some assertions about 
convergence properties. 
For simplicity we consider the case of evolutionary programming only (see previous 
section), where N = 1. Also let  = µ is used in selection scheme. Let B0 = (b0,1, …, b0,µ) is 
initial population. Individuals in population are descending sorted by fitness, so first 
individual is best of all. After mutation we obtain µ offsprings b’1, …, b’µ. Each of them is 
two-dimensional normally distributed variate. Since genes mutate independently they are 
independent variates. Then consider aggregate population of parents and offsprings: 
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 )',...,';,...,(' 1,01,0 µµ bbbbB =  (32) 

Best individual from this population is kept for the next generation, because its rank is 
maximal among all of them. Let z – best among offsprings b’1…b’µ. Obviously z is two-
dimensional random variable. Then best individual b1,1 of next generation B1 is best of b0,1

and z, i.e. b1,1 = arg max {b0,1, z}. So 

 )}(),(max{)()( 1,01,11 zfbfbfBf ==  (33) 

Assume, that f(z) is absolutely continuous random variate. Let’s consider mean of variate 
f(b1,1) (here and below we suppose that all integrals are exist and converge absolutely): 
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where d(x) is density function of variate f(z). Transom (34): 
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Subintegral expression of second item is obviously non-negative. Therefore 
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Consider the case of equality more detailed. Obviously equality is realized if and only if 
subintegral expression is identically zero, so d(x)  0 on interval (f(b0,1), + ). Hence 
probability 
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It means that improvement of fitness of population is impossible event. Since function f is 
continuous and genes are independent normally distributed variates, it is possible only if 
range of function f and interval (f(b0,1), + ) has no intersections (it could be verified if 
inverse assumption was made), so f(b0,1) is a global maxima of function f.
Thus, we obtain that either Ef(B1)=f(B0) and solution is found or Ef(B1) > f(B0). This deduction 
can be made for any step of algorithm, so following assertion holds: 
If solution is not found on kth step of evolutionary programming algorithm, then  

 Ef(Bk+1) > f(Bk) (38) 

7. Concluding remarks 

We consider simple genetic algorithm and some of variants. Also we have collected several 
important results which provide valuable insight into the intrinsic principles of genetic 
algorithms. Finally we consider real-valued optimization problem and some evolutionary 
method to solve it. Several remarks were made about convergence one of them. But mainly 
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we consider genetic algorithms in itself. The future of this method, however, is in union 
with neural networks and fuzzy systems. Below, we mention some perspective approaches: 
1. Fuzzy genetic programming. Genetic programming is concerned with the automatic 

generation of computer programs. Fuzzy genetic programming combines a simple 
genetic algorithm that on a context-free language with a context-free fuzzy rule 
language. 

2. Genetic fuzzy systems. As mentioned in introduction of this chapter these systems use 
evolutionary methods for rule base generation and tuning. 

3. Genetic fuzzy neural networks.  Genetic fuzzy neural networks are the result of adding 
genetic or evolutionary learning capabilities to systems integrating fuzzy and neural 
concepts. The usual approach of most genetic fuzzy neural networks is that of adding 
evolutionary learning capabilities to a fuzzy neural network. 

4. Genetic fuzzy clustering algorithm. Genetic algorithms can be used in fuzzy clustering. 
Most widely used method is to optimize parameters of so-called C-mean FCM-type 
algorithms, that can improve it performance. Another approach is based on directly 
solving the fuzzy clustering problem without interaction with any FCM-type 
algorithm.
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