
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



5

Soft Computing Applications in Robotic Vision 
Systems

Victor Ayala-Ramirez, Raul E. Sanchez-Yanez, Carlos H. Garcia-Capulin 
and Francisco J. Montecillo-Puente 

Universidad de Guanajuato FIMEE 
Mexico 

1. Introduction 

1.1 Soft Computing

Soft computing is a collection of intelligent techniques working in a complementary way to 
build robust systems at low cost. Soft computing includes techniques such as neural 
networks, fuzzy logic, evolutionary computation (including genetic algorithms) and 
probabilistic reasoning (Wang and Tang, 1997).  These techniques are capable of dealing 
with imprecision, uncertainty, ambiguity, partial truth, machine learning and optimization 
issues we usually face in real world problems.  
Soft computing addresses problem solving tasks in a complementary approach more than in 
a competitive one. Main advantages of soft computing are: i) its rich knowledge 
representation (both at signal and pattern level), ii) its flexible knowledge acquisition 
process (including machine learning and learning from human experts) and iii) its flexible 
knowledge processing. These advantages let us to build intelligent systems with a high 
machine intelligence quotient at low cost. Soft computing systems have already been 
applied in industrial sectors like aerospace, communications systems, robotics and 
automation and transport systems (Dote and Ovaska, 2001).  

1.2 Robotic Vision

Vision, as an exteroceptive sensor, enables autonomous systems to complete complex tasks 
where environment information is needed. Robotic vision is used in a set of robotic tasks 
like local and global map building, reactive navigation, topological navigation, object 
tracking, visual servoing and active sensing among others (de Souza and Kak, 2002). Most of 
these tasks include a pattern recognition component. In each of these tasks the robot needs 
to process large amounts of data at a fast rate in order to satisfy real time operation 
constraints (Barnes and Liu, 2002). Another fact to take into account is the presence of 
different perturbations in the signals acquired by the robot. At each run, the robot acquires 
essentially different information even if real life test conditions are very similar. For 
example, in outdoor environments, sun and clouds can provoke very significant 
illumination changes in the images, difficulting then to achieve the expected performance of 
the vision algorithms. To cope with these uncertainties, soft computing techniques have 
been used because its robustness when facing this kind of scenarios.  

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007
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1.3 Soft Computing Applications in Robotics and Vision 

Soft computing has been widely used in robotics and vision applications. Fuzzy logic is 
mainly used in robot control and in the pattern recognition issues arising from robotic tasks. 
Robot control is particularly addressed by fuzzy logic because we can specify the desired 
behavior for a system in terms of rules. For example (Saffioti, 1997) presents how to apply 
fuzzy logic in robot navigation.  Another example of fuzzy logic for autonomous vehicle 
navigation is the FUZZY-NAV project (Pan et al., 1995).  Fuzzy pattern recognition uses 
patterns and models where a given degree of uncertainty, imprecision and inaccuracy is 
included in the form of associative rules. For example, in human robot interaction, gesture 
and faces need to be recognized. These kinds of objects are very difficult to characterize in 
terms of features or relations in a statistical way. That is what makes interesting to use fuzzy 
systems to incorporate uncertainty handling.  (Buschka et al., 2000) have proposed the 
detection of fuzzy landmarks for map construction. Similar applications have been also 
proposed by (Bloch and Saffioti, 2002; Gasós and Saffioti, 1999) where map building is 
addressed.  
Neural networks are useful when we have only some examples of the behavior we want to 
incorporate on a system. In robotics, NAVLAB is a project where neural networks were used 
to steer an autonomous vehicle (Pomerleau, 1994).  Another application for neural networks 
in robotics concerns denoising techniques for images or even in control applications where, 
from a set of input-output pairs, neural networks are capable of approximating control 
surfaces whose behavior we try to emulate.   
Genetic algorithms are well suited for optimization problems where we have some cues 
about desired performance that we can encode in a fitness function. This kind of scenario 
arises when detecting landmarks or artificial shapes in the robot environment. Another 
application for genetic algorithms in the robotics domain concerns the path planification 
issues where the trajectory search space can be verified faster than by brute force 
approaches or randomized searches.   
Detailed discussions on soft computing approaches are given in a number of texts. Neuro-
fuzzy algorithms are presented in (Pal and Mitra, 1999), (Mitra and Hayashi, 2000) and 
(Buckley and Hayashi, 1994). (Herrera and Verdegay, 1996) also include the GA and their 
relation with other soft computing algorithms. The intelligent systems development is 
covered in (Ovaska, 2004) and (Abraham et al., 2002).  
In this work, we present three robotic vision applications where soft computing techniques 
are a crucial component for the success of our application. Firstly, we will present a fuzzy 
color tracking system where color is represented by means of membership functions and 
fuzzy rules to aggregate color information in the CIELab space. A second system presented 
here concerns a genetic algorithm based approach for the detection of parametric shapes in 
images acquired by a mobile robot. A third example includes the hybridization of two soft 
computing techniques, we present a geno-fuzzy controller used for the servo-control of a 
pan and tilt camera. For all three methods we present the specific soft computing aspects of 
their implementation both in simulation platforms and in a robotic platform named 
XidooBot, a P3AT robot (Fig. 1.).  
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Fig. 1. XidooBot, a Pioneer P3AT robot used as our experimental test bed. 

2. Fuzzy Color Tracking 

2.1 Tracking System Components 

A high level task for autonomous robot navigation is visual object tracking. This capability 
is used to avoid collisions or to self-localize by using visual landmarks. Almost all visual 
tracking systems follow the block diagram shown in Fig. 2. These systems process the visual 
information acquired by a camera in order to locate a target in the image. 

  Real world
  (environment)

 Image 
Acquisition

   Object
Selecction

       Object 
Representation

Initialization

Target
Search

 Search Target Zone
       Definition

  Position Target
Prediction for k + 1

Target Represetation
        Update

k = 0

k > 0

Training

Fig. 2. Block diagram for a general system for target tracking. We use a fuzzy logic-based 
approach to model the color of the target. 

The initialization phase requires using a model to represent the target. The search step 
requires defining similarity measures to detect it along the visual sequence. Generally, the 
target representation defines the way in which the comparisons are made.  There are several 
cues to represent the target, among them color is one that has been successfully used on real 
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time applications (Nummiaro et al., 2003; Argyros and Louriakis, 2004). Robustness of a 
visual object tracking system relies in the target representation. In this way, we have 
combined color and fuzzy logic to represent targets (Vertan et al., 2000; Montecillo-Puente et 
al., 2003), and here we present a fuzzy color tracking system. We use fuzzy logic in order to 
separate color components and color attributes, like illumination (Keller and Matsakis, 
1999). Our main concern is to solve the illumination problems because in real applications 
illumination changes very often and that appears as if the target was changing its visual 
appearance.

2.2 Fuzzy Color for Object Representation 

Color is one of the features most oftenly used to represent objects. But this feature has some 
inherent problems, mainly the representation of color in an optimal way. By optimal way 
we mean to be capable of distinguish between different and similar colors, i.e. red and blue 
or light red and dark red, respectively.  Due to changes in illumination it is possible that a 
color passes from a light one to dark one, so in real time tracking it is necessary to update 
the actual representation for color. In this way, the well known problem of saturation also 
arises due to illumination conditions.  These are the topics covered in this section. First we 
define the fuzzy color and then we describe the procedure to update the fuzzy color. 

2.2.1 Fuzzy Color 

In order to represent a target by color, we assume that it is monochromatic, that is, it is 
composed by a set of visually homogeneous pixels, i.e. the target appearance is composed of  
pixel with intensity values very close in a given color space. The goal is to represent this set 
of color pixels visually homogeneous, in some way. That is a common situation in real 
applications due to illumination sources and video cameras noise. In order to represent 
these color pixels, it is necessary to select a color space. We have selected the CIELab color 
space because in such model visually similar colors have close color coordinates; 
additionally it possesses a luminance component. The two chromatic components of this 
space are named, a and b, and the luminance component, L (Braum et al., 1998). Fuzzy color 
is the assignation of convenient fuzzy sets to each color component. The procedure to define 
them is as follows: 

1. Assume we have a set of visually homogeneous pixels in the RGB color space, pi

with color components piR, piG  and piB.
2. Convert all pixels, pi, to the CIELab color space obtaining color components piL, pia

and pib.
3. Compute the normalized histogram to each component. 
4. Adjust a membership function to each histogram. We may use triangular, 

trapezoidal or Gaussian ones. 
5. The membership functions define the fuzzy sets attached to the set of pixels. That is 

µL, µa and µb are the membership functions for the components L, a and b
The fuzzy representation of the set of color pixels is given by these membership functions. 
For deciding if a particular pixel p belongs to the set of pixels (or target) we evaluate the 
following fuzzy rule 

if (  and  and ) then  is the targetL a bR R R p  (1) 
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where RL, Ra and  Rb  are defined as  

:  belongs to color component  of the target

:  belongs to color component  of the target

:  belongs to color component  of the  target

R L L
L p

R a a
a p

R b b
pb

 (2) 

and Lp, ap and bp are the CIELab components of the pixel p. Let be CL, Ca and Cb the 
membership values of RL, Ra and Rb  for the pixel p, respectively. That is, CL = µL(Lp) , Ca = 
µa(ap) and Cb = µb(bp). Finally, we define truth value for the rule (1), Cp,, which expresses how 
much the pixel p belongs to the set of pixels (or target), as 

min( , , )p L a bC C C C=  (3) 

For the case in which the target is non-monochromatic, e.g. the target is composed by dark 
red and yellow, we apply the above procedure for defining fuzzy sets to each set of colored 
pixels. That is a problem because, in general, we do not know how many colors there are 
and obviously we do not know also the set of colored pixels corresponding to them. We can 
use in this case some method for determining the number of colors and the set of pixels 
attached to it, i.e. the Mean Shift procedure (Comaniciu et al., 2000). Once we have the 
number of colors and the corresponding set of pixels attached to each of them. We apply the 
above procedure for each color. So we define, for a non-monochromatic target composed by 
k different colors, its representation as follows: 

1 1 1 (     ) 

...  (     )  

...  (     )

if R and R and R
L a b

i i ior or R and R and R
L a b

k k kor or R and R and R
L a b

 (4) 

where RiL, Ria and Rib are defined as (2) for the color i.   
So the truth value for a pixel p, with Lp, ap and bp CIELab components, now is given by 

1 1 1max(min( , , ),...,min( , , ),..., min( , , ))p
i i i k k kC C C C C C C C C C

L a L a L ab b b
=  (5) 

where the expression min(CiL, Cia, Cib)  represents the truth value of the pixel p for the color i.
Then, we define on Cp a fuzzy set with a triangular membership function spanned over      

[0, 1]. Finally, we form the region of the object by applying an α-cut to all pixels into the 
search region.  

2.2.2 Fuzzy Color Update 

In real conditions the target changes its color components, mainly due to illumination 
variations. Some times it is not a crucial problem because the fuzzy representation of color 
absorbs them, for example in indoor environments. But some times there are big changes in 
color components what makes impossible to detect the target, specifically in outdoor 
environments. Generally, a big change does not occur instantaneously. So we can use these 
gradual changes to update the membership functions of the color components.  
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To update the membership functions we illustrate our procedure by using triangular ones as 
in Fig. 3. These functions are determined by three parameters p0, p1, and p2.  These 
parameters are known after target color modelling. Now we focus only on p1, assuming that 

distances from p1 to po and from p1 to p2 are constants.  Let be Rα the set of pixels which are 

classified as the target, with pi ∈ Rα. We could compute the mean of the color components on 
this set, that is  

1

i

L
L i

p RR

I p
N

αα
∈

=  (6) 

1

i

a
a i

p RR

I p
N

αα
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=  (7) 

1

i

b
b i

p RR

I p
N

αα
∈

=  (8) 

where NRα is the cardinality of Rα. We change the centers of the memberships by adding  

)( 11 L

LL Ipp −=Δ γ  (9) 

)( 11 a

aa Ipp −=Δ γ  (10) 

)( 11 b

bb Ipp −=Δ γ  (11) 

with p1L, p1a and p1b being the membership centers for the L, a and b components, 
respectively and γ  is a smoothing constant. 
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Fig.  3. Triangular membership functions. 

2.3 Performance Evaluation 

In order to evaluate the fuzzy representation we have performed the following test: In an 
OpenGL environment simulator, we have set a red ball with a varying light source, then we 
have moved the ball along a circular path and we have made controlled illumination 
changes in our environment. In this test we know the ground truth of the center position of 
the ball in each image. We save an image sequence and the ball position at each image of 
this sequence. If the error position in each image is small and the number of pixels 
composing the detected object is almost constant, we can say that our fuzzy color 
representation is good. In order to show that, we apply a fuzzy color tracking having the 
test image sequence described previously as input. In Fig. 4, we present an image and the 
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corresponding detected color blob. In Fig. 5, some frames of the sequence are shown and 
also the detected blob that satisfies the fuzzy color model. In Fig. 6, we present the position 
error between the exact ball position in the test image and the position detected by our color 
tracking system. We observe that maximum error is between 4 pixels. We can consider this 
error as a low one, that is, our tracking method has a good accuracy.  

Fig. 4. A pair of images showing the ball in the simulated environment and the region where 
the object is detected by our tracking system satisfying the fuzzy color constraints. 

Fig. 5.  Test image sequence and the detected region using a fuzzy color representation. 
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Fig. 6. Graph of the error position between the ground truth image position for the target 
and the detected position by the fuzzy color tracking system. 

In Fig. 7, we show a graph of the number of pixels correctly detected along the frames of the 
sequence. We can observe that, between frames 30 and 40, there is a transient in the number 
of pixel detected as belonging to the object. That is caused by the fuzzy color adaptation.  An 
explanation for this behavior is related to the edges of the ball. When the image is lighter, 
the ball has a good contrast against the background. In the other hand, when light turns 
dark that effect diminishes. An outdoor sequence taken from the described system 
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implemented in XidooBot, our robotic platform is shown in Fig. 8. The computing time for a 
tracking cycle is 0.08 seg, that results in a 12.5 Hz frame rate. 
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Fig. 7. Graph of number of pixels detected. 

Fig. 8. Some frames of an outdoor image sequence where a girl is kicking a yellow soccer 
ball.

3. Object Recognition using Genetic Algorithms 

Genetic algorithms (GA) are pseudo-random search techniques inspired from evolutionary 
processes. We start from an initial set of feasible solutions for a problem and by mimicking 
natural evolution, best solution individuals survive and they are the basis of new 
populations of solutions. This evolutionary cycle is repeated until a solution satisfying 
problem constraints emerge. GAs are optimization methods; they are useful when we need 
to search through a large number of feasible solutions. Solutions are evaluated to determine 
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which ones are the best suited to the problem by using a fitness function that encodes the 
knowledge we have about the nature of the solution of our problem.  In robotics, GA have 
found application in path planning problems for a robotic arm (Ahuactzin et al., 1993), path 
planning for mobile robots (Gerke, 1999) and  for estimating the position of a mobile robots 
(Kang et al. 1995).  Specifically, genetic algorithms are useful to find a good solution in large 
search spaces because they can avoid local minima by using genetic operators like mutation, 
that help the GA to probe in practically every region of the search space. Other GA-based 
applications in robotics are in visual landmark detection tasks (Hao and Yang, 2003, Mata et 
al., 2003). 
In our work, we present a GA-based circle detector. Our system uses a three edge point 
circle representation that enables the system to reduce the search space by eliminating 
unfeasible circle locations in our image. This approach results in a sub-pixellic circle detector 
that can detect circles in real images even when the circular object has a significative 
occluded portion. For robotic applications, these circles could be issued from circular 
landmarks or even being a part of the landmark. After benchmarking our algorithm with 
synthetic images, we have tested our algorithm on real world images.  We present the 
results of both cases. The latter implementation has been tested on a mobile robot platform 
XidooBot for circular landmarks detection on the robot environment. 

3.1 Circle Detection using GAs 

Shape detection is needed in robotic vision tasks like object tracking, visual servoing or 
landmark recognition. In addition to color and texture, shape is an important cue for 
modelling objects in scenes of the robot workspace. Object location techniques are solved 
using two types of methods: i) deterministic methods like Hough transform, e.g. (Yuen et 
al., 1990), geometric hashing and template or model matching, e.g. (Iivarinen et al., 1997; 
Jones et al., 1990) and ii) stochastic tecniques, including RANSAC (Fischer and Bolles, 1981), 
simulated annealing and genetic algorithms (Roth and Levine, 1994). 
Using GAs to detect shapes in an image involves mainly the making of design choices for 
the solution elements in a genetic algorithms framework. We work on images containing 
one or several circles. The circles are searched through the edge image obtained from an 
image pre-processing step. A classical Sobel edge detector was used for this purpose. In the 
following paragraphs we show how to pose the circle detection problem in terms of a 
genetic algorithm approach.  

3.1.1 Individual Representation 

Each individual C uses three edge points as chromosomes. Edge points are represented by 
their relative index in a list V of all the edge points resulting from the edge extraction step. 

Each individual represents then a feasible circle where their 0 0( , , )x y r parameters are 

defined as follows: 

2 2 2( ) ( )
0 0

x x y y r− + − =  (12) 

with: 
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2 2 2 2( ) 2( )

2 2 2 2( ) 2( )

0 4(( )( ) ( )( ))

x y x y y y
j j i i j i

x y x y y y
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x x y y x x y y
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+ − + −

+ − + −
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− − − − −
 (13) 

2 2 2 22( ) ( )
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− + − +

− + − +
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− − − − −
 (14) 

and

( ) ( )
0 0

r x x y y= − + −  (15) 

We can then represent the shape parameters (for the circle, [x0, y0, r]) as a transformation T
of the edge vector indexes i, j, k.

[ ] ),,(,, 00 kjiTryx =  (16) 

This approach enables us to sweep a continuous space for the shape parameters while 
keeping a binary string for the GA individual. We can then reduce the search space by 
eliminating unfeasible solutions.  

3.1.2 Fitness Evaluation 

Each individual has a fitness proportional to the number of actual edge points matching the 

locus generated by the parameters of the shape 0 0( , , )x y r . In our practical implementation, 

we can not test for every point in the feasible circle so we perform a uniform sampling along 

the circumference. If we take sN  points, we construct an array of points ( , )i i iS x y= . Their 

coordinates are given by: 

2
cos

0
i

x x r
i N

s

π
= + ⋅  (17) 

2
sin

0
i

y y r
i N

s

π
= + ⋅  (18) 

Fitness function F(C) accumulates the number of expected edge points (i.e. the points in the 
set S) that actually are present in the edge image. That is: 

1

0

( , )
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i
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==  (19) 
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We use also some other factors to favor the context of specific applications for detection, 
including completeness of the circumference or a given size for the circles.  

3.2 Performance Evaluation 

We have carried up three tests to evaluate the performance of our approach to circle 
detection. Firstly, we have generated 10 synthetic grayscale images with only one circle in 
them and where the ground truth of the circle parameters was known a priori. Our method 
has been run 100 times on each image and the results were recorded in Table 1. We can see 
that our algorithm detects the circle parameters with sub-pixellic accuracy (lower than 0.194 
pixels for the center coordinates and radius length). Our method is robust with respect to 
translation and scale. Average elapsed time to detect a circle in an image containing exactly 
one circle is 5 ms.   
We have also studied the behavior of the elapsed time for detection of our algorithm with 
respect to the circle radius. As expected, time seems to grow at a quadratic rate with respect 
to the radius of the circle. That can be seen in Fig. 9.  

Img. Time Position x y r Error |ex| |ey| |er|

Real 90.00 198.00 10.00 avg 0.046 0.023 0.023 
1 0.003

Detected 89.95 197.98 10.02 max 0.046 0.023 0.023 

Real 35.00 28.00 17.00 avg 0.052 0.042 0.052 
2 0.001

Detected 34.95 27.96 17.05 max 0.056 0.056 0.056 

Real 167.00 14.00 10.00 avg 0.069 0.023 0.069 
3 0.000

Detected 167.07 13.98 10.07 max 0.103 0.035 0.104 

Real 38.00 221.00 28.00 avg 0.003 0.005 0.013 
4 0.004

Detected 38.00 220.99 28.01 max 0.005 0.009 0.018 

Real 76.00 44.00 28.00 avg 0.001 0.005 0.013 
5 0.025

Detected 76.00 44.01 28.01 max 0.009 0.022 0.018 

Real 184.00 82.00 24.00 avg 0.110 0.077 0.118 
6 0.000

Detected 184.11 81.92 23.88 max 0.144 0.126 0.126 

Real 133.00 38.00 10.00 avg 0.014 0.018 0.035 
7 0.001

Detected 133.01 38.02 10.03 max 0.044 0.059 0.050 

Real 233.00 108.00 11.00 avg 0.101 0.117 0.171 
8 0.001

Detected 233.10 107.88 11.17 max 0.194 0.160 0.194 

Real 120.00 126.00 69.00 avg 0.001 0.001 0.009 
9 0.484

Detected 120.00 126.00 69.01 max 0.029 0.009 0.019 

Real 217.00 82.00 20.00 avg 0.068 0.150 0.086 
10 0.001

Detected 216.93 81.85 20.09 Max 0.068 0.150 0.086 

Table 1. Circle detection results on synthetic images containing a single circle.  
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Fig. 9. Time needed to find a single circle in an image against its radius. 

3.3 Application to Robotic Vision Tasks 

We applied the circle detection method for a robotic task. We have used it for the detection 
of artificial landmarks containing circular forms. Our interest is to develop a system that 
uses elliptical shapes (now only covering circular shapes) for using them as landmarks in a 
topological navigation task. Such a system will be similar to other systems that use 
quadrangular planar landmarks (essentially posters) for the same task. We consider only 
quadrangular and circular shapes as structurally salient in a semi-estructured environment. 
The entire circular landmark recognition process uses two processing loops. The circle 
detection task achieves a processing rate of about 5 Hz and it interacts with the color 
tracking system already described that runs at about 13 Hz. The circle detection is launched 
at the beginning of the navigation task and then it is relaunched only when the robot fails to 
perceive the detected landmark.  This situation arises when the robot is in transit from a 
topological place to another. Fig. 10 shows some typical images acquired by our mobile 
robot with circular landmarks on them. An example of an image with multiple circles and 
the results of the detection process are shown in Fig. 11. 

(a)                   (b)              (c)         (d)
Fig. 10. Typical scenarios where circular landmarks are useful. 
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4. Geno-Fuzzy Visual Servoing 

We present a genetic algorithm optimization approach for a visual servoing system using a 
fuzzy controller for an active camera. Visual task for the camera is to center an object with a 
known model in the field of view of the camera. Our system implements the 
two-dimensional controller by multiplexing a fuzzy controller for only one motion axis of 
the camera. We have simulated our system and obtained the controller response to different 
inputs. We have studied four cases for comparison purposes: a proportional controller, a 
trial and error tuned fuzzy controller, a fuzzy controller using a genetically-optimized rule 
base and another one with a database optimization using genetic algorithms.  

(a)     (b) 

(c)     (d) 

Fig. 11. Results of the circle detection process in a poster with several circles: (a) the original 
image, b) the edge image of (a), (c) the best 5 circles found by our algorithm overlaid on (a), 
and (d) the detection results overlaid on the edge image. 

We take advantage of the collaborative approach of soft computing for problem solving by 
combining genetic algorithms and fuzzy logic in a visual servoing controller. In the 
following paragraphs, we will describe current approaches and applications for 
hybridization of fuzzy and genetic techniques (so named geno-fuzzy techniques) and some 
of their applications.  

4.1 Visual Servoing  

Visual servoing is a maturing approach for controlling robots. It uses a visual task 
specification instead of using a Cartesian coordinate system previously taught to the robot 
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(Corke and Hutchinson, 2000). Most robotic systems are instructed interactively to reach 
some important points for a particular task. Robot task consists in the optimization of the 
path for all the points not already taught. Using visual servoing, information acquired by 
the visual sensors of the robot is used to control robot motion in manipulators or mobile 
robots. Flexibility of robot use is increased in this way, in particular when the robot has to 
interact with some other objects in its workspace (parts to handle, obstacles to avoid, etc.) A 
visual servoing system includes techniques from computer vision, robotics and control, and 
could be considered as a fusion of these disciplines.  
According to Corke and Hutchinson, visual servoing systems can be classified in two types:  
i) image-based visual servoing (IBVS), where error is measured directly on the image and 
mapped into actuator control signals, and ii) position-based visual servoing (PBVS), where 
vision techniques are used to reconstruct the 3D environment where the robot evolves and 
then an actuator control is computed from the error obtained from such an information.  
For the PBVS systems, a calibration step needing vision techniques and geometric models is 
required. In IBVS systems, control computations involve computation of the system 

Jacobian matrix vJ , a linear transformation that maps the end effector velocity 
•

r  into the 

motion of some image feature 
•

f :

( )v

• •

=f J r r  (20) 

Simplest approach to visual servoing uses the control law that assumes a square and 
non-singular Jacobian matrix: 

1( )v

•⋅
−

=u J r f  (21) 

A soft computing approach has been the use of fuzzy logic and neural networks to avoid the 
computation of the Jacobian matrix, as done in (Suh and Kim, 2000) (Stanley et al., 2001), 
where a fuzzy rule optimization is performed by training a neural network. In this work, we 
propose to use geno-fuzzy learning techniques to optimize an image-based fuzzy visual 
servocontroller.

4.2 Geno-Fuzzy Techniques  

A highly useful soft computing technique for implementing controllers is fuzzy logic. As 
pointed out in (Klir and Yuan, 1995), fuzzy logic controllers have advantages over 
traditional controllers when i) the system to be controlled is complex, ii) the system has been 
traditionally controlled by human experts, or iii) when human input is needed in the 
controller model. A fuzzy controller is composed of several basic elements. The fuzzifier 
translates numerical input into fuzzy values for linguistic input variables. A fuzzy 
knowledge base is composed of two parts: i) a database, where information about fuzzy 
membership functions for the input and output linguistic variables used by the system are 
stored and, ii) a rule base, where rules that determine the controller behavior are stored. 
This knowledge is used by the fuzzy inference engine to compute a fuzzy output at each 
instant. Fuzzy output is converted into a numerical output value by means of a defuzziffier.  
It is also known that the main drawback of fuzzy controllers is their need of a more complex 
tuning procedure than for conventional controllers. Building the knowledge base of a fuzzy 
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system can be done by four methods (McNeill and Thro, 1994; Cordón and Herrera, 1995):  
i) Synthesis of expert knowledge, ii) trial and error synthesis procedures, used in this work 
for obtaining an initial or primitive model, iii) synthesis from numerical evidence, and iv) 
use of machine learning techniques. In this work, a genetic algorithm-based approach is 
used for tuning the primitive model of the fuzzy visual servocontroller.  
Genetic programming, particularly, genetic algorithms, are used to optimize a fitness 
function by mimicking natural evolution for organisms. Individuals for this evolution are 
computational representations of potential solutions for the problem to be solved. Each 
individual is represented as a binary string also known as a computational chromosome. 
The entire set of individuals examined at a time is called the population.  
Geno-fuzzy systems, as is called the combination of genetic algorithms and fuzzy logic 
controllers, are feasible because in one hand, the behavior of a fuzzy controller is 
determined by a set of parameters included in the controller knowledge base. Optimal 
parameter search for the fuzzy controller defines a complex search space. In the other hand, 
this type of search spaces can be handled efficiently using genetic algorithms. Therefore, 
fuzzy logic and genetic algorithms could be used to design and optimize fuzzy controllers 
by formulating optimal parameter search as a genetic algorithm problem.  
Pioneering work on geno-fuzzy systems has been done by Karr. He has been the first one to 
propose fuzzy set parameter tuning for a fuzzy controller (Karr, 1991). (Herrera and Cordón, 
1997) have proposed another methodology for genetic algorithm based optimization of a 
fuzzy controller and its application to the inverted pendulum problem. In robotics, 
geno-fuzzy techniques have been applied for the control of manipulators as in the work of 
(Jin, 1998) and a hierarchical fuzzy controller for the navigation of an outdoor mobile robot 
proposed by (Hagras et al., 2001).  Geno-fuzzy systems enable us to develop automatic 
design methods for fuzzy controllers. This procedure can be applied for automatic design or 
optimization methods.  

4.3. Fuzzy Visual Servoing  

We have implemented a visual servoing system using a fuzzy controller to map image 
features into camera control commands. In a first step, we have synthesized the controller 
by trial and error and we have compared its performance against a proportional controller 
for a target recentering task. In order to cope with complexity in the fuzzy controller rule 
set, we propose a multiplexed fuzzy controller. Secondly, we have optimized the fuzzy 
controller by using genetic algorithms. We have analyzed two cases: i) Adaptation of the 
fuzzy rule set, and ii) scaling of a constant gain in inputs and output of the fuzzy controller. 
We consider a recentering task for an active camera to follow a given target with a known 
model moving on a vertical plane. Visual servoing is needed to perform this task. Fig. 12 
depicts the implemented system.  
In such an IBVS system, the position estimation is computed directly from the last image 
acquired by the robot. Position error is then computed from the comparison of the reference 

image rI  and the current image cI . We also compute an estimate for target velocity. These 

variables are then fuzzified and input to a fuzzy controller. The controller computes actual 
commands to be sent to the camera in order to center the target in the camera image.  Inputs 
to our fuzzy controller are positioning error e  and current target velocity v . Both variables 

are vector quantities with x and y components. Output variable for our controller is the 

velocity correction oV . The components of this velocity vector are pan displacement velocity 
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oxV  and tilt velocity oyV  for the camera. The structure selected for our controller 

implementation was a multiplexed one. We have chosen to decouple the x-y controller into 
an x-controller and a y-controller. Each of them controls only one degree of freedom of the 
active camera. At each iteration of the control loop, we compute the x-controller output and 
then the y-controller output. By making this design choice, we have reduced complexity 
without sacrifying too much accuracy in the controller performance.  Structure for our fuzzy 
controller is shown in Fig. 13.  
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Fig. 12. Fuzzy visual servoing loop. 
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Fig. 13. Multiplexed fuzzy visual servocontroller. 

Our system is modelled by a fuzzy logic controller with input universe  U , output universe 

V , and a set of IF-THEN rules that determine a mapping  nU VR R∈ → ∈  . Every rule of 

this set has the form:  

1 21i 2i i
::  IF (  is  ) and (  is  ) THEN (  is  ) GF FiR x x y  (22) 

where jiF and iG are fuzzy sets of the input and output linguistic variables, respectively 

(Wang, 1994). We use the singleton fuzzifier and the COA (Center Of Average) method for 
the defuzzification step. We code the knowledge into a BIOFAM (Binary Input-Output 
Fuzzy Associative Memory) matrix where the inputs are the error between the center 
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coordinate of the camera image and the position of the center of the object, and the velocity 
of the object being tracked for a given direction, and the output is the correction needed on 
the camera position.

4.4 Hybridization Approaches for Geno-Fuzzy Controllers 

Learning strategies for fuzzy controllers by using genetic algorithms are classified using 
three main approaches (Cordón et al., 2001):  i) Michigan approach, where optimization is 
carried on particular elements of the fuzzy controller specification, ii) Pittsburgh approach, 
when the system as a whole is optimized, and iii) Iterative Rule Learning (IRL) approach, 
where the system is synthesized by optimizing independent rules that combine fuzzy sets 
from a given rule repository, defined either explicitly or implicitly.  
Michigan approach encodes each rule in a complete chromosome. Only best rules are kept at 
each iteration as elite members of the genetic algorithm population. As pointed out by 
(Ishibuchi et al., 20000), the optimization of the fuzzy rule-based system is indirectly 
performed by searching for good fuzzy rules. Fuzzy rules have generally a pre-defined 
structure and a pre-defined set of fuzzy concepts to be used in these rules.  
Pittsburgh approach (Ishibuchi et al., 1999) involves encoding a complete or partial rule set 
into one computational individual. Optimization by using genetic algorithms is equivalent 
then to find fuzzy rule-based systems with high performance indexes.  
In the IRL approach (Cordón et al., 2001), knowledge acquisition is done by acquiring 
concepts from a repository of fuzzy sets related with input and output linguistic variables. 
Structure is not pre-defined for these rules and even fuzzy sets associated with the linguistic 
labels can be chosen in a flexible way from a repository of known fuzzy sets.  
A common strategy for all three approaches described above is to adapt the fuzzy controller 
database. In this technique, fuzzy membership functions (shape and parameters) are 
individually adapted. In this work, we have tested the database adaptation of a fuzzy 
controller and the Pittsburgh approach for learning a complete rule base as described below.  
In order to optimize our controller, we need to define a fitness function. This fitness function 
usually consists in the evaluation of the controller performance for an interval of time. Fig. 
14 shows a block diagram of the optimization procedure. In our implementation, the fitness 
function is a measure of the controller performance. 
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Fig. 14. Optimization of a fuzzy visual servocontroller by using genetic algorithms.  
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Several performance criteria can be applied in this context. A fitness function that takes into 
account several parameters at the same time according to the controller characteristics to be 
improved can be suggested. Some authors (Zhimin et al., 2000) have been concerned with 
proposing methods for tuning multiple characteristics of the controller. In conformity with 
the nature of our problem, our controller performance is measured using the difference 
between the position of the center of the object to be tracked and the center of the image 
frame, during an interval of time. In order to measure this performance, we use a least 
square method to compute a figure of merit q  as follows:  

max 2
2

,
1 1

( ( ) ( ))
t

i d i
t i

q t tX X
= =

= −  (23) 

where 1( )tX  is the x coordinate of the camera at instant t, 2( )tX  is the y coordinate of the 

camera at same instant and , ( )d i tX  is the true target position for iX  at instant t .

Another issue to be considered is the length of the chromosome in use. For example, this 
length is critical for the execution time of the computer implementation for the mutation 
operation. In this work, we propose two optimization strategies using genetic algorithms: i) 
Genetic adaptation of the rule base, and ii) genetic adaptation of the database by means of 
the scaling functions.  
Pittsburgh approach for complete rule base adaptation  
We specify our fuzzy controller by using a decision table approach. This approach enables 
the entire rule base to be encoded in a single entity or chromosome. Coding takes place as 
follows. We start at the BIOFAM position (1, 1) and each row in the matrix is scanned from 
left to right. Then, the rows are linked together. In order to avoid the generation of a larger 
chromosome each rule is coded into a genetic alphabet using positive integer numbers in the 
[0, n-1] range, where n is the number of fuzzy sets of the output variable. The coding process 
is shown in Fig. 15.  
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Fig. 15. Rule base encoding scheme. 
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Genetic database adaptation approach  
The second optimization method proposed is the coding of the database using scaling 
functions. This method was chosen because the controller behavior can be completely 
modified with just three real numbers. These numbers are a scaling factor for the input 
variables or, from the control point of view, a gain. An integer representation for each data 
is used for coding these real numbers. Each number is mapped into an integer value range 
from -32768 to 32767.  The gain range is [0, 2], therefore, the precision for mapping into an 
integer representation is 3.0517578× 10-5. In this form, each real number represents a specific 
gain for each section of the controller. Thus, each gain value is coded into an integer 
interval, coded in a binary form. Any real number is then represented by a binary string 
with 16 bits. There exist 6 possible gain constants to be modified in the controller. Choosing 
the values to be modified or grouped is an important decision to make. Working with the 6 
gains will lead to a larger chromosome and as a consequence, to a more complex search 
space, and accordingly, the algorithm will take a longer time to find a good solution.  

4.5 Tests and Results 

We have developed a graphical simulation environment in C language. In this environment, 
we simulate the x-y plane where the target moves and the field of view of the camera. The 
visual task is to center an object in the field of view of the camera. In our work, this object is 
a ball of uniform intensity. We have already developed some libraries to manage fuzzy 
models. We use these libraries to implement the closed loop simulation of our controllers. 
The fuzzy visual servoing algorithm is executed for all the duration of the time interval to be 
simulated. Simulation will be stopped also if the tracked object goes beyond the limits of our 
world simulation.  
We have studied four different controllers for the visual servoing task, namely:  
Case I:  A proportional controller, used only for comparison purposes, implemented as 
proposed by (Corke, 1996).   
Case II:  A fuzzy controller tuned by hand (Perez-Garcia et al., 2003) using a self-developed 
integrated development environment for fuzzy models.   
Case III:  A genetically-optimized fuzzy controller, using a controller rule base adaptation 
approach (Pittsburgh approach).   
Case IV:  A genetically-optimized fuzzy controller, using a controller database adaptation 
approach.
We simulated different motion patterns for the target on the simulation environment. For 
each controller, we have applied some motion patterns for the target to be recentered. 
Results for all different cases will be compared in order to evaluate the controller 
performance when different design strategies are used.  
Case I: Proportional controller.  
Some authors, like (Corke, 1996), have studied problems arising in visual servoing. He has 
pointed out that a proportional controller will exhibit poor performance when used for 
visual servoing tasks. Main problem is originated by the sampling frequency rate that is too 
low. For a real time system, target tracking frequency rates are between 2.5 and 12 Hz. 
When we use a personal computer, tracking execution loop runs at about 4.0 Hz. In order to 
make the simulation more realistic, we have modelled our camera plant as a first-order 

system including some time delay T  and some inertia a . The camera model used is:  
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1
( )C s

Ts a
=

+
 (24) 

According to control theory, K, the proportional gain has to be large enough to compensate 
system errors. In a servo-controller, there is a conflict because a large value for K can cause 
the target to get out of the camera view. When dealing with dynamic systems, Corke 
proposes to use small values for K in order to avoid system instabilities. We have computed 
the response for a proportional controller with K =0.15, a common value in visual servoing 
implementations.
Case II: Fuzzy controller tuned by trial and error.  
In this section, we will present simulation results when a fuzzy controller is used for the 
visual servoing task. We have tuned the fuzzy visual servocontroller by a trial and error 
process. We tested different configuration parameters for all the components of our system 
and different motion laws for the target. We have reached a final configuration where 
position error of the target with respect to the center of the acquired image is minimized. 
Input and output ranges were chosen taking into account specification of a Sony EVI-D30 
pan and tilt camera to make a realistic simulation.  
We show the final configuration for input and output variables in Fig. 16. We can see that 
the input variable Error has seven linguistic variables. This fact enables us to achieve a 
better accuracy in the controller output without having a big number of rules in the 
BIOFAM for the controller shown in Table 2. Labels are as follows: NL= Negative Large, 
NM= Negative Medium, NS= Negative Small, ZE= Zero, PS= Positive Small, PM= Positive 
Medium, PL= Positive Large, SM= Small, ME= Medium and LA= Large. 
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Fig. 16. Membership functions for input and output linguistic variables of the fuzzy 
controller tuned by trial and error. 
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Velocity 

Error

ZE SM ME LA 

NL NS NL NL NL 

NM NS NS NS NL 

NS NS NS NL NL 

ZE ZE ZE ZE ZE 

PS PS PS PL PL 

PM PS PS PS PL 

PL PS PL PL PL 

Table 2. BIOFAM matrix for the fuzzy controller. See text for labels meaning. 

We have obtained the controller response to step and ramp inputs. These responses were 
computed when the controller was using the BIOFAM shown in Table 2 and the input and 
output variables defined as in Fig. 16. Results are shown in Table 3. We can see that the 
fuzzy controller outperforms the proportional controller for step input. The fuzzy 
servocontroller presents an underdamped response and a shorter transient time than the 
proportional controller. The former presents an overdamped response. When a ramp input 
signal is used, the proportional controller presents a classical delayed action of the input 
signal. Otherwise, the fuzzy controller shows an almost zero error. This behavior can be 
explained by the fact that we have some prediction step because object velocity is an input 
to the fuzzy controller. This fact enables us to estimate the new positions where the target 
features could appear.  
Case III: Genetically optimized fuzzy controller using Pittsburgh approach  
Here we present our results for a fuzzy visual servocontroller optimized by using the 
Pittsburgh approach over the complete rule set. Figs. 17 (a) and (c) show the error response 
to step and ramp inputs of the fuzzy visual servocontroller after the rule set had been 
optimized. Genetic optimization of the rule base slightly improves the response of the fuzzy 
visual servoing system originally tuned by trial and error. The optimized rule set has a 
better performance when a similar input to the learned one is fed to the controller but it 
degrades its performance when a different type of input signal is used.  
Case IV: Database adaptation by using a linear scaling function  
For this kind of optimization, we have used a gain constant for each input and another for 
the output of the fuzzy visual controller. As we have only one multiplexed controller for 
both x and y axes, we have decided to optimize in parallel the same controller. As for the 
others cases, the optimized servocontroller has been fed with step and ramp inputs. Error 
responses to these inputs are shown in Figs. 17 (b) and (d), respectively. As we can note 
there, there are significant improvements in the visual servocontroller response when 
compared with the other cases. Transient response to step inputs is shorter than for the 
other cases and the static error for ramp input vanishes, something very difficult to achieve 
using conventional techniques as pointed out by (Corke, 1996).  
Performance evaluation comparison for visual servocontrollers  
We have compared the four controllers and the results are summarized in Table 3. We have 
computed maximum error in pixels for step and ramp inputs. In the case of step input, we 
have also computed the settling time in seconds and for the ramp, we have computed the 
steady state static error. We can see that the non optimized fuzzy controller clearly 



Scene Reconstruction, Pose Estimation and Tracking 86

outperforms the proportional controller when both standard inputs are applied. Comparing 
the fuzzy controller performance to the rule base-optimized one, we find that maximum 
error for the last decreases for step input. In the ramp input case, optimized controller 
maximum error increases slightly but steady state static error is negligible.  The fuzzy visual 
servocontroller optimized by using data-base adaptation outperforms all other controllers in 
all cases except for the settling time when a step input is applied. In this case, the 
non-optimized fuzzy controller takes the same time to settle.  
Functional performance evaluation on a robotic platform 
We have tested our fuzzy visual servocontroller on a real time robotic platform. We aim to 
center an object in the image acquired by the vision system of a robot.  The target was 
detected by using Hausdorff distance as the similarity metric on the edge image of a 
sequence. Our system process images up to a frame rate of about 10 frames/sec. Obviously, 
this rate depends largely on the complexity for the edge model of the target. We have 
optimized the frame rate for the visual servoing task by implementing a Monte Carlo 
version of the Hausdorff distance (Perez-Garcia et al., 2006). 
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Fig. 17. (a),(b) Step error response for case III and case IV controllers respectively. (c),(d) 
Ramp error response for case III and case IV controllers respectively. 
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Input Signal 

Step input Ramp input 
Controller type Maximum 

Error
(in pixels) 

Settling 
time
(in s) 

Maximum 
Error

(in pixels) 

Steady state 
static error 
(in pixels) 

Case I: Proportional 16.40 5.25 11.12 11.12 

Case II: Fuzzy 12.00 1.50 0.18 0.17 

Case III: Geno-fuzzy with 
rule base adaptation 

4.48 2.00 0.22 0.01 

Case IV: Geno-fuzzy with 
data base adaptation 

3.31 1.50 0.16 0.00 

Table 3. Controller performance comparison using different design methodologies for step 
and ramp inputs 

5. Conclusion 

Several conclusions arise from our experience applying soft computing (specifically fuzzy 
logic and genetic algorithms) to develop robotic vision applications. Fuzzy logic is well 
suited for problems where uncertainty representation is a critical issue. We already applied 
fuzzy logic to cope with illumination changes when tracking objects in a visual sequence.  
Another domain for application of fuzzy logic in robotic vision is to use it where only 
qualitative experience is available to perform a function. We have applied it on the 
implementation of a fuzzy visual servocontroller. Genetic algorithms are useful in 
optimization related tasks in robotic vision. For example, we have used this methodology to 
optimize the match between a parametric shape (a circle) and an observed set of edge points 
in an image. Another example of application was the tuning of the fuzzy servocontroller 
cited above by using a least squares criterion over a time frame.  
From a systems perspective, we have used simulation as a tool to benchmark our algorithms 
before implementation on real platforms. We have also used composition of different 
modules to integrate more complex systems. This modular system approach has been 
essential to develop succesful real world applications. 
Concerning our applications, we have proposed three methods to use soft computing 
technologies in robotic vision applications. We address a visual tracking system based on a 
fuzzy color description of the target, a parametric shape detection task using a genetic 
algorithm and a geno-fuzzy visual servoing task. The first two methods are developed using 
a single soft computing technique and the third one uses a hybrid approach by combining 
genetic algorithms and fuzzy logic as the basis of a robotic vision application. For these 
applications, we have developed the main aspects of the systems, their implementations and 
the tests we have carried out to evaluate their performance. Our systems are implemented 
on board of an experimetal robotics platform, namely a Pioneer P3AT robot. We show 
experimental results for all of them in real time applications. 
Of course, soft computing applications on robotic vision tasks could include other 
approaches like artificial neural networks not included in the applications presented here. 
Such methods and a numer of hybrid techniques in soft computing must be taken into 
account before deciding a particular implementation. 
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