
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

15

Continuous Machine Learning in Computer
Vision – Tracking with Adaptive Class Models

Rustam Stolkin
Stevens Institute of Technology

USA

1. Introduction

A fundamental (and popular) task in computer and robot vision is the tracking of an object
which moves relative to the camera, essentially segmenting the object region of each
successive frame. There are a great many published approaches, which are often variations,
combinations or advances on well known techniques such as background subtraction, image
differencing, predictive filtering and Bayesian estimation. Generally, these techniques rely
on simple models of the tracked object and/or models of the background.
Many techniques in computer vision derive from ideas previously established in the pattern
recognition community, where it is usual to learn models offline from historical training
data sets. Hence these models, once learned, typically remain static during the online
tracking process.
Such static models are ultimately of limited robustness in real world computer vision
tracking scenarios where the appearance of both the background and the tracked object may
change significantly and frequently due to camera motion (resulting in background change),
object motion or deformation, introduction and removal of additional objects and clutter
(e.g. passing traffic on a road) and changes in lighting and visibility conditions (either
changes in ambient conditions or, for example, spotlights mounted on and moving with an
underwater robot).
In contrast, this chapter will discuss a variety of tracking algorithms and techniques which
are highly adaptable. These techniques have in common that they incorporate models which
are continuously relearned from new input image frames while simultaneously performing
tracking on those frames.
These techniques are powerful, in that they offer a way of successfully adapting to a
changing environment. However, the price paid for adaptability can be a tendency towards
certain kinds of instability. In simple terms, any system that continuously relearns (e.g.
models of the tracked object and the background), has a risk of relearning incorrectly (e.g.
relearning that background looks like object). Therefore, this chapter will also discuss
various techniques for automatically detecting and correcting such errors as they occur, and
survey techniques by which algorithms might continuously monitor their own performance.
It is also useful to consider continuous machine learning techniques in vision in terms of the
rate of relearning. Firstly we will consider well established algorithms which incrementally
re-learn models, very gradually, over many frames. Later we will look at very recent work,

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Scene Reconstruction, Pose Estimation and Tracking 266

in which models are entirely relearned at every frame or even several times during an
iterative analysis of each frame. We will see that this re-learning rate often has implications
for the trade off between the capacity of an algorithm to adapt and its inherent stability.

2. Adaptive background subtraction with a stationary camera

2.1 Relearning simple uni-modal background models

If the camera is fixed (e.g. in visual surveillance applications), and the tracked object is also
moving, the simple but powerful technique of background subtraction can be employed in
order to segment the image region representing the tracked object of interest. Typically, this
involves thresholding the difference between the current image and a historical model of
what the image looked like before any objects of interest were present. In its simplest form,
this relies on the assumption that background pixel values remain constant. While this
assumption can be effective for short term tracking in indoor environments with fixed
lighting, it fails in longer term use in changing environments, especially for outdoor scenes
which involve lighting and shadow changes, repetitive motion of clutter or slowly acting
long-term changes to the scene. Thus it becomes desirable to enable the background model
to gradually be re-learned.
A simple approach (Kanade et al., 1998, Collins et al., 1999) involves, essentially, modelling
each background pixel intensity as a weighted moving average of recent pixel values. At the

tth video frame, the grey-scale intensity, ijI , of each pixel, ()ji, , is examined. If it is

determined that this pixel represents background then the background model intensity, ijB ,

for that pixel is updated as:

() t
ij

t
ij

t
ij IBB αα −+=+ 11 (1)

otherwise the background model for that pixel is left unchanged. Classification of each pixel
is determined by thresholding the difference between its intensity and that of the current
background model, i.e. the pixel is classified as foreground if:

t
ij

t
ijij TBI >− (2)

Each pixel is assigned its own individual threshold, t
ijT , which can itself be updated to take

account of increases or decreases in the amount of temporal variation of background
intensity. If a pixel is classified as background, then its threshold is updated as:

()()tijt
ij

t
ij

t
ij BITT −×−+=+ βαα 11 (3)

i.e., the threshold for classifying foreground pixels is increased if the variation of
background intensity from frame to frame increases and is decreased as this temporal

variation decreases. Thus the threshold, t
ijT , is analagous to β times the local temporal

standard deviation of intensity. This process effectively moderates the fundamental tradeoff
between false positives (erroneously classifying background pixels as foreground due to the
threshold being too low) and false negatives (erroneously classifying foreground pixels as
background because the threshold is set too high).

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 267

2.2 Relearning multi-modal background models

The above method is useful in that it continuously adapts to a (slowly) varying background
scene. However, the simple uni-modal model cannot adequately account for the multi-
modality that typically occurs in background pixels of real scenes, even when the camera is
stationary. As an example, consider a fixed surveillance camera where a small part of the
image views the branch of a tree. As the tree (or even the camera mounting) sways in the
wind, a particular pixel colour might vary between blue (sky) and brown (tree branch). In
such a situation we might wish for a bi-modal background model which can represent both
of these common pixel values. A tri-modal model might further enable us to handle scenes
in which background pixels typically represented tree branch, blue sky, or grey cloudy sky.
Such multi-modal background variation occurs for myriad reasons, e.g. reflections from a
rippling water surface in an outdoor scene or computer monitor flicker in an indoor office
environment.
A continuosly relearnable model, which both addresses the multi-modality in background
pixels and also adapts itself to temporal background changes, was first developed by
Grimson and Stauffer (Grimson et al., 1998, Stauffer and Grimson, 1999, Grimson et al.,
2000). Grimson models the recent history of each pixel colour (e.g. rgb value) over the

previous t frames, { }10 ,..., −tCC , as a mixture of K Gaussian distributions. The probability of

observing the current pixel colour is:

() ()1,1,

1

1, ,, −−

=

−= tktkt

K

k

tkt NP µCC ω (4)

where tk ,ω is a weight (that portion of the data which is represented by this Gaussian) of the

kth of K Gaussians at time t, tk ,µ and tk , are the means and covariance matrices

respectively and N denotes the Gaussian probability density function. At each frame, every

new pixel value is checked against the K Gaussians and assigned to the best match. If none
of them match (e.g. the pixel does not lie within 2 standard deviations of any Gaussian) then
the least probable Gaussian is removed and replaced with a new Gaussian having the
current value as its mean, a high initial variance and a small weight.
Now the weights of all K Gaussians are updated as:

()

()−

+−

=

−

−

1,

1,

,

1

1

tk

tk

tk

ωα

αωα

ω (5)

After this update the weights are all re-normalized. α determines the rate at which the

background model is relearned and has important consequences which we will discuss in

more detail later. The weights, tk ,ω , could be thought of as prior probabilities of each kind

of background mode (e.g. the tree branch or the sky). Analagous with recursive Bayesian
filtering, this prior has, in effect, been approximated as a weighted average of the previous
posterior probabilities, with exponentially decaying emphasis on past values.

if the new pixel belongs to
the kth Gaussian

otherwise

Scene Reconstruction, Pose Estimation and Tracking 268

Grimson also seeks to adaptively relearn the means and variances of each Gaussian in the
mixture. A simplifying (though usually untrue) approximation is to assume that red, blue
and green components of each pixel are independent and share similar variances, i.e.:

I2,, tktki σ= (6)

Values of tk ,µ and 2
,tkσ for those Gaussians which do not match the current pixel value

remain unadjusted. Values of tk ,µ and 2
,tkσ for the Gaussian to which the new pixel value

does belong are updated as follows:

() ttt Cµµ ββ +−= −11 (7)

() () ()tt

T

tttt µCµC −−+−= − βσβσ 2
1

2 1 (8)

The second learning rate, β , is simply the overall learning rate, α , weighted by the

probability that the observed pixel value truly belongs to the Gaussian being modified, i.e.:

()kktN µC ,,αβ = (9)

To determine the background model for each pixel individually, all K Gaussians for that

pixel are ordered on the basis of 2
kk σω . This is a heuristic that assigns importance to

modes which are both frequent and consistent (have a small variance). Once the Gaussians
have been ordered in importance, the first B distributions are selected that account for a
predefiend fraction, F, of observations, i.e.:

>=
=

b

k

kb FB
1

minarg ω (10)

Now, any new pixel which is more than 2 standard deviations from the means of all of the B
background distributions is classified as part of a foreground moving object.
Grimson and Stauffer’s method provides a relatively sophisticated description of the
background, which can be continuously relearned to enable powerful adaption capabilities
for slowly changing scenes. A significant advantage of the method is that new
characteristics of the background can be acquired without destroying the existing model.
Statistically important colours will remain in the model until they become the Kth most
probable mode and a new colour is observed. This enables for example, the background
model to cope robustly with objects that move into the scene, temporarily stop, and then
move on. Even if the stationary vehicle has temporarily been incorporated into the
background model, it will quickly be removed again once it recomences motion.

2.3 Relearning non-parametric background models

Elgammal et al., 1999, suggest an alternative model for relearning backgrounds with a
stationary camera. Grimson and Stauffer’s mixture model approach builds a background
model very slowly over a large number of image frames. This is unable to respond
sufficiently sensitively to higher frequency background variations. To address this difficulty,

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 269

Elgammal et al. use a different kind of model that can be completely relearned over a much
smaller, recent set of frames (good results are reported with 100 frames).

Given the colours of a pixel over the previous t frames, { }10 ,..., −tCC , the probability density

that this pixel will have rgb colour ()Tttt
t CCC 321 ,,=C in the current frame can be non-

parametrically estimated using a kernel estimator, K, as:

() ()
=

−=
t

i

itt K
t

p
1

1
CCC (11)

The kernel estimator function, K, is typically chosen to be a Normal function, (),0N ,

giving the density in terms of the multivariate Normal distribution:

()
()

() ()

=

−−− −

=
t

i

t

it
T
it

e
t

p
1

2

1 1

2
1

2
3

2

11 CCCC

C

π
 (12)

As with grimson’s work, a simplifying approximation is to assume independence between
the r,g and b colour values of the pixel so that:

=
2
3

2
2

2
1

00

00

00

σ

σ

σ

 (13)

conveniently reducing the density estimation to:

() ()
∏

= =

−
−=

t

i j

i
j

t
j

j j

t

CC

t
p

1
2

2
3

1
2 2

1
exp

2

11

σπσ
C (14)

This pixel is now labelled as foreground if () Tp t <C , where T is a global threshold for the

whole image. To estimate the variances for each colour, 2
jσ , the median, mj, is computed of

the deviations between each successive pair of values in the sample, e.g. the median, mj, of
1−− n

j
n
j CC for each consecutive pair of the previours 100 frames. Now each standard

deviation is estimated as:

268.0

m
j =σ (15)

2.4 Relearning rate

The background subtraction methods described so far are unable to detect objects which
move slower than a critical “re-learning speed” since the object itself would simply become
re-learned as background. Therefore there is a fundamental trade off in the choice of
learning rate. It must be rapid enough to cope with the fastest anticipated background

Scene Reconstruction, Pose Estimation and Tracking 270

change but slow enough to enable the most slowly moving objects to be detected. Thus two
kinds of error must be considered when choosing an appropriate learning rate. Failing to
relearn rapidly enough causes rapidly changing background pixels to be falsely detected as
object (false positive). Failure to relearn slowly enough causes slow moving objects to pass
undetected (false negative). In the extreme case, without the use of additional techniques,
tracking based simply on background subtraction will eventually lose the tracked object if it
stops moving since it will become incorporated into the relearned background model.
As an example of the complexity of these tradeoffs, Elgammal’s model is able to adapt
rapidly to background changes which would cause false positive detections with Grimson
and Stauffer’s method. However, Grimson and Stauffer’s method is able to learn new
background features without destroying its existing model. In contrast Elgammal’s model is
unable to remember background data from longer ago than 100 frames (or whatever length
of frame history is chosen). Elgammal goes a certain way to overcoming this trade off by
incorporating a procedure for combining both a short-term and long-term background
model which are each updated over different timescales.
Since all of the methods so far described, including the faster responding non-parametric
method, involve relatively slow relearning over many frames, they are all unable to cope
with the rapidly changing backgrounds that result from a moving camera. The following
sections describe recent work, in which rapid changes due to camera motion can be handled
by a very different approach which enables the background to be completely relearned with
every new frame.

3. The ABCshift algorithm – adapting backgrounds with a moving camera

3.1 Bayesian mean shift tracking with static colour models

The CAMSHIFT tracker (Bradski, 1998a, 1998b) is a colour based tracking algorithm which
is popular for its elegant simplicity and speed. The qualities of speed and simplicity would
suggest useful applications to mobile robot vision or wide area surveillance tasks which
necessitate moving cameras. Unfortunately, CAMSHIFT was originally designed by Bradski
for face tracking at close range from a stationary camera in relatively simple indoor
environments. It often fails if the camera moves, because it relies on static models of both the
background and the tracked object.
For each frame of an image sequence, the CAMSHIFT algorithm looks at pixels which lie
within a subset of the image defined by a search window (green box in figures 1-5). Each
pixel in this window is assigned a probability that it belongs to the tracked object, creating a
2D distribution of object location over a local area of the image. The centroid of this
distribution can be regarded as the probabilistic expectation of the true object position, and
thus provides an improved object position estimate. The search window is now repositioned
at this centroid and the process is iterated until convergence. Since this iterative shift
towards the mean (expectation) position is an example of the mean shift procedure
(Comaniciu, 2002, 2003), Bradski’s algorithm is known as the “Continuously Adaptive Mean
Shift” or CAMSHIFT tracker. However, Bradski’s use of the term “adaptive” is not the same
as that of this chapter and does not imply any continuous machine learning. CAMSHIFT is
only “adaptive” in the sense that the tracked object size is re-estimated at each frame to
indicate whether the object is moving towards or away from the camera.

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 271

The size of the tracked object region (in pixels) is estimated by summing the probabilities of
all the pixels within the search window. The object region can now be indicated by marking
out a simple area of this size around the object centroid (the red box in figures 1-5). The
search window is now resized so that its area is always in a fixed ratio to this estimated
object area.

The tracked object is modeled as a class conditional colour distribution, ()O|P C . Depending

on the application, 1D Hue, 3D normalised RGB, 2D normalised RG, UV or ab histograms
may all be appropriate choices of colour model, the important point being that these are all
distributions which return a probability for any pixel colour, given that the pixel represents
the tracked object. These object distributions can be learned offline from training images, or
during initialisation, e.g. from an area which has been user designated as object in the first
image of the sequence.
The object location probabilities can now be computed for each pixel using Bayes' law as:

() () ()
()C

C
C

P

P|P
|P

OO
O = (16)

where ()C|P O denotes the probability that the pixel represents the tracked object given its

colour, ()O|P C is the colour model learned for the tracked object and ()OP and ()CP are

the prior probabilities that the pixel represents object and posesses the colour, C ,

respectively.
The denominator of equation (16) can be expanded as:

() () () () ()BBOO P|PP|PP CCC += (17)

where ()BP denotes the prior probability that the pixel represents background.

Bradski recommends values of 0.5 for both ()OP and ()BP . However, this choice is difficult

to justify if one takes these terms to denote the expected fractions of the total search window
area containing object and background pixels respectively. It seems preferable to assign
values to object priors in proportion to their expected image areas. If the search window

area is always resized to be r times bigger than the estimated tracked object area, then ()OP
is assigned the value r1 and ()BP is assigned the value () rr 1− .

The colour histograms, ()O|P C and ()B|P C , are the class conditional object and

background models respectively. As for the object model, Bradski also suggests learning the

background model offline, presumably building a static ()B|P C histogram from an initial

image. While it is often reasonable to maintain a static distribution for the tracked object
(since objects are not expected to change colour), a static background model is unrealistic
when the camera moves. The CAMSHIFT algorithm can rapidly fail when the background
scenery changes since colours may exist in the new scene which did not exist in the original
distribution, such that the expressions in Bayes law will no longer hold true and calculated
probabilities no longer add up to unity.
Particular problems arise with CAMSHIFT if the tracked object moves across a region of
background with which it shares a significant colour. Now a large region of background
may easily become mistaken for the object, figure 1.

Scene Reconstruction, Pose Estimation and Tracking 272

3.2 Incorporating an adaptive background model

Recent work (Stolkin et al. 2006) addresses these problems by using a background model
which can be continuously relearned. An interesting aspect of the work is that, in contrast to
Grimson and Stauffer’s mixture model representation (section 2.2), this model can be
relearned without the need to decisively classify pixels as being object or background. Due
to the continuously relearnable background model, Stolkin et al. have named this tracker the
ABCshift (Adaptive Background CAMSHIFT) algorithm.

Rather than using an explicit ()B|P C histogram, Stolkin et al. build a ()CP histogram which

is recomputed every time the search window is moved, based on all of the pixels which lie

within the current search window. ()CP values, looked up in this continuously relearned

histogram, can now be substituted as the denominator for the Bayes' law expression of

equation 16. Since the object distribution, ()O|P C , remains static throughout the tracking,

this process becomes equivalent to implicitly relearning the background distribution,

()B|P C , because ()CP is composed of a weighted combination of both these distributions

(see equation 17). Relearning the whole of ()CP , rather than explicitly relearning ()B|P C ,

avoids the need to make hard decisions about the class of any particular pixel and helps
ensure that probabilities add up to unity,e.g. if there are small errors in the static object

model, ()O|P C .

Adaptively relearning the background distribution helps prevent tracking failure when the
background scene changes, particularly useful when tracking from a moving camera
(figures 1-4). Additionally, it enables objects to be tracked, even when they move across
regions of background which are the same colour as a significant portion of the object,

(figure 1-4). This is because, once ()CP has been relearned, the denominator of Bayes' law

(equation 16) ensures that the importance of this colour will be diminished. In other words,
the tracker will adaptively learn to ignore object colours which are similar to the
background and instead tend to focus on those colours of the object which are most
dissimilar to whatever background is currently in view.

It is interesting to note that the continual relearning of the ()CP histogram need not

substantially increase computational expense. Once the histogram has been learned for the
first image it is only necessary to remove from the histogram those pixels which have left
the search window area, and add in those pixels which have newly been encompassed by
the search window as it shifts with each iteration. Provided the object motion is reasonably
slow relative to the camera frame rate, the search window motion will be small, so that at

each iteration only a few lines of pixels need be removed from and added to the ()CP
histogram.

If the ()CP histogram is relearned only once every frame, the speed should be similar to that

of CAMSHIFT. However, if the histogram is relearned at every iteration, some additional
computational expense is incurred, since to properly exploit the new information it is

necessary to recompute the ()C|P O values for every pixel, including those already analysed

in previous iterations. In contrast, with the CAMSHIFT algorithm, ()C|P O values only ever

need to be computed once for any pixel. Theoretically, updating at each iteration should

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 273

produce more reliable tracking, although good tracking results are observed with both
options.

Figure 1. A simple blue and red chequered object, moving from a region of white
background into a region of red background. CAMSHIFT fails as soon as the object moves
against a background with which it shares a common colour. Frames 350, 360, 380, 400, and
450 shown. Green and red squares indicate the search window and estimated object size
respectively. This movie, RedWhite1CAMSHIFT.avi, can be viewed at the project website
(see references).

Figure 2. ABCshift tracks successfully. Frames 350, 360, 380, 400, and 450 shown. Green and
red squares indicate the search window and estimated object size respectively. This movie,
RedWhite1ABCshift.avi, can be viewed at the project website (see references).

Figure 3. Person tracking with CAMSHIFT from a moving camera in a cluttered, outdoors
environment. Frames 1, 176, 735, 1631 and 1862 shown. Since the tracked person wears a red
shirt, CAMSHIFT tends to fixate on red regions of background, including brick walls and
doors, and repeatedly loses the tracked person. Green and red squares indicate the search
window and estimated object size respectively. This movie, PeopleTracking1CAMSHIFT.avi
can be viewed at the project website (see references).

Figure 4. ABCshift successfully tracks throughout the sequence and is not distracted by red
regions of background, despite being initialised in image 1 which contains no red
background. Frames 1, 176, 735, 1631, and 1862 shown. Green and red squares indicate the
search window and estimated object size respectively. This movie,
PeopleTracking1ABCshift.avi, can be viewed at the project website (see references).

In practice, ABCshift may often run significantly faster than CAMSHIFT. Firstly, the poor
background model can cause CAMSHIFT to need more iterations to converge. Secondly, the

Scene Reconstruction, Pose Estimation and Tracking 274

less accurate tracking of CAMSHIFT causes it to automatically grow a larger search window
area, so that far greater numbers of pixels must be handled in each calculation.

3.3 Summary of the ABCshift tracker

The key difference between ABCshift and the conventional CAMSHIFT tracker is that
CAMSHIFT uses a simple, static background model that is typically initialized from the first
frame and then remains constant throughout the duration of the tracking. In contrast,
ABCshift is able to completely relearn the background at every frame or even many times
per frame, with little additional computational cost.
The ABCshift algorithm is summarized as:

1. Identify an object region in the first image and train the object model, ()O|P C .

2. Center the search window on the estimated object centroid and resize it to have an area
r times greater than the estimated object size

3. Learn the colour distribution, ()CP , by building a histogram of the colours of all pixels

within the search window.

4. Use Bayes' law (equation 16) to assign object probabilities, ()C|P O , to every pixel in the

search window, creating a 2D distribution of object location.
5. Estimate the new object position as the centroid of this distribution and estimate the

new object size (in pixels) as the sum of all pixel probabilities within the search
window.

6. Repeat steps 2-5 until the object position estimate converges.
7. Return to step 2 for the next image frame.

4. Algorithms that detect and correct their own errors

4.1 Automatic online performance evaluation

Förstner, 1996, suggests that:
1. Vision systems should contain tools for self diagnosis and be able to estimate their own

performance.
2. Vision systems should know their own limitations, detect their own cases of failure and

be able to report failures and possible causes.
3. To enable such self diagnosis, quality measures need to be determined and specified for

both algorithm inputs and outputs.
There seem to be two fundamental mechanisms by which a vision algorithm might
determine when it is (or is likely to be) failing or performing sub-optimally. These can
broadly be divided into techniques that examine the algorithm’s inputs and those that
examine its outputs. Firstly, it might be possible to test the kinds of tracking conditions
under which a particular algorithm tends to fail. By comparing these with the current input
data to the algorithm during tracking, it might be possible to infer when imminent failure or
poor performance is likely. Secondly, it may be possible to apply quality measures to output
features of the algorithm such as characteristics of an estimated trajectory or a learned
representation of the tracked object. The first strategy is difficult since it would require an
extensive survey of the performance of an algorithm on a large number of image sequences,
under many conditions, as well as some way of characterizing and comparing the
conditions, i.e. some metrics which summarise the nature of any input video sequence. This

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 275

approach is theoretical and, to the best of the author’s knowledge has not so far been
attempted. Therefore, this section briefly examines some simple techniques that attempt to
implement the second of these strategies.
There are two reasons for including this material in the chapter. The concept of algorithms
which continuously monitor their own performance and recognise and correct their own
errors, seems intuitively to be closely related to the principals of continuous machine
learning and autonomous adaptability which are the subject of this discussion. Additionally,
these techniques are particularly useful to help correct certain kinds of instability, which
occasionally result from continuous model relearning. Simplistically, if an algorithm is
allowed to continuously relearn without supervision, there is always a danger that it will
learn incorrectly (e.g. learning that background looks like object). Once this process begins
and is left uncorrected, it can sometimes escallate, creating an unstable feedback situation
which results in failure. This is a previously underexplored area of research. The intention of
this section is to highlight some examples and suggest a few possible research directions in
the hopes of stimulating further interest within the vision community.

4.2 Bhattacharyya resizing

The ABCshift algorithm is powerful, in that it can cope with rapidly changing backgrounds
due to camera motion, by completely relearning a background model at every frame.
However, this continual relearning itself can introduce a special mode of instability which
occasionally causes problems. If the search window should shrink (due to the object region
being temporarily underestimated in size) to such an extent that the boundaries of the
search window approach the boundaries of the true object region, then the background
model will be retrained predominantly using object pixels. This in turn will lead to many
object pixels being assigned a high probability of belonging to the background and even
more object pixels beome incoporated into the background model. Thus the estimated object
region shrinks in size with a corresponding shrinking of the search window. This results in
an unstable feedback cycle with the estimated object region and search window gradually
(and unrecoverably) collapsing.
Stolkin et al., 2007, solve this problem by noting that, as the search window shrinks and

approaches the size of the object region, the learned search window distribution, ()CP , must

become increasingly similar to the static distribution known for the tracked object, ()O|P C .

If this increasing similarity can be detected, then both the object region and search window
can be easily resized, see figure 5, the correct enlargement factor being r , the desired ratio
of search window size to object region size.
Several statistical measures exist for comparing the similarity of two histograms. Stolkin et
al. utilise a Bhattacharyya metric (Bhattacharyya, 1943) sometimes referred to as Jeffreys-

Matsusita distance (Jeffreys, 1946) which for two histograms, { } { }Kii
pp

,...2,1∈
= and

{ } { }Kii
qq

,...2,1∈
= is defined as:

() ()
=

−=
K

i

ii qpqpd
1

2

, (18)

Scene Reconstruction, Pose Estimation and Tracking 276

20 ≤≤ d . Note that this metric can easily be shown to be the same, modulo a factor of

2 as that referred to elsewhere in the literature (Comaniciu, 2002, 2003, Perez, 2002,

Numiaro, 2002).
At each iteration of the ABCshift algorithm, Stolkin et al., 2007, evaluate the Bhattacharyya

metric between the static object distribution, ()O|P C , and the continuously relearned search

window distribution, ()CP (which implicitly encodes the background distirbution, ()B|P C .

If the Bhattacharyya metric approaches zero, it is inferred that the search window is
approaching the true object region size while the estimated object region is collapsing. Both
windows are therefore resized by the factor r . In practice it seems useful to resize when the
Bhattacharyya metric drops below a preset threshold. Useful threshold values typically lie
between 0.2 and 0.7.
Note that, because of the special way that ABCshift implicitly relearns the background by

relearning the ()CP histogram, the Bhattacharyya metric is used to compare this histogram

with the object model, ()O|P C . In other kinds of algorithm, where the literal background

distribution itself is available, it would be equally advantageous to measure the

Bhattacharyya metric betwen ()O|P C and ()B|P C .

This is an unusual application of the Bhattacharyya metric. It has previously become
common in the vision literature (Comaniciu, 2002, 2003, Perez, 2002, Numiaro, 2002) to use
this metric to evaluate the similarity between a candidate image region and an object
distribution for tracking (i.e. comparing potential object with known object). In contrast,
Stolkin et al., 2007, use the metric to compare an object distribution with a background
distribution, inferring an error if the two begin to converge.

Figure 5. Bhattacharyya resizing. A simple red and blue checkered object is tracked across
red, white and blue background regions by the ABCshift tracker, augmented with
Bhattacharyya resizing. Frames 180, 200, 205, 206 shown. Due to rapid, jerky motion from
frames 180 to 205, the search window has shrunk until it falls within the object region,
risking relearning that background looks like object. ABCshift has detected this instability
using the Bhattacharyya metric, and automatically corrects the estimated object region and
search window size in frame 206. Green and red squares indicate the search window and
estimated object size respectively. This movie, PeopleTracking1ABCshift.avi, can be viewed
at the project website (see references).

4.3 Other kinds of online auto-performance evaluation

Other related work includes Correia and Pereira, 2002, 2003, and Erdem et al., 2004. This
work is not explicitly concerned with the concept of algorithms that constantly monitor their
own performance during tracking. However the techniques are applicable, since the authors

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 277

are broadly interested in performance evaluation without the need for ground truth data
(which can be very difficult to generate, see Stolkin, 2006). Erdem divides these performance
metrics, which could be used to auto-evaluate tracking performance online (without any
external ground-truth data), into two classes as intra-object homogeneity and inter-object
disparity, i.e. the tracked object should be consistent with itself but different from the
background or other objects.
Intra-object homogeneity metrics might examine shape regularity, spatial uniformity,
temporal stability and motion uniformity. The Bhattacharyya resizing technique described
above is similar to inter-object disparity metrics, which evaluate colour or motion contrast
between pixels, labelled as lying inside and outside the tracked object.
For tracking schemes which output a detailed segmentation of the tracked object, Erdem et
al. suggest evaluating spatial colour contrast along object boundaries. Pairs of pixels are
selected which lie slightly inside and outside the boundary of the estimated segmented
object region. Then colour differences are evaluated along the object boundary. If the
tracking algorithm enables a colour histogram of the tracked object to be re-calculated at
each frame (e.g. by defining a segmented object region or by relearning a colour model),
then this histogram can be compared with a smoothed or average histogram from several
previous frames, to measure temporal consistency. It is also possible to evaluate the
differences in motion vectors of points estimated to lie inside and outside the tracked object.
In the author’s opinion, the use of such techniques, even in very simple ways, to enable
tracking algorithms to detect their own errors or modify their parameters in response to
deteriorating performance has so far received very little attention, and this would seem to be
a useful and open area of ongoing research.

5. Continuously adaptive models of the tracked object

So far, this chapter has provided an overview of various examples of continuous machine
learning in the context of background models which adapt with time. Adaptive tracking
research predominantly focuses on dynamic relearning of background models, rather than
foreground models, because it is often reasonable to assume that the appearance (e.g. colour
distribution or texture) of a tracked object remains relatively constant during the tracking
process. This section will examine the possibilities for creating algorithms with the
additional capabilities of adapting to changes in the tracked object.
Might it be possible to create a simple colour based blob tracker which can track a
chameleon? Or how about tracking a person who, while strolling down the street, pulls off a
red jacket to reveal a yellow shirt underneath (or Clark Kent as he changes into Superman
on the fly)? At present, these kinds of problems (or the similar problem of tracking
“camouflaged” objects) tend to be approached with contour tracking, e.g. the ConDensation
algorithm (Isard and Blake, 1996), but might fast and simple algorithms such as Mean Shift
Tracking (Comaniciu et al., 2003) or ABCshift (Stolkin et al., 2007) be modified to handle
these tasks by continuously relearning the appearance of the tracked object?
Let us consider the case of region based object tracking with representations of objects in the
form of distributions of intensity, colour or other simple features. In order to update such
distributions based on the intensities of pixels in each new frame, some decision must be
made about whether or not each new pixel belongs to the tracked object. Note that ABCshift
successfully adapts to a changing background without any explicit classification of
background pixels, but this is enabled by the assumption of a static object model, combined

Scene Reconstruction, Pose Estimation and Tracking 278

with some cunning manipulation of Bayes’ law. It is relatively easy to update a background
model given a static object model and presumably vice versa, but it is much less obvious
how to mutually refine both models at the same time. A method is needed by which entirely
new colours, which previously did not exist in the object at all, could still be acquired by the
object model as they appear. It does not seem logically feasible to manage this without
fitting some kind of boundary or contour around the tracked object region at each frame.

Figure 6. Possible mechanism for object model relearning. Firstly the old object model (e.g.
colour distribution) is used to classify new image pixels as object. Next a boundary is fitted
around these pixels, defining the object region. Finally all pixels within the object region are
relearned as the new object model.

A simple theoretical example of such a scheme is illustrated in figure 6. If the object model is
a class conditional intensity or colour distribution, then pixels in the current image, with
high probabilities according to the existing model, can be identified as belonging to the
object. Some object pixels are missed, since the object appearance has changed somewhat
since the previous image and the current model is out of date. Hence it may be possible to
estimate the object region by fitting a boundary around the detected object pixels. This
boundary will include regions of colours which are missing from the current object model.
The new colours can be incorporated by relearning the object model according to all pixels
which lie in side the bounding contour. Depending on the application, this boundary might
be a simple shape (e.g. an ellipse or a square), a flexible contour or snake or the projection of
a known 3D model of a tracked rigid body.
An example of an algorithm which continuously relearns both object and background
models, is the EM/E-MRF algorithm (Stolkin et al., 2000, 2007b, 2007c), which combines
simple, Gaussian models of the object and background pixel intensities with a 3D CAD
model of the rigid tracked object. The EM/E-MRF algorithm was an attempt to tackle
images under conditions of extremely poor visibility, by combining observed image data
with prior knowledge in various forms.
Given the recent trajectory of the camera relative to the observed object, a new relative
camera pose is predicted for the current observed image. This pose is used to project a
known 3D model of the object, yielding a prediction of the object region in the observed
image. The projected/predicted object region can be used to roughly define those image
pixels which represent the object. This then enables the creation of object and background
distributions (1D Gaussians) from the observed image pixel intensities which lie in these
regions.
The object and background distributions can now be used to segment the observed image
(the EM/E-MRF algorithm probabilistically combines these distributions with predicted
image data during segmentation, using the Extended-Markov Random Field procedure).

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 279

The 3D object model can now be best fitted to the segmented image to yield an improved
camera pose estimate as well as a cleaner image segmentation. Now the camera pose can be
recycled as a new input and the process is iterated. Camera pose, intensity distributions and
image interpretation are mutually improved via an Expectation Maximisation-like iterative
process. This iterative cycle is illustrated in figure 7.

Figure 7. Iterative model relearning with the EM/E-MRF algorithm. Best fitting a projection
of the tracked object provides a hard boundary to the estimated object region of the image.
This enables object and background intensity distributions to be relearned accordingly.

The EM/E-MRF algorithm achieves some success at interpreting extraordinarily poor
visibility images, due to the large amount of predicted information that it incorporates into
the segmentation process. It is an interesting exercise in probabilistically fusing two images
of the same scene, in this case an observed image and a predicted image. However, this
algorithm uses object and background distributions which are overly simplistic for many
scenes. At the same time, the Extended-Markov Random Field (E-MRF) optimisation, used
in the segmentation process, is excessively computationally expensive.
Despite these drawbacks, the approach is included here as an interesting example of an
algorithm which is able to simultaneously relearn both object and background distributions
at every frame, see figure 8.

Scene Reconstruction, Pose Estimation and Tracking 280

Figure 8. Example of EM/E-MRF tracking on a poor visibility image. Difficult, turbid
conditions, encountered with underwater robotics, have been simulated in the lab with dry
ice fog and focussed beam spot lights, mounted on and moving with the camera, leading to
severe backscattering. Over four iterations, the EM/E-MRF algorithm homes in on an oil-rig
like structure. Note how the algorithm mutually refines image interpretation, camera/object
pose and the Gaussian object and background models. The two Gaussians separate as the
algorithm progressively learns that object is relatively bright whereas background is
relatively dark.

7. Conclusion

This chapter has explored a number of techniques in vision based tracking, with the
common theme of continuous relearning of models of the background and the tracked

0 20 40 60 80 100
Pixel grey level

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

Object Background

0 20 40 60 80 100
Pixel grey level

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

Object Background

0 20 40 60 80 100

Pixel grey level

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

Object Background

0 20 40 60 80 100

Pixel grey level

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

Object Background

Continuous Machine Learning in Computer Vision – Tracking with Adaptive Class Models 281

object. The majority of well known work in this area has focussed on relearnable
background models for stationary cameras. These tend to be robust and stable, but adapt
relatively slowly. More recent work has proposed models which can be completely
relearned at every frame, enabling tracking with rapid camera motion and also robust
tracking of objects which move across regions of background with which they share
significant colours.
It is important to note that, although the ABCshift algorithm can relearn the background at
every frame, it is only able to do so because it is initialised with a known, static model of the
tracked object. In contrast, the adaptive models for stationary camera background
subtraction adapt much more slowly, but are able to detect and track new objects without
any prior information about the objects’ appearance. This might suggest a hybrid scheme,
whereby background subtraction techniques with stationary cameras are used to detect new
objects and acquire their characteristics, and these characteristics are then passed to object
model based techniques which can, for example, continue to follow objects of interest by
servoing a pan, tilt, zoom camera.
In order to enable continuous relearning of object models in addition to background models,
it seems necessary to define the object region in each frame by a contour or boundary. Thus
region based tracking, effectively requires the fusion of contour tracking techniques in order
to achieve full adaptability. It is interesting to note that these ideas naturally correspond
with calls from elsewhere in the vision community (e.g. Blake, 2005) for hybrid trackers,
incorporating both contours and regions, as a way forwards in robust tracking research.

8. References

ABCshift movies at http://www.math.stevens.edu/~ifloresc/ABCshift.htm, 2006.
A. Blake. (2005). Visual tracking: a short research roadmap. Mathematical Models of Computer

Vision: The Handbook, Eds. O. Faugeras, Y. Chen and N. Paragios, Springer, in press.
Bhattacharayya, A. (1943) On a measure of divergence between two statistical populations

defined by their probability distributions. Bulletin of the Calcutta Mathematical
Society, Vol. 35, 1943, pages 99-110.

Bradski, G. (1998a). Computer video face tracking for use in a perceptual user interface, Intel
Technology Journal, Q2, 1998.

Bradski, G. (1998b). Real time face and object tracking as a component of a perceptual user
interface, Proceedings of the 4th IEEE Workshop on Applications of Computer Vision,
pages 214-219, 1998.

Collins, R.; Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D.,
Enomotos, N., Hausegawa, O., Burt, P. & Wixson, L. (1999). A System for Video
Surveillance and Monitoring, Proceedings of the American Nuclear Society (ANS)
Eighth International Topical Meeting on Robotic and Remote Systems, April, 1999.

Comaniciu, D.; Meer, P. (2002) Mean shift: A robust approach toward feature space analysis,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, May
2002, pages 603-619.

Comaniciu, D.; Ramesh, V., Meer, P. (2003) Kernel-based object tracking, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 25, 2003, pages 564-577.

Correia, P.; Pereira, P. (2002) Stand-alone objective segmentation quality evaluation.
EURASIP Journal of Applied Signal Processing, No. 4, pages 390-402, 2002.

Scene Reconstruction, Pose Estimation and Tracking 282

Correia, P.; Pereira, P. (2003) Objective evaluation of video segmentation quality. IEEE
Transactions on Image Processing, Vol. 12, February, 2003, pages 186-200.

Elgammal, A.; Harwood, D., Davis, L. (1999) Non-Parametric Model for Background
Subtraction. Proceedings of the IEEE Frame Rate Workshop, 1999.

Erdem, C.; Sankur, B., Tekalp, A. (2004) Performance Measures for Video Object
Segmentation and Tracking. IEEE Transactions on Image Processing, Vo. 13, No. 7,
July, 2004.

Förstner, W. (1996). Pros and cons against performance characterization of vision
algorithms. Proceedings of the European Conference on Computer Vision, Workshop on
Performance Characteristics of Vision Algorithms, 1996, pages 13-29.

Grimson, W.; Stauffer, C., Romano, R., Lee, L. (1998). Using adaptive tracking to classify and
monitor activities in a site, Computer Vision and Pattern Recognition, June 1998.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
Proceedings of the Royal Society (A), Vol. 186, pages 453-461.

Kanade, T.; Collins, R., Lipton, A., Burt, P. & Wixson, L. (1998). Advances in cooperative
multi-sensor video surveillance, Proceedings of the 1998 DARPA Image Understanding
Workshop, volume 1, 1998, pages 3-24.

Nummiaro, K.; Van Gool, L., Koller-Meier, E. (2002). Object tracking with an adaptive color-
based particle filter. Pattern Recognition : 24th DAGM Symposium, Proceedings, Vol.
2449 of Lecture Notes in Computer Science, pages 353-360, 2002, Zurich,
Switzerland.

Perez, P; Hue, C., Vermaak, J., Gangnet, M. (2002). Color-based probabilistic tracking.
Proceedings of the 7th European Conference on Computer Vision, Vol. 2350, Part 1,
Lecture Notes In Computer Science, 2002, pages 661-675.

Stauffer, C; Grimson, W. (1999). Adaptive background mixture models for real-time
tracking. Proceedings of Computer Vision and Pattern Recognition, June 1999.

Stolkin, R.; Hodgetts, M., Greig, A. (2000). An EM/E-MRF strategy for underwater
navigation, Proceedings of the British Machine Vision Conference, 2000.

Stolkin, R.; Greig, A., Gilby, J. (2006). A calibration system for measuring 3D ground truth
for validation and error analysis of robot vision algorithms. Journal of Measurement
Science and Technology. Institute of Physics, 2006.

Stolkin, R.; Florescu, I., Kamberov, G. (2007a). An adaptive background model for
CAMSHIFT tracking with a moving camera. Proceedings of the 6th International
Conference on Advances in Pattern Recognition, Kolkatta, January, 2007.

Stolkin, R.; Hodgetts, M., Greig, A., Gilby, J. (2007b). Extended Markov Random Fields for
predictive image segmentation, Proceedings of the 6th International Conference on
Advances in Pattern Recognition, Kolkatta, January 2007.

Stolkin, R., Greig, A., Hodgetts, M., Gilby, J. An EM / E-MRF algorithm for adaptive model
based tracking in extremely poor visibility. Journal of Image and Vision Computing,
Elsevier, 2007c.

Scene Reconstruction Pose Estimation and Tracking

Edited by Rustam Stolkin

ISBN 978-3-902613-06-6

Hard cover, 530 pages

Publisher I-Tech Education and Publishing

Published online 01, June, 2007

Published in print edition June, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book reports recent advances in the use of pattern recognition techniques for computer and robot vision.

The sciences of pattern recognition and computational vision have been inextricably intertwined since their

early days, some four decades ago with the emergence of fast digital computing. All computer vision

techniques could be regarded as a form of pattern recognition, in the broadest sense of the term. Conversely,

if one looks through the contents of a typical international pattern recognition conference proceedings, it

appears that the large majority (perhaps 70-80%) of all pattern recognition papers are concerned with the

analysis of images. In particular, these sciences overlap in areas of low level vision such as segmentation,

edge detection and other kinds of feature extraction and region identification, which are the focus of this book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rustam Stolkin (2007). Continuous Machine Learning in Computer Vision - Tracking with Adaptive Class

Models, Scene Reconstruction Pose Estimation and Tracking, Rustam Stolkin (Ed.), ISBN: 978-3-902613-06-6,

InTech, Available from:

http://www.intechopen.com/books/scene_reconstruction_pose_estimation_and_tracking/continuous_machine_

learning_in_computer_vision_-_tracking_with_adaptive_class_models

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

