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Local Feature Selection and  
Global Energy Optimization in Stereo 

Hiroshi Ishikawa1 and Davi Geiger2

1Department of Information and Biological Sciences, Nagoya City University, Japan 
2Courant Institute of Mathematical Sciences, New York University, U.S.A. 

1. Introduction    

The human brain can fuse two slightly different views from left and right eyes and perceive 
depth. This process of stereopsis entails identifying matching locations in the two images 
and recovering the depth from their disparity. This can be done only approximately: 
ambiguity arising from such factors as noise, periodicity, and large regions of constant 
intensity makes it impossible to identify all locations in the two images with certainty. There 
has been much work on stereo (Ayache, 1991; Grimson, 1981; Marapane & Trivedi, 1994). 
The issues in solving this problem include  
i how the geometry and calibration of the stereo system are determined, 
ii what primitives are matched between the two images, 
iii what a priori assumptions are made about the scene to determine the disparity, 
iv how the whole correspondence, i.e. the disparity map, is computed, and 
v how the depth is calculated from the disparity. 
In this chapter, we assume that (i) is solved, and that we know the stereo geometry exactly, 
including the correspondence between epipolar lines in the two images. Answering 
question (v) involves determining the camera parameters, triangulation between the 
cameras, and an error analysis, for which we refer the reader to (Faugeras, 1993). 
In this chapter, we focus on the remaining issues (ii), (iii), and (iv). Main contributions of 
this chapter to these problems are summarized as follows: 
ii In order to find corresponding points in the two images, an algorithm must have 

some notion of similarity, or likelihood that a pair of points in fact represents the 
same point in the scene. To estimate this likelihood, various features can be used, 
e.g., intensity, edges, junctions (Anderson, 1994; Malik, 1996), and window features 
(Okutomi & Kanade, 1993). Since none of these features is clearly superior to others 
in all circumstances, using multiple features is preferable to using a single feature, if 
one knows when to use which feature, or what combination of features. However, 
features are difficult to cross-normalize; how can we compare, for instance, the 
output from an edge matching with the one from correlation matching? We would 
like not to have to cross-normalize the output of the features, and still be able to use 
multiple features. We present a new approach that uses geometric constraints for 
matching surface to select, for each set of mutually-exclusive matching choices, 

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007
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optimal feature or combination of features from multiscale-edge and intensity 
features.

iii Various algorithms, as in the cooperative stereo (Marr & Poggio, 1976), have 
proposed a priori assumptions on the solution, including smoothness to bind nearby 
pixels and uniqueness to inhibit multiple matches. Occlusions and discontinuities 
must also be modelled to explain the geometry of the multiple-view image 
formation. There is now abundant psychophysical evidence (Anderson, 1994; Gillam 
& Borsting, 1988; Nakayama & Shimojo, 1990) that the human visual system does 
take advantage of the detection of occluded regions to obtain depth information. The 
earliest attempts to model occlusions and its relation to discontinuities (Belhumeur 
& Mumford, 1992; Geiger, Ladendorf, & Yuille, 1995) had a limitation that they 
restrict the optimization function to account only for interactions along the epipolar 
lines. Another aspect of the stereo geometry is the interdependence between 
epipolar lines. This topic was often neglected because of a lack of optimal algorithms 
until recently, when graph-based algorithms made it feasible to handle this in an 
energy-optimization scheme (Boykov, Veksler, & Zabih, 2001; Ishikawa & Geiger, 
1998; Roy, 1999; Roy & Cox, 1998). We show that it is possible to account for all of 
these assumptions, including occlusions, discontinuities, and epipolar-line 
interactions, in computing the optimal solution. 

iv To compute the most likely disparity map given the data, we define a Markov 
Random Field energy functional and obtain the MAP estimation globally and 
exactly. The energy minimization is done using a minimum-cut algorithm on a 
directed graph specifically designed to account for the constraints described above in 
(iii). 

In the next section, we discuss the general probabilistic model of stereopsis, including the 
optimization space and various constraints, and introduce a general energy minimization 
formulation of the problem. In section 3, we introduce the more specific form of first-order 
Markov Random Field energy minimization problem that we actually solve. We devise a 
unique graph structure in section 4 to map the MRF problem to a minimum-cut problem on 
the graph, so that we can solve it exactly and globally. In section 5, we explain how various 
features can be used to compare points in the two images. Finally, we show experimental 
results in section 6. 

2. Energy Formulation 

In this section, we discus the probabilistic model of stereopsis and the Maximum A 
Posteriori (MAP) optimization of the model. First we define the space of parameters we 
wish to estimate, that is, the space of disparity maps. Then we formulate a model of the 
causal relationship between the parameters and the resulting images as a conditional 
probability distribution. In this way, the whole system is represented by the probability that 
different values of the parameters occur a priori and the probability that the image occurs 
under the assumption that the parameters have some given value. Then, for a given pair of 
images, we look for the disparity map that maximizes the probability that it occurs and 
gives rise to the images. We then define an energy minimization formulation that is 
equivalent to the MAP estimation. 
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2.1 Parameter Space 

In binocular stereo, there are left and right images IL and IR ; the parameter to be estimated is 
the matching between visible sites in the two images, which is directly related to the depth 
surface (3D scene) S in front of the cameras. We denote by ÎL and ÎR the domains of the 
image functions IL and IR; here we are assuming the two domains are identical rectangles. A 

match between the two images can naturally be represented as a surface in a 4D space ÎL×ÎR,
which is called the match space. A point in the match space is a pair of points in the left and 
right images, which is interpreted as a match between the points. Note that the parameter 
space in which we seek the best solution is not the match space, but the space of surfaces 
therein (with certain constraints.) 
Two constraints in the geometry of stereo make the parameter space smaller. 

Epipolar Constraint 
Each point in the scene goes through a unique plane in the 3D space defined by it and the 
two focal points of the cameras; thus the points sharing such a plane form a line on each 
image. Hence each domain is stratified by such epipolar lines and there is a one-to-one 
correspondence between epipolar lines on the two images (see Fig. 1.) 
Because of the epipolar constraint, we can assume that the surface in the match space is 
always included in the subspace 

{(xL,xR)∈ÎL×ÎR | xL and xR belong to the corresponding epipolar line}. 

Thus, a match can be seen as a surface in a 3D space. In the rest of the chapter, the two 
images are always assumed to be rectified, i.e., points that belong to corresponding epipolar 
lines have the same y-coordinate in both images; a match occurs only between points with 
the same y-coordinate. Thus, a match is represented as a surface in the 3D space {(l,r,y)},
where {(l,y)} and {(r,y)} are the coordinates of the left and right image domains ÎL and ÎR

respectively.

Figure 1. Each point in the scene goes through a unique plane in the 3D space defined by the 
two focal points of the cameras and itself; thus the points sharing such a plane form a line on 
each image. Hence each image is stratified by such epipolar lines and there is a one-to-one 
correspondence between epipolar lines on the two images. 

3D line Left frame Right frame 

Focus Focus 

Epipolar line 

Right feature 
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Ordering Constraint 
There is also another constraint known as the ordering constraint (Baker & Binford, 1981; 
Marr & Poggio, 1976). It states that if a point moves from left to right on the epipolar line in 
the left image, the corresponding point also moves from left to right in the right image. This 
can be characterized as a local condition (monotonicity constraint) on the tangent plane of 
the surface representing the match: the ratio of change in l by r must stay positive 
everywhere on the surface. This is not always strictly true for the real 3D scene in the sense 
that there can be a surface such that corresponding points move from left to right in the left 
image and from right to left in the right image. For instance, a plane that equally and 
perpendicularly divides the line segment between focal points would have this property. 
However, this is a rare situation and even the human visual system cannot handle this 
anyway. The ordering constraint further reduces the size of the search space. Note that the 
epipolar and ordering constraints together ensure the uniqueness constraint. This is because 
any point in one image is restrained to match only points on one epipolar line in the other 
image, and these potential points are strictly ordered so that it is impossible to match more 
than one point without violating the ordering constraint. 

2.2 Prior Model 

The prior model is an a priori statistical assumption about the 3D scenes that reveals which 
surfaces the system expects to find most often in a scene. It is described as a prior 
probability distribution P(S) that gives a probability to each possible 3D scene output S of 
the process. In particular, the prior models how any ambiguity is resolved. Belhumeur 
(Belhumeur, 1996) analyzed stereo prior models in explicitly Bayesian terms. As in other 
low-level problems, commonly used prior models are local. They generally favour small 
disparity changes (fronto-parallel surfaces) and small disparity curvature (smooth surfaces). 
In our formulation, we enforce the ordering constraint as the prior model by giving a very 
low probability to any surface that violates this constraint. 

2.3 Image Formation Model 

The image formation model describes what images the cameras record when a 3D scene S is 
presented in front of them. It is basically a photometric model and can be expressed as a 
conditional probability distribution P(IL, IR|S) of forming images IL and IR, given a 3D scene 
S.
Also modelled in the image formation model are occlusions, or appearances of scene 
locations in only one of the two images, which correspond to discontinuities in the match 
surface or a match surface that is perpendicular to the l or r axis, depending on how this 
situation is modelled (see Fig. 2.) It has been shown that the detection of occlusions is 
especially important in human stereopsis (Anderson, 1994; Nakayama & Shimojo, 1990). 
Occlusions have also been modelled in artificial vision systems (Belhumeur & Mumford, 
1992; Geiger, Ladendorf, & Yuille, 1995). 
Any effect on the images due to the shape and configuration of the 3D surface can be 
modelled in the image formation model. For instance, intensity edges and junctions can be 
seen as cues for the depth discontinuities. The significance of junctions in stereo vision has 
been pointed out (Anderson, 1994; Malik, 1996). 
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  (a)  

    

(b)

Figure 2. (a) A polyhedron (shaded area) with self-occluding regions and with a 
discontinuity in the surface-orientation at feature D and a depth discontinuity at feature C. 
(b) A diagram of left and right images (1D slice) for the image of the ramp. Notice that 
occlusions always correspond to discontinuities. Dark lines indicates where the match 
occurs. 

2.4 MAP Formulation 

Given the left and right images IL and IR, we want to find the surface S in the match space 
that maximizes the a posteriori probability P(S|IL,IR). By Bayes' rule,  
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P(S|IL,IR) = .

Since IL and IR are fixed, this value can be optimized by maximizing the P(IL,IR|S)P(S) using 
the prior model P(S) and the image formation model P(IL,IR|S).
In the next section, we define the prior and image-formation energy functionals as the 
logarithms of the probability functionals so that 

   P(S) =

P(IL,IR|S) =

Here, the normalization factor Z1 and Z2 are defined as 

Z1 = 

 

Z2(S) =

Then the maximization of the probability P(IL,IR|S)P(S) is equivalent to the minimization of 
the energy 

 E(IL,IR,S) = E1(S ) + E2(IL,IR,S ) − log Z2(S). (1) 

The last term will be irrelevant since we define the energy E2(IL,IR,S) so that Z2(S) is constant. 

3. Stereo Energy Functionals 

In this section, we define the energy functionals that appeared in the preceding section. 

3.1 Markov Random Field 

First, we remind the reader of the Markov Random Field (MRF). 

A graph G = (V,E) consists of a finite set V of vertices and a set E ⊂ V×V of edges. An edge 

(u,v)∈E is said to be from vertex u to vertex v. An undirected graph is a graph in which all 
edges go both ways: 

(u,v)∈E ⇔ (v,u)∈E.

A clique is a set of vertices in an undirected graph in which every vertex has an edge to 
every other vertex.  

An MRF consists of an undirected graph G = (V,E) without loop edges (i.e., edges of the 

form (v,v)), a finite set L of labels, and a probability distribution P on the space Z = LV of 
label assignments. That is, an element X of Z, sometimes called a configuration of the MRF, 
is a map that assigns each vertex v a label Xv in L. Let Nv denote the set of neighbours 

{u∈V|(u,v)∈E} of vertex v. Also, for an assignment X∈Z and S⊂V, let XS denote the event 

{Y∈Z |Yv = Xv, for all v∈S}, that is, the subset of Z defined by values at vertices in S. By 
definition, the probability distribution must satisfy the condition: 

−E2(IL,IR,S)
e

Z2(S)

1

−E2(IL,IR,S)
e

IL,IR

Σ

−E1(S)
e

S
Σ

−E1(S)
e

Z1

1

P(IL,IR|S)P(S)

P(IL,IR)
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Figure 3. A cyclopean coordinate in the matching space. An epipolar slice is shown. 

P(X) > 0  for all X∈Z

P(X{v}|XV \{v}) = P(X{v}|XNv).

This condition states that the assignment at a vertex is conditionally dependent on other 
assignments only through its neighbours.  
Note that the MRF is a conditional probability model. A theorem (Besag, 1974; Kinderman & 
Snell, 1980) connects it to a joint probability model: a probability distribution P on Z is an 
MRF exactly when it is a Gibbs distribution relative to G:

P(X) ~ ,  

E(X) = ,

where Γ  denotes the set of cliques in G and EC a function on Z with the property that EC(X)
depends only on values of X on C.
The simplest interesting case is when only the edges and vertices, the two simplest kinds of 
cliques, influence the potential: 

E(X) = + .

This is called a first order MRF, and our stereo energy formulation is an example of it. 

3.2 Stereo MRF 

As explained in 2.1, the parameter space for stereo is the space of surfaces in the product 

space ÎL×ÎR restricted by the epipolar constraint (the match space). The match space has a 
natural coordinate system (l,r,y), where y parameterises epipolar lines, and l and r are the 
coordinates on the epipolar lines in the left and right images, respectively. We represent 
occlusions, or appearances of scene locations in only one of the two images, by a match 
surface that is perpendicular to the l or r axis. 
We convert the (l,r,y) coordinate system into a “cyclopean” coordinate system (d,t,y), where 

d = r − l and t = r + l (see Fig. 3.) Because of the monotonicity constraint, the surface in this 
representation has a unique point for each (t,y) pair, i.e., it is the graph of some function on 

the (t,y) plane that gives a value d  the disparity  at each point. 
At this point, we also move to the discrete notation so that we can formulate it as a first 
order MRF. We define the MRF by considering a graph embedded in the t-y plane that has 
nodes at integral lattice points and a label set consisting of integral disparity values d. The 

l

r

d

t

g(u,v,Xu,Xv)
(u,v)∈E
Σ h(v,Xv)

v∈V
Σ

EC(X)
C∈Γ
Σ

−E(X)
e
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graph G for the MRF has a vertex for each pair of integral t and y in the range, and has the 
standard four-neighbor structure: the vertex for (t,y) is connected to the vertices for the 

coordinates (t+1,y), (t−1,y), (t,y+1), and (t,y−1), except at the boundary. The Label set L
consists of integral disparity values; thus the configuration X is a function d(t,y) that gives 
an integral disparity at each vertex of the graph. We denote the configuration by d rather 
than X. We define the first-order MRF energy functional as follows: 

                      E(d) = E1(d) + E2(IL,IR,d)

   = + , (2) 

where d assigns a value in L to each vertex of the graph, i.e., a (t,y) pair. 
The prior term is defined by 

(3)

where a, b, c, and K are positive constants. A change of disparity d across the epipolar line (y
≠ y’) has a penalty proportional to the change. A disparity change that is larger than 1 along 

the epipolar line (y = y’) means a violation of the monotonicity constraint (e.g.,  if d changes 
from 0 to 3 as t changes from 2 to 3, l changes from 1 to 0 and r changes from 1 to 3, violating 
the monotonicity) and has a penalty K. We make K very large in order to enforce the 
monotonicity constraint by making it impossible for d to change by more than 1 as t changes 
its value by 1. 
A change of d by 1 as t changes by 1 along the epipolar line has a penalty b or c according to 

the parity (even or odd) of t+d. This might seem odd, but it is because of the discretization: 
the parity of t and d must coincide for there to be corresponding integral l and r. Thus only 

those pairs (t,d) with t+d even represent the actual matches of left and right pixels; let us call 

them the real matches and call the ones with odd t+d the dummy matches. For a real match 
(t,d), if t and d both change by 1, the result is still a real match. In this case, either l or r stays 

the same while the other changes by 1 (for example, the change (t,d): (0,2)→(1,3) corresponds 

to (l,r): (2,1)→(2,2).) This represents the discrete case of tilted surface, i.e., one discretized 
interval in one image corresponding to two intervals in the other image. To this, we give a 

penalty of the positive constant b. If, on the other hand, (t,d) is a dummy match (i.e., t+d is 
odd) and both t and d change by 1, it means there is a value of either l or r that does not have 

a match. For example, the change (t,d): (1,2)→(2,3), corresponding to (l,r): (0.5,1.5)→(0.5,2.5), 

implies that there is no real match that corresponds to r = 2. This models an occlusion, to 
which we give a penalty of the positive constant c.
 The image formation model is given by the following term: 

0 if d1 = d2,

a|d1−d2| if y ≠ y’,
g(t,y,t’,y’,d(t,y),d(t’,y’)) = b if y = y’, |d1−d2|= 1, t + d1 is even,

c if y = y’, |d1−d2|= 1, t + d1 is odd,

K if y = y’, |d1−d2|> 1,

h(t,y,d(t,y))

(t,y)
Σg(t,y,t’,y’,d(t,y),d(t’,y’))

(t,y),(t’,y’): neighbours
Σ
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                           h(t,y,d) =

   

(4)

where f (I,x,y) gives a feature at the point (x,y) in the image I and dist( f1, f2) gives a measure 
of the difference of two features f1 and f2. We will use a number of different functions f(I,x,y)
and dist( f1, f2), as explained in section 5. 
Note that for this energy to be equivalent to the MAP energy (1), the normalization factor 

must be constant regardless of the disparity map d, so that it does not affect the outcome of 
the optimization. This essentially requires the total space of possible image pairs to be 
neutral with respect to the feature f, which usually is the case. 

4. Global Energy Optimization via Graph Cut 

In this section, we explain the stereo-matching architecture that utilizes the minimum-cut 
algorithm to obtain the globally optimal matching, with respect to the energy (2), between 
the left and right images. 

4.1 The Directed Graph 

We devise a directed graph and let a cut represent a matching so that the minimum cut 
corresponds to the optimal matching. It is a modification of the general MRF optimization 
algorithm introduced in (Ishikawa, 2003). The formulation explicitly handles the occlusion 
and is completely symmetric with respect to left and right, up to the reversal of all edges, 
under which the solution is invariant. 

Let M be the set of all possible matching between pixels, i.e., M = {(l,r,y)}. We define a 

directed graph G = (V,E) as follows: 

V = { uy
l r|(l,r,y)∈M } ∪ { vy

l r|(l,r,y)∈M } ∪ {s, t}

E = EM ∪ EC ∪ EP ∪ EE

In addition to the two special vertices s and t, the graph has two vertices uy
l r and vy

l r for each 

possible matching (l,r,y)∈M. The set E of edges is divided into subsets EM, EC, EP, and EE,
each associated with a weight with a precise meaning in terms of the model (2), which we 
explain in the following subsections. 
As before, we denote a directed edge from vertex u to vertex v as (u,v). Each edge (u,v) has a 

nonnegative weight w(u,v) ≥ 0. A cut of G is a partition of V into subsets S and T= V \ S such 

that s∈S and t∈T (see Fig. 4.) When two vertices of an edge (u,v) is separated by a cut with 

u∈S and v∈T, we say that the edge is in the cut. This is the only case that the weight w(u,v) of 

the edge contributes to the total cost, i.e., if the cut is through the edge (u,v) with u∈T and 

v∈S, the cost is w(v,u), which is in general different from w(u,v). It is well known that by 

dist( f (IL,       , y), f (IR,       , y) ), if t + d is even,

0 otherwise, 

2

t+d
2

t−d
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solving a maximum-flow problem one can obtain a minimum cut, a cut that minimizes the 

total cost Σu∈S, v∈T w(u,v) over all cuts. 
Our method is to establish a one-to-one correspondence between the configurations of the 
stereo MRF and the cuts of the graph. By finding the minimum cut, we will find the exact 
solution for the MRF energy optimization problem. 
Let us now explain each set of edges EM, EC, EP, and EE.

4.2 Matching Edges 

Each pair of vertices are connected by a directed edge (uy
l r, vy

l r) with a weight 

w(uy
l r, vy

l r) = h(r+l,y,r− l)= dist( f (IL, l, y), f (IR,r, y)).

Figure 4. An epipolar slice of the graph representing the stereo model. The full graph is 
represented in 3D, with the third axis parameterising the epipolar lines. A cut of the graph can
be thought of as a surface that separates the two parts; it restricts to a curve in an epipolar slice.
The optimal cut is the one that minimizes the sum of the weights associated with the cut edges.

In this example, the cut shown yields the matches (l,r) = (0,0), (1,1), (3,2), and (4,3); the cut also 
detects an occlusion at grey (white) pixel 2 (4) in the left (right) image.  
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This edge is called the matching edge and we denote the set of matching edges by EM:

EM = {(uy
l r, vy

l r) | (l,r,y)∈M }.

If a matching edge (uy
l r, vy

l r) is in the cut, we interpret this as a match between pixels (l,y) and 

(r,y). Thus, the sum of the weights associated with the matching edges in the cut is exactly E2

in (2). This is the correspondence between the match surface and the graph cut: 

Convention. Given any cut of G, a matching edge (uy
l r, v y

l r) in the cut represents a 

match between pixels (l,y) and (r,y).
Fig. 4. shows the nodes and matching edges on an epipolar line. The cut shown represents a 

match {(l,r)} = {(0,0), (1,1), (3,2), (4,3)}. Note that pixel 2 in the left image has no matching 
pixel in the right image. Pixel 4 in the right image also has no match; these pixels are 
occluded. This is how the formulation represents occlusions and discontinuities, whose 
costs are accounted for by penalty edges.

4.3 Penalty Edges (Discontinuity, Occlusions, and Tilts) 

Penalty edges are classified in four categories: 

EP = EL ∪ E’L ∪ ER ∪ E’R,

EL = {(vy
l r , uy

l (r+1))} ∪ {(s, uy
l0)} ∪ {(vy

l (N−1) , t)}, 

E’L = {(uy
l (r+1), vy

lr)},

ER = {(vy
l r , uy

(l −1)r )} ∪ {(s, uy
(N−1)r )} ∪ {(vy

0r , t)}, 

E’R = {(uy
(l −1)r, vy

l r)},

where the indices run the whole range where indexed vertices exist and N is the width of 
the images. Edges in EL are in the cut whenever a pixel in the left image has no matching 
pixel in the right image. If pixel (l,y) in the left image has no match, exactly one of the edges 

of the form (vy
l r , uy

l (r+1)), (s, uy
l 0), or (vy

l (N−1) , t) is in the cut (see Fig. 5(a).) By setting the weight 

for these edges to be the constant c in the definition of the prior term (3) of the energy 
functional, we control the penalty of occlusion/discontinuity according to the energy 
functional. Similarly, an edge in ER corresponds to an occlusion in the right image. 
Edges in E’R are cut when a pixel in the right image matches two or more pixels in the left 
image. (Fig. 5(b).) This corresponds to a tilted surface. These edges have the constant weight 
of b in the definition of the prior term (3). 

4.4 Epipolar edges 

Epipolar edges are the only edges across epipolar lines. They simply connects vertices with 
the same (l,r) in both directions: 

EE = {(uy
l r, uy

l   

+

r
1
 )} ∪ {(uy

l

+

r
1
, uy

l r)} ∪ {(vy
l r, vy

l   

+

r
1
 )} ∪ {(vy

l

+

r
1
, vy

l r)}. 

where the indices run the whole range where indexed vertices exist. The weight a, from the 
definition of the prior term (3), of an epipolar edge controls the smoothness of the solution 
across epipolar lines. 
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Figure 5.  (a) A close-up of the Fig. 4. The left-pixel 2 (the middle) does not have a matching 
right-pixel, i.e., it is occluded. (b) Another possibility, where the left-pixel 1 and 2 match the 
same right pixel; this happens when the surface is tilted. Note the different kinds of the 
penalty edges are cut in the two cases. 

4.5 Constraint edges 

Constraint edges are for enforcing the monotonicity constraint and defined as follows: 

EC = {(uy
l r, uy

(l+1)r)} ∪ {(uy
l r, uy

l(r−1))} ∪ {(vy
l r, vy

(l+1)r)} ∪ {(vy
l r, vy

l(r−1))}.

where, as always, the indices run the whole range where indexed vertices exist. The weight 
of each constraint edge is set to K from the prior term (3) of the energy. This corresponds to 
a disparity change that is larger than 1 along the epipolar line, which violates the 
monotonicity constraint. We make K very large to enforce the monotonicity constraint. In 
Fig. 4, constraint edges are shown as dotted arrows. It can be seen that whenever the 
monotonicity constraint is broken, one of the constraint edges falls in the cut. Note that, 
because the edges have directions, a constraint edge prevents only one of two ways to cut 
them. This cannot be done with undirected graphs, where having an edge with a very large 
weight is akin to merging two vertices, and thus meaningless. 
This concludes the explanation of the graph structure and the edge weights. We have 
defined the graph and the weights so that the value of a cut exactly corresponds to the 
stereo MRF energy functional (2) via the interpretation of the cut as a stereo matching and 
MRF configuration that we defined in 4.2. 
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l

r t

d
A constant t line 

“Light cone”

Figure 6. An epipolar slice of the match space. The matching surface appears as a curve here. 
The monotonicity constraint means that this curve crosses every constant t line once. 

5. Feature Selection 

In this section, we deal with the image formation local energy h(t,y,d) in (4). In order to find 
corresponding points in the two images, an algorithm must have some notion of similarity, 
or likelihood that points in each image correspond to one another. To estimate this 
likelihood various features are used, e.g., intensity difference, edges, junctions, and 
correlation. Since none of these features is clearly superior to the others in all circumstances, 
using multiple features is preferable to using a single feature, if one knows which feature, or 
which combination of features, to use when. Unfortunately, features are difficult to cross-
normalize. How can we compare the output from an edge matching with one from a 
correlation matching? We would like not to have to cross-normalize the outputs of the 
feature matchings, and still be able to use multiple features. Here, we use a consequence of 
the monotonicity constraint to select an optimal feature or combination of features for each 
set of mutually exclusive matching choices. 
In the energy functional (2), the local feature energy function h(t,y,d) gives a measure of  

difference between the points ((t − d)/2, y) in the left image and ((t + d)/2, y) in the right 
image. We assume that it gives a nonnegative value; a smaller value means a better match. 
In what follows in this section, the y coordinate will be omitted. Also, note that these 
functions of course depend on the images, although the notation does not show this 
explicitly. 

Suppose we have a finite set Φ of local feature energy functions. On what basis should we 
choose from the set? Different features are good in different situations. For instance, edges 
and other sparse features are good for capturing abrupt changes of depth and other salient 
features, but can miss gradual depth change that can instead be captured by using dense 
features. What one cannot do is to choose functions at each point in the match space; the 
values of different local energy functions are in general not comparable. In general, the same 
local function must be used at least over the set from which a selection is made. In other 
words, across these sets of selections, different functions can be used. Then, what is the set 
of selections? Fig. 6. shows an epipolar slice of the match space. The surface that represents 
the matching appears as a curve here. In this figure, the monotonicity constraint means that 
the tangent vector of the curve must reside in the “light cone” at each point of the matching 
curve. This implies that the matching curve crosses each constant t line at exactly one point. 
This means that on each such line the matching problem selects one point (the match) from 
all the points on the line. Thus we can choose one particular local energy function on this 
line and safely choose a different one on another line. In the following, we will call these 
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lines the “selection lines.” The partition of the match space into selection lines is minimal in 
the sense that, for any sub-partition, the selection of the energy function cannot be local to 
each partition. There are, however, other minimal partitions with this local-selection 
property. For instance, the match can be partitioned into other “space-like” lines with an l to 

r tilt different from −1 : 1, as long as the ratio is negative. 

5.1 Selection Rule 

As we have said, on each selection line, we are free to choose any local energy function. 
Note that the information that we can easily utilize for the selection is limited. For instance, 
we cannot use any information concerning the matching surface that is eventually selected, 
as that would lead to a combinatorial explosion. Here, we employ a least “entropy” rule to 
select the energy function. It chooses the energy function that is most “confident” of the 
match on each selection line. After all, an energy function that does not discriminate 
between one match and another is of no use. Going to the other extreme, when we have 
ground truth, an energy function that gives the true match the value zero and every other 
match the value positive infinity is obviously the best; the energy function knows which 
match to choose with certainty. This intuition leads us to evaluate how ``sure'' each energy 
function is.  

Let us define an ``entropy'' functional for a positive-valued function h on {d = D0, D0 + 1, …,

D1}×{t} by: 

Et(h) = ,

Ht(h) = − .

This functional Ht gives a measure of the degree of concentration of the function h: it is 
smaller when h is more concentrated (see Fig. 7.) The more peaked the function, the lower 
the value of the functional. We use this functional to choose a preferred local energy 
function for each selection line. To use this functional for our purposes, where we need a 
dipped function rather than a peaked one, we invert the function and feed the result to the 
functional.

Thus, for each selection line, we choose the function h with the least value of Ht(hmaxt−h),

where hmaxt is the maximum value of h on the selection line corresponding to the coordinate 

d

h(d )

 High H(h)

d

 Low H(h)

h(d )

Figure 7.  The functional H on function h. It measures the degree of concentration of the 
value of h.
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value t:

ht = argminh∈H Ht(hmaxt − h).

This selection rule prefers a function that has a distinguished dip, which means, in our 
situation, one or few disparity values that have an advantage over other values. This 
method of selection allows us to avoid irrelevant measures locally and ensures the most 
confident selection of the disparity on each selection line. 

6. Implementation and Results 

We implemented the architecture explained in the preceding sections. For the minimum-cut 
algorithm, we used the standard push-relabel method with global relabeling (Cherkassky 
and Goldberg, 1997). 
For the local energy functions, the following features are used: 
1. Intensity. This is a simple squared difference between the points, i.e., 

h
2
I (t,y,d) =

 . 
2. Wavelet edge. The derivative of Gaussian wavelet that detects an edge in the vertical 
direction at various scales: 

where

See (Mallat, 1999) Chapter 6 for the details of multi-scale edge detection. 
3. Multi-scale edges consistent across the scale. This is a measure of the presence of an edge 
across scales. 

hE(t,y,d) =

 .

In Fig. 8, a comparison of the results for a sample image pair ((a), (b); 135×172 pixel 8-bit 
gray-scale images) using these energy functions is shown. The results (disparity maps) are 

shown using the intensity square difference hI
2 (c); the wavelet edge features hE

s with scale s =

1 (d), s = 2 (e), and s = 4 (f); the multi-scale edge hE (g) (the square difference of the sum of 

the wavelet coefficients for s = 1, 2, 4; and the minimum-entropy selection from the five 

energies (h). The Intensity feature hI
2 (c) gives the poorest result in this example. Wavelet 

edges for s = 1, 2, 4 (d), (e), and (f) are better, yet with a black artifact on the upper right, also 
present with the multi-scale edge (g). The gray-scale image (i) shows which of the five 
energy functions is used in (h) at each point of the left image. A black point represents an 
occluded point, where no match was found, resulting in no corresponding t defined for the 

l-coordinate. Other gray values are in the order (c) to (g), i.e., darkest: intensity hI
2, lightest: 

multi-scale edge hE.
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(a) 

(d) 

(g) 

(b) 

(e) 

(h) 

(c)

(f) 

(i) 

Figure 8. (a), (b): A sample image pair “Apple.” Results (disparity maps) are shown using 
different local energy functions (c), (d), (e), (f), (g), and minimum-entropy selection from the 
five energies (h). The gray level in (i) shows which of five energy functions is used in (h) at 
each point of the left image. 
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3D Reconstruction

Original 

Disparity 

Figure 9. Stereo pair “Pentagon” (508×512 pixel 8-bit greyscale images,) disparity maps for 
both images, and a 3D reconstruction from the disparity 
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(a)

(b)

(c)

Figure 10. More results. Left and Middle columns show the left and right images. Right 
column shows the stereo disparity. 

Fig. 9. shows a stereo pair “Pentagon” (508×512 pixel 8-bit greyscale images,) disparity maps 
for the left and right images, and a 3D reconstruction from the disparity map. To compute 
this example, it took about ten minutes on a 1GHz Pentium III PC with 1GB of RAM. A few 
more results are shown in Fig. 10. 

7. Conclusion 

We have presented a new approach to compute the disparity map, first by selecting optimal 
feature locally, so that the chosen local energy function gives the most confident selection of 
the disparity from each set of mutually exclusive choices, then by modelling occlusions, 
discontinuities, and epipolar-line interactions as a MAP optimization problem, which is 
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equivalent to a first-order MRF optimization problem, and finally by exactly solving the 
problem in a polynomial time via a minimum-cut algorithm. In the model, geometric 
constraints require every disparity discontinuity along the epipolar line in one eye to always
correspond to an occluded region in the other eye, while at the same time encouraging 
smoothness across epipolar lines. We have also shown the results of experiments that show 
the validity of the approach. 
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