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Tracking of Facial Regions Using Active Shape 
Models and Adaptive Skin Color Modeling

Bogdan Kwolek
Rzeszow University of Technology 

Poland

1. Introduction  

It is widely accepted that skin-color is an effective and robust cue for face detection, 
localization and visual tracking. Well-known methods of color modeling, such as 
histograms and Gaussian mixture models enable creation of appropriately exact and fast 
detectors of skin. In particular, skin color-based methods are robust to changes in scale, 
resolution and partial occlusion. In real scenarios an object undergoing tracking may be 
shadowed by other objects or even by the object itself. However, many color-based tracking 
approaches assume controlled lighting. These methods construct or learn models in advance 
and then use them in tracking, without adaptation to suit new conditions. Consequently, 
these techniques usually fail or have significant drifts after some period of time, mainly due 
to variation of lighting in the surrounding. Thus, such techniques are not as good as can be 
for use in real environments because skin-color perceived by a camera usually changes 
when the lighting conditions vary. Therefore, for reliable detection of skin pixels a dynamic 
color model that can cope with nonstationary skin-color distribution over time should be 
applied in vision systems. Two types of information are typically used to perform 
segmentation during face tracking. The first is color information (Bradski, 1998; Comaniciu 
et al., 2000; Fieguth & Terzopoulos, 1997; Perez et al., 2002; Sobottka & Pitas, 1996). The 
second is the geometric configuration of the face shape (Chen et al., 2002). It is often not easy 
to separate skin colored objects from non-skin objects like wood, which can appear to be 
skin colored. Therefore, both skin-color modeling and contours are used to separate the 
facial region undergoing tracking (Birchfield, 1998). The oval shape of the head is often 
approximated by an ellipse (Birchfield, 1998; Srisuk et al., 2001). To cope with varying 
illumination conditions the color model is accommodated over time using the past color 
distribution and newly extracted distribution from the ellipse's interior. However, such 
tracker pays little attention to what lies inside the ellipse and what is utilized to 
accommodate the color model. The kernel density-based tracking has recently emerged as 
robust and accurate method due to its robustness to appearance variations and its low 
computational complexity (Bradski, 1998; Comaniciu et al., 2000; Perez et al., 2002). Due to 
the use of a simple pixel-based representation as well as reduced adaptation capabilities of 
Mean-Shift methods the algorithm performs poorly under large illumination change.  
Updating the color model is one of the crucial issues in color-based tracking. A technique for 
color model adaptation was addressed in (Raja et al. 1998). A Gaussian mixture model was 

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007
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used to represent the color distribution and the linear extrapolation was utilized to adapt 
the model parameters via a set of labeled training data from a subimage within the 
bounding box. A non-parametric method that in histogram adaptation employs only pixels 
which fall in the skin locus was proposed in work (Soriano et al., 2003a). In work (Sigal et 
al., 2000) the modeling of the color distribution over time is realized through predictive 
histogram adaptation. Histograms are dynamically updated using affine transformations, 
warping and resampling. The pixel-wise skin color segmentation is often not sufficient to 
select the pixels for adaptation of a color model because pixels in the image background 
may also have colors similar with skin colors and this can then lead to over-segmentation. 
Another issue which should be taken into account is that nearby pixel from skin-colored 
background may blend with the true skin regions and this can have an adverse effect on 
subsequent processing of skin regions. The adaptive skin-color filter (Cho et al., 2001) 
performs initial skin candidate detection at the beginning and then more accurate tuning of 
a skin model takes place. The adaptation takes into account the skin-like background colors. 
The method uses the HSV color space in which the H coordinates are additionally shifted by 
0.5. A comparative study of four state-of-the-art techniques of skin detection under 
changing illumination conditions can be found in (Soriano et al., 2003b). 
A few attempts have been proposed to track objects under large change in illumination 
(Hager & Belhumeur, 1996; La Cascia et al., 2000). These algorithms follow the same idea 
consisting in the usage of a low dimensional linear subspace to approximate the space of all 
feasible views of the object under different lighting conditions. To perform the tracking one 
needs to construct the basis images from a set of images collected at fixed pose under 
different lighting conditions. 
The key idea of the proposed approach is an improved selection of pixels to determine the 
parameters of models expressing the evolution of skin color over time. Even when a 
background region situated close to a face region has skin colored pixels, there always exists 
a boundary between the true skin region and the background. Our aim is to delineate such a 
boundary under varying illumination conditions by means of Active Shape Models. In 
context of dealing with skin-color segmentation under time varying illumination the Gabor 
filters are particularly useful as they are robust to variability in images arising due to 
variation in lighting and contrast. Active Shape Models (ASM) were originally proposed by 
Cootes (Cootes, 2000). They allow for considerable variability of instances of models 
represented in a subspace spanned by eigenvectors. 
The algorithm for segmenting and tracking a face in a sequence of color images enables 
reliable segmentation of facial region during face tracking despite variation of skin-color 
perceived by a camera. A second order Markov model is utilized to forecast the skin 
distribution of facial regions in the next frame. The histograms that are constructed from the 
predicted distribution are backprojected to generate candidates of facial regions. The 
detected skin-colored regions are then refined with regard to spatio-temporal coherence. 
The algorithm reviews the image focusing the action around the location of the face in the 
previous frame. In particular, the connected component analysis is applied in the binary 
image to label separate regions. Spatial morphological operations for hole and object size 
filtering are used afterwards. Using prior knowledge about the target shape the Active 
Shape Model seeks to match a set of model points to the image. While interpreting the 
image contents we employ statistical shape models built on intensity gradients, distance 
between color of pixels in subsequent frames and the phase of Gabor filter responses. In the 
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first iteration we always utilize the distance to the edge of extracted in advance facial mask 
to find a plausible starting configuration. The coherence score between corresponding 
characteristic points, which is determined using phase of the Gabor filter responses, 
improves considerably the tracking capabilities of the method. The outcome is a shape fitted 
to the tracked face. 
The user only needs to initialize the tracker in the first frame. After a fixed number of frames 
the tracker automatically switches from tracking with the learning phase to the model-based 
tracking. A second order Markov model is applied to predict the evolution of colors of skin 
pixels, gathered within shape interiors in certain number of the last frames. During the 
tracking, the matching are not performed between only image pairs, but also between the 
current frame and the shape model. The accommodation of the skin histogram over time 
takes place on the basis of feedback from shape, newly classified skin pixels and predictions 
of the skin color evolution. 
The following section briefly outlines some topics related to statistical shape models. The 
details of the shape alignment are given in Section 3. Section 4 describes how the Active 
Shape Model is used in our system to conduct tracking and to support the skin 
segmentation. It presents in detail all ingredients of our ASM-based tracker and reports 
results, which were obtained in experiments with various cues. The model of skin colors and 
their evolution is described in Section 5. Experiments conducted in varying illumination are 
described as well.  

2. Point Distribution Model  

The method for segmentation and tracking of facial regions, which is presented in this 
chapter utilizes the statistical shape models. A shape model is utilized to constrain the 
configuration of a set of candidate skin pixels. An efficient algorithm allows the detection of 
facial pixels to be tested and verified. Thus, it deals with failures of a skin detector. The non-
skin pixels that are placed outside of the shape are not considered in the skin-color model. 
During shape guided verification of the facial region a set of candidate skin pixels is 
inspected using shape constraints in two ways. Firstly, a shape model is fitted to the 
candidate facial region. Secondly, limits are prescribed on the position, orientation and scale 
of a set of candidate skin pixels relative to the position, orientation and scale according to 
their values from the last frame. The aim is to extract pixels belonging only to the tracked 
face, using the candidate facial mask, intensity gradient, coherence of the phase of Gabor 
filter responses, and the shape constraints. The facial mask is generated from a skin 
probability image. The skin probability image is extracted on the basis of a skin histogram 
that is accommodated over time. There are two broad approaches for representing a two-
dimensional shape: region-based and contour-based. The region-based methods encode the 
place occupied by the object through a mask. The methods belonging to this group are 
sensitive to noise and they cannot cope with partly obscured objects. In contour-based 
approach the boundary of the object is modeled as an outline. Therefore, such methods can 
better deal with partially obscured objects and partial occlusions. A contour-based model 
can be built by placing landmark markers on distinctive features and at some pixels in 
between. The contour-based instances are usually normalized to canonical scale, translation 
and rotation in order to make possible comparison among distinct shapes. A distance 
between corresponding points from the two normalized shapes can be utilized to express 
the similarity between them.  
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Active Shape Models (ASMs or smart snakes) were originally designed as a method for 
locating given shapes or outlines within images (Cootes, 2003). An ASM-based procedure 
starts with the base shape, approximately aligned to the object, iteratively distorts it and 
refines its pose to obtain a better fit. It seeks to minimize the distance between model points 
and the corresponding pixels found in the image. A shape consisting of n points can be 
considered as one data point in 2n -dimensional space. A classical statistical method for 
dealing with redundancy in multivariate data is the principal component analysis (PCA). 
PCA determines the principal axes of a cloud of npoints at locations xi . The principal axes,  

explaining the principal variation of the shapes, compose an orthonormal basis ={p1, p2,..., 

pn}  of the covariance matrix . It can be shown that the variance 

across the axis corresponding to the i-th eigenvalue i equals the eigenvalue itself. By 

deforming the mean shape , using a linear combination of eigenvectors , weighted by so-
called modal deformation parameters b, we can generate an instance of the shape. 
Therefore, the new shape can be expressed in the following manner: . By varying 
the elements of b we can modify the shape. By applying constraints we ensure that the 
generated shape is similar to the mean shape from the  original training data. Through 

applying limits of to each element bi of b, where i is the variance of the i - th 

parameter bi , we can operate on plausible values of b. The deformation of the shape is 

constrained to a subspace spanned by a few eigenvectors  corresponding to the largest 
eigenvalues. We can achieve a trade-off between the constraints on the shape and the model 
representation by varying the number of eigenvectors. If all principal components are 
employed, ASM can represent any shape and no prior knowledge about the shape is 
utilized.  

3. Shape Alignment

Given two 2D shapes, x1 and x2 our aim is to determine the parameters of a transformation 

T, which, when applied to x2 can best align it with x1 with one-to-one point correspondence. 

During alignment we utilize an alignment metric that is defined as the weighted sum of the 
squares of the distances between corresponding points on the considered shapes. Thus we 
seek to choose the parameters t of the transformation T to minimize:  

(1)

where W is a diagonal matrix of weights {w1, w2,..., wn}. Expressing Tt in the following form:  

(2)

and denoting ax =s cos( ), ay =s sin( )  we can rewrite (1) in the following form:  

. The error E assumes a minimal 
value when all the partial derivatives are zero. Differentiating the last  equation with regard 
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to ax we obtain: . Diferentiating w.r.t.

remaining parameters and equating to zero gives:  

(3)

where

. The parameters tx , ty , ax and ay constitute a solution  which 

best aligns the shapes. An iterative approach to find the minimum of square distances 
between corresponding model and image points is as follows (Cootes, 2003):  
1. Initialize shape parameter b to zero.  
2. Generate the model instance .
3. Find the pose parameters using (3), which best map x to Y.
4. Invert the pose parameters and then use to project image pixels Y into the model co-

ordinate frame: .

5. Project y into the tangent plane to  through scaling it by .

6. Update b to match y  as follows: .
7. If not converged, repeat starting from 2.  

4. Active Shape Model-Based Tracking  

Tracking can be perceived as a problem of assigning consistent labels to objects being 
tracked. This is done through maintaining the observations of objects in order to label these 
so that all observations of a given object in a sequence of images are given the identical label. 
During shape aligning our algorithm reviews the binary image focusing the action around 
the pose that has been determined in the previous frame. The algorithm requires that there 
is an overlap between the image region occupied by the object in the previous iteration and 
the new object region. Such an assumption is utilized in Mean-Shift trackers (Bradski, 1998; 
Comaniciu et al. 2000), which require significant overlap on the target kernels in consequent 
frames. In our system limits are prescribed on the position, orientation and scale of the 
target according to their values in the last frame. The binary image is generated prior to 
shape fitting on the basis of the skin histogram that is accommodated over time. 
The standard ASM aligns the shape model to outlines in an image using only contours. It 
works well on images with consistent shape and appearance. It requires good initialization 
and is inadequate when the shape variations are highly non-linear. To cope with such 
constraints we initialize the locating of the face in each frame by the use of the binary mask. 
Its boundary indicates a rough location as well as shape of the face. In work (Koschan et al., 
2003) an incorporation of color cues into the ASM framework has been proposed. However, 
the mentioned approach does not apply color segmentation. It is based on the minimization 
of energy functions in the color components. Therefore it admits of only a small change in 
illumination between two successive frames.  
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Fig. 1. demonstrates the performance of the ASM attempting to match the head model to a 
given binary mask that has been extracted on the basis of color model. To demonstrate the 
usefulness of statistical shape models in tracking two artifacts at the left and the right side of 
face border have been manually added. Despite large deformation of the shape outline we 
can observe how precisely the algorithm can align the shape to such a face mask. The shape 
on the left is the base shape in the initial pose that has been utilized in depicted shape 
alignment. This figure exemplifies also how the statistical shape models can support the 
selection of pixels for color model adaptation and thus the prediction of skin evolution over 
time.

Fig. 1. Shape alignment in presence of manually added artifacts to extracted facial mask. 

The shape model has been prepared on the basis of 10 manually segmented images with 
frontal faces, each represented by 30 characteristic points. The faces have been normalized 
with regard to orientation and size in order to obtain a set of points with similar physical 
correspondence across the training collection. All training faces were manually aligned by 
eye position. 
The oval shape of the head can be reasonably well approximated by an ellipse. During 
preparing the statistical model of the head shape the model shapes are normalized by 
aligning the average shape to a fixed circle of landmark points. Such an approach has the 
advantage that the model can be scaled to a needed size via setting only the size of the circle. 
The pose of the shape during the tracking is determined on the basis of the distance to the 
edge of face mask, intensity gradient near the edge of the outline, matching score of colors 
from the candidate outline and from the outline determined in the previous iteration, and 
phase of the Gabor filter responses. In the following subsections we present how each of the 
mentioned above cues contributes to the cost function that is calculated during searching for 
the best fit to the tracked face.  

4.1. Distance to the Edge of the Facial Mask  

In work (Isard & Blake, 1996) a search for the edges in direction perpendicular to the shape 
border has been shown as optimal. Therefore, a search for the points along profiles normal 
to the shape border is employed in our system. Fig. 2. demonstrates sample shape and 
location of the normals corresponding to characteristic points of our face representation.  
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Fig. 2. The location of the normals to base shape.  

Fig. 3. shows some shapes that were determined using the distance to the edge of the binary 
mask undergoing fitting. The binary images indicating skin color like areas were extracted 
on the basis of histograms accommodated over time. The experiments were conducted in 
home/office environment in front of wooden doors and a piece of furniture.  

Fig. 3. ASM-based face tracking using distance to the edge of the face mask. Frames #1, #2, 
#20, #40, #60, #80, #100 and #120 (from left to right and from top to bottom). Left images in 
the pairs are binary ones, whereas right images depict the outlines fitted to the face.  
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The candidates of facial region are extracted on the basis of histograms modeling the 
distribution of skin color. Histograms are accommodated over time from newly classified 
skin pixels and predictions of the skin-color evolution. The backprojected histograms are 
employed to generate binary images. Such images are then used in determining the 
connected components. Spatial morphological operations, such as size and hole filtering are 
employed next. Using the location of the face in the previous frame, a single binary 
component is extracted finally. The Active Shape Model seeks to match a set of model points 
to such a facial mask. In the images shown above we can perceive that only the usage of 
distance to the edge of the mask can lead to shapes that are well fitted to the face. The 
results demonstrate that the mask can be very useful in the initialization of the shape fitting.  

4.2. Intensity Gradient  

Figure 4 demonstrates some results that were achieved using intensity gradient while shape 
fitting to the tracked face. We apply the binary mask in the first iteration that initializes the 
matching of the set of model points to the edges. The gradient magnitude is calculated on 
the basis of the Sobel mask. The filtering with Gaussian mask precedes the extraction of the 
intensity gradient. The search is done along lines perpendicular to the shape.  

Fig. 4. ASM-based face tracking, using gradient. Frames #1, #2, #20, #60, #80, #100, #120. 
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Comparing the extracted shapes at Fig. 3. and Fig. 4. we can observe that the shapes 
generated on the basis of intensity gradient tend to fit the upper part of the person’s head. 
Such an effect occurs because the strongest edge is not always the object edge. The number 
of pixels indicating skin like areas in the background is slightly larger in images shown in 
Fig. 4.  

4.3. Intensity Gradient and Color  

As demonstrated in (Birchfield, 1998), the contour cues combined with color can be very 
useful to distinguish the tracked head when both a model of the color distribution and the 
elliptical model are accommodated over time. When the contour information is poor or is 
temporary unavailable, color information can be very useful alternative to extract the 
tracked object. Some tracking results that were obtained using color and intensity gradient 
cues are depicted in Fig. 5. As in previous experiments, the searching starts from the final 
location in the previous frame and proceeds iteratively to find the best fit of the shape to the 
face. In the first iteration the distance to the edge of the face mask is employed. The 
incorporation of information about the temporal coherence of color results in tracking with 
small shape’s jumps, even in the presence of skin like colors in the background.  

Fig. 5. ASM-based face tracking using intensity gradient and color. Frames #1, #2, #20, #40, 
#60, #80, #100 and #120.  
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4.4. Phase of Gabor Filter Responses

In order to improve further the quality of shape fitting we exploit Gabor filter responses. 
This choice is biologically motivated since it has been shown that they model the response 
the human cortical cells, which are both orientation and frequency selective. In context of 
dealing with skin-color segmentation under time varying illumination, the Gabor filters can 
be particularly useful as they are robust to variability in images arising due to variation in 
lighting and contrast. 
A 2-D Gabor filter is created by modulating a 2-D sine wave with a Gaussian envelope. The 
2-D kernel of the Gabor filter is given by:  

(4)

where x and y  denote the standard deviations of the Gaussian envelope along the x  and y,

respectively, whereas  and  are the wavelength and orientation of the 2-D sine  wave, 
respectively. The spread of the envelope is determined via the sine wavelength  . 

k
is

defined as follows: , where k =1, 2,..., n and n represents the number of the 
considered orientations.The Gabor filter response is calculated by convolving the filter 
kernel specified by 

k
 and  with the gray-level image I : 

(5)

Fig. 6. shows the real part of Gabor filtered images. The images show the advantages of 
multiscale image representation-based on Gabor functions in feature matching. In results 
shown here, we have used four scales and four orientations in representing the landmark 
points. In our system we employ the efficient Gabor filter implementation of Nestares 
(Nestares et al., 1998). This pyramidal multiscale Gabor transform that allows very efficient 
implementation in the spatial domain is faster than conventional FFT implementations. 
Given a characteristic point of our shape model we are interested in a correspondence score 
between the considered pixel at the normal and the corresponding pixel that has been 
acquired at the initial outline. Such a correspondence score can be estimated using the phase 
of the Gabor filter responses. Suppose that for a Gabor filter with orientation  and 

wavelength  the phase at a point xt is . Given a response of a single filter the similarity 

between points xt and x1 is proportional to . The  matching score 

between points xt and x1 can be computed in the following manner:  

(6)

where C
h
 is a normalization constant ensuring that G varies between 0 and 1. By adding  1 to 

each factor during multiplication we limit the predominance of a single filter in the filter 
outcome.
Fig. 7. illustrates the coherence score between the landmark points that were acquired from 
the shape in the first frame and pixels from the frame #10. For visualization purposes a face 
subimage is included in the probability image. The brighter the pixel representing 
probability is, the higher is the coherence probability. The images demonstrate the 
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usefulness of phase in precise alignment the shape to the facial landmarks. The location of 
the landmark points for which the coherence probability has been computed can be found at 
Fig. 8c. 
To achieve a better fit of the model shape to image data the method elaborated by (Cootes, 
2000) uses searching profiles. Within such profiles this method looks for a sub-profile with 
statistics that best match the training profile. A representation of the training profile of each 
landmark is constructed off-line using a collection of the gray level values along the search 
profiles. The best match is determined by searching for a sub-profile for which a square 
error function takes the minimal value. The searching starts at the top level of the multi-
resolution pyramid and continues at the lover level using the search outcome of the 
previous level. However, this method is sensitive to changes in illumination. One of the 
main advantages of our method is its robustness to variations in illumination and contrast. 
Our method does not require an off-line training stage and takes also the advantages of 
multiresolution analysis.  

Fig. 6. Gabor decomposition of the test image. 
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Fig. 7. Gabor filter-based coherence score between the pixels located at landmark points of 
the shape fitted to face in frame #1 and image pixels from frame #10.  

The initialization of the tracker begins with a separation of skin and non-skin colors, see Fig. 
8a, using a database of skin and non-skin pixels. The face mask obtained in such a way is 
utilized to determine the initial pose of the base shape, see Fig. 8b. Experiments 
demonstrated that such a rough initialization is sufficient to conduct successful tracking in 
typical scenarios. Good choices for reference pixels to compute the phase score are points at 
corners or borderlines. Pixels located at the borderline between the shirt and the face are 
examples of such pixels too. Therefore, after the automatic determination of the shape pose 
we manually correct the pose of the shape in order to place some of the landmark points of 
the shape at mentioned above points. Fig. 8c illustrates a typical fit of the base shape to the 
face after manual correction of the pose. It has been obtained through clock-wise rotation of 
the shape depicted in Fig. 8b. Although our algorithm does not require very precise 
initialization, a far more precise initial fit of the shape to the face can be obtained. In case of 
such a need our graphical interface provides sufficient support and flexibility. For example, 
we can choose a mode of variation and its weight and then visualize the generated shape. In 
particular, thanks to such functionality we can determine the number of eigenvalues that are 
needed to approximate any tracking example within a given accuracy. After specifying the 
max weight and step we can animate the deformations of the shape in front of the face. This 
helps in selecting a set of parameters preventing the algorithm from convergence to an 
unrealistic shape. In another option of the program, through a specification of the weight for 
each mode we can observe deformation of the shape and its fit to the face. The mentioned 
above functionality acknowledged also its usefulness at the training stage.  

Fig. 8. Initialisation of the tracker.  

Fig. 9. illustrates some tracking results that were obtained using the distance to the edge of 
mask, the intensity gradient and the phase coherence. Through this sequence we want to 
highlight an improved fit of the shape to the face while the tracking. Comparing images 
from this figure with corresponding images from Fig. 3.-5. we can notice that thanks to 
Gabor filter responses, the upper part of the shape is located almost in all frames at the 
border between the face and hairs of the person’s head. A similar effect consisting in a close 
location of the bottom part of the outline to the face-shirt boundary can also be observed. 
The accuracy of locating the boundary of the face is constrained by the assumed shape 
model.  
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Fig. 9. ASM-based face tracking using the distance to the edge of face mask, intensity 
gradient and coherence of the phase. Frames #1, #2, #20, #40, #60, #80, #100 and #120.  

In the experiments described above we used two modes to approximate the oval shape of 
the human head. We constructed also shape models with increasing number of modes in 
order to test their ability to approximate the outline of the face as well as their ability to 
generalize. The shapes we can obtain arise via linear combinations of the shapes seen in a 
training set. Thus, the examples of the training repository have also an influence on the 
approximation as well as generalization capabilities. Some results from the tracking 
experiments using four modes are presented in Fig. 10. An improved fit to the face can be 
observed. Our experimental findings show that the 2-3 nodes provide sufficient 
approximation having on regard comparable face sizes in the image. The model employed 
in this work has been utilized in our former work (Kwolek, 2006). It has been prepared on 
the basis of images not containing the faces from the presented here test sequences. A very 
simple model built on landmark points constituting a shape like an egg can be sufficient to 
approximate the oval shape of the head in many tracking scenarios. The number of 
landmark points can be smaller as well. The model parameterized by the number of 
landmarks, which we decided to use in our experiments provides sufficient approximation 
for faces occupying larger areas of image.  
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Fig. 10. ASM-based face tracking using distance to the edge of the face mask, intensity 
gradient and coherence of the phase. The number of modes is set to four. Each 10-th frame 
of 120  frames long sequence is presented. 

The presented above experimental results were achieved using 10 iterations and they were 
conducted in front of wooden doors and a piece of furniture. Large shape deformations are 
made in the first few iterations, which give the scale and shape roughly correct, see Fig. 11b-
d. While the searching progresses the deformations are smaller. Fig. 11c demonstrates the 
shape in first iteration, whereas Fig. 11d shows shapes in 9-th and 10-th iteration, 
respectively. The images depict also how the statistical shape models can support the 
selection of pixels for adaptation of the skin model. The skin-color based image 
segmentation under time-varying illumination is described in next section.  

Fig. 11. Examples of search. Input and binary images (a). Process of searching (b-d). 



Tracking of Facial Regions Using Active Shape Models and Adaptive Skin Color Modeling 345

5. Skin Color Segmentation under Time-Varying Illumination  

The face detection scheme within tracking framework must operate flexibly and reliably 
regardless of lighting conditions, background clutter in the image, as well as variations in 
face position, scale, pose and expression. Some tracking applications, for example using a 
moving camera, do require good detection rates even in case of abrupt changes of 
illumination. Fast and reliable face segmentation techniques in image sequences are highly 
desirable capability for many vision systems. Skin color-based detection methods are 
independent to scale, resolution and to some degree of face orientation in the image. A 
problem with robust detection of skin pixels arises under varying lighting conditions. The 
same skin patch can look like two different patches under two different conditions. An 
important issue for any skin-color based tracking system is to provide an accommodation 
mechanism which could cope with varying illumination conditions that may occur during 
tracking. In our approach, color distributions are estimated over time and then are predicted 
under the assumption that lighting conditions vary smoothly over time. The prediction is 
used to reflect the changing tendency in appearance of the object being tracked. A ground-
truth is an evident need during adapting a color model over time to changing illumination 
conditions (Raja et al., 1998). In this approach the evolution of distribution is constrained via 
statistical shape model and skin locus mechanism. In work (Sigal et al., 2000) the current 
segmentation and predictions of Markov model were applied to provide a feedback for 
accommodation. In other work (Raja et al., 1998) the accommodation process is controlled 
via mechanism for detecting errors accompanying tracking. 
One significant element that should be considered while constructing a statistical model of 
skin color is the choice of color space. One of the advantages of the HSV color space is that it 
yields minimum overlap between skin and non-skin distributions. Hue is invariant to 
certain types of highlights, shadows and shading. A shadow cast does not change 
significantly the hue color component. It decreases mainly the illumination component and 
changes the saturation. This color space was utilized in several face detection systems (Raja 
et al., 1998; Sigal et al., 2000; Sobottka & Pitas, 1996). The only disadvantage of the HSI color 
space is the costly conversion from the RGB color space. We handled this problem by using 
lookup tables. The histogram is the oldest and most broadly employed non-parametric 
density estimator. In the standard form it is computed by counting the number of pixels that 
have given color in region of interest. This operation allows alike colors to be clustered into 
the separate bin. The quantization into bins reduces the memory and computational 
requirements. Due to their statistical nature the color histograms can only reflect the content 
of images in a limited way (Swain & Ballard, 1991). Therefore, such representation of color 
densities is tolerant to noise. Histogram-based techniques are effective only when the 
number of bins can be kept relatively low and when sufficient data are in disposal (Raja et 
al., 1998). One of the drawbacks of the histogram-based density estimation is the lack of 
convergence to the true density if the data set is small. In certain applications, the color 
histograms are invariant to object translations and rotations. They vary slowly under change 
of angle of view and with change in scale.  

The target is represented by the set , where N is the number of pixels and ui

denotes vector with HSV components of the i -th pixel. Given a set of samples S we can 
obtain estimate of p(u) using multivariate kernel density estimation (Comaniciu et al., 2000; 
Elgammal et al., 2003):
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(7)

where  is a Gaussian kernel of bandwidth h , whereas d denotes  the 
dimension. The quantization with 32x32x32 bins has been used to represent both the target 
as well as the background. 
An initial skin histogram, along with the model for non-skin background pixels, has been 
used to compute the probability of every pixel in the first input color image and thus to give 
the skin likelihood. A model for human skin color distribution was built using a repository 

of labeled skin pixels that has been prepared in advance. Given the histograms  and ,
the log-likelihood ratio for a pixel with color u is given by (Han & Davis, 2005):  

(8)

where  is a very small number, whereas   and  denote the frequency of pixels 
with color u in the foreground and background, respectively. Given the probability image 
the thresholding takes place. After that, the binary image is analyzed via a labeling 
procedure, which isolates connected components in order to detect the presence of face 
candidates in the image. Next, the candidate regions are subjected to morphological 
operations, such as size and hole filtering, to clean up the mask and to generate the mask 
indicating which pixels belong to the face. After alignment of the model shape with the 
current mask, the refined face mask is utilized to select from the newly classified pixels the 
representation of the skin distribution. Using such samples gathered over an initial sequence 
of frames the sequence-specific motion patterns are learned. A second-order Markov process 
has been chosen to model the evolution of the color distribution over time (Blake & Isard, 
1998; Sigal et al., 2000). 
Many studies have indicated that the skin tones differ mainly in their intensity value while  
they form compact cluster in chrominance coordinates (Yang et al., 1998). Hence, the 
evolution of skin cluster can be parameterized at each time instant t by translation, rotation 
and scaling. The translation parameters tp can be extracted on the basis of means from  

samples constituting a learning distribution, whereas the scaling parameters sp can be  

estimated from their standard deviations. The eigenvectors of the covariance matrices of 
samples from two consecutive frames define two coordinate frames, which can be then used 
to estimate the rotations rp .

The work (Blake & Isard, 1998) demonstrated that affine motion can be described via a 
second-order auto-regressive Markov process:  

(9)

where X ={tp
T

, sp

T
, tp

T
} is the vector parameterizing the skin evolution. The parameters  

which should be learned are A0, A1 and C =BB
T

 because B cannot be observed directly. It 

was shown in (Blake et al., 1995) that the matrices A0 and A1 can be estimated on the basis of 

the following equations:  
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 (10a) 

 (10b) 

where , i, j =0,1, 2, and m denotes number of learning frames. 

Given A0 and A1 we can estimate C from the following equation: , where 

.

On the basis of predicted distribution the histogram  of skin colors is extracted. After  
normalization of the histogram we perform an adaptation which combines the histogram 
that had been obtained from the predicted distribution and the histogram from the last 
frame. Adaptation is made according to the following equation:  

(11)

where the adaptation coefficient  has been determined empirically. The histogram 
has been subjected to segmentation procedure to produce the face mask. The  refined face 
mask by statistical shape model, as discussed in Section 4, has been then used to collect the 
newly classified skin pixels in a list. 
The refined face mask by statistical shape model can contain non-skin pixels. Experiments 
demonstrated that the part of face below the hair was a source of such inadequate pixels. To 
deal with this undesirable effect, the pixels collected in the mentioned above list were 
additionally inspected if they fall within the prepared in advance skin locus. A prepared off-
line two-dimensional table defining possible skin chromaticities has been used at this stage. 
It has shown to be useful especially in eliminating non-skin pixels from the representation of 
the skin distribution in a sudden change of illumination. 

The list prepared in such a way has been utilized to generate the histogram . Finally, 
this histogram has been updated in the following manner: 

(12)

This histogram has been utilized to generate the skin image probability during tracking.  

5.1 Experiments in Time-Varying Illumination  

To test the elaborated method of skin color segmentation under time-varying illumination 
we performed various experiments on real images. Some images from one of our test 
sequences are shown at Fig. 12. Through this sequence we want to highlight the behavior of 
the tracking algorithm in varying illumination as well as in case of errors in color-based 
target segmentation. We can notice in frame #56 that even if the segmentation does not 
separate the object of interest from the background, the contour generated from the active 
shape model supports greatly the extraction of the target. In case of such an abrupt change 
of illumination and without the ASM-based shape refinement the color model would be 
influenced by the background colors. Thanks to precise delineation of face from the 
background and the adaptation mechanism the skin model contains only face colors, see 
frame #60, #70. The accommodation of the skin histograms over time takes place on the 
basis of feedback from shape, newly classified skin pixels and predictions of the skin color 
evolution. Once a face is being tracked, the color model adapts according to changes in 
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illumination and improves tracking performance. In this sequence we can also observe how 
the size of the shape is scaled in response to varying distance between the moving camera 
and moving person. The number of learning images has been set to 10.  

Fig. 12. ASM-based face tracking in varying illumination using intensity gradient and phase 
of Gabor filter responses. Frames #1, #50, #55, #56, #60, #70, #100 and #200. 

To study the adaptation performance in time-varying illumination conditions we conducted 
experiments with two configurations of the tracking algorithm. In the first configuration 
only the newly classified pixels were used to accommodate the histogram, whereas in the 
second one we utilized the predictions of the skin evolution. The predictions lead to better 
segmenta-tion of the tracked face in varying illumination, see Fig. 13. and Fig. 14. Until 
significant change of illumination in frame #56, both algorithms produce almost the same 
results, compare frame #55 at Fig. 13. and Fig. 14. Something better segmentation can be 
observed as early as in frame #57. Significantly better segmentation can be perceived in 
frame #70 and all frames behind it. A tracker built on an ellipse can not track the face in 
frames acquired after the change of the illumination. The presented system runs at 320x240 
image resolution at frame rates of 9-11 Hz on a 2.4 GHz PC.  
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Fig 13. Skin-like regions during adaptation-based on newly classified skin pixels. Frames 
#55, #56, #57, #58, #59, #60, (top row), #70, #80, #90, #100, #150, #200 (bottom row). 

Fig 13. Skin-like regions in learning-based adaptation. Frames #55, #56, #57, #58, #59, #60, 
(top row), #70, #80, #90, #100, #150, #200 (bottom row). 
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