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1. Introduction 

Realization of natural and energy-efficient dynamic walking has come to be one of the 
main subjects in the research area of robotic biped locomotion. Recently, many 
approaches considering the efficiency of gait have been proposed and McGeer’s passive 
dynamic walking (McGeer, 1990) has been attracted as a clue to elucidate the mechanism 
of efficient dynamic walking. Passive dynamic walkers can walk down a gentle slope 
without any external actuation. Although the robot's mechanical energy is dissipated by 
heel-strike at the stance-leg exchange instant, the gravity potential automatically restores 
it during the single-support phase in the case of passive dynamic walking on a slope and 
thus the dynamic walking is continued. If we regard the passive dynamic walking as an 
active one on a level, it is found that the robot is propelled by the small gravity in the 
walking direction and the mechanical energy is monotonically restored by the virtual 
control inputs representing the small gravity effect. Restoration of the mechanical energy 
dissipated by heel-strike is a necessary condition common to dynamic gait generations 
from the mathematical point of view, and efficient active dynamic walking should be 
realized by reproducing this mechanism on a level. Mechanical systems satisfy a relation 
between the control inputs and the mechanical energy, the power-input for the system is 
equal to the time-derivative of mechanical energy, and we introduce a constraint 
condition so that the time-change rate of mechanical energy is kept positive constant. 
The dynamic gait generation is then specified by a simple redundant equation including 
the control inputs as the indeterminate variables and yields a problem of how to solve 
the equation in real-time. The ankle and the hip joint torques are determined according 
to the phases of cycle based on the pre-planned priority. The zero moment point 
(Vukobuatovi  & Stepanenko, 1972) can be easily manipulated by adjusting the ankle-
joint torque, and the hip-joint torque in this case is secondly determined to satisfy the 
desired energy constraint condition with the pre-determined ankle-joint torque. Several 
solutions considering the zero moment point condition are proposed, and it is shown 
that a stable dynamic gait is easily generated without using any pre-designed desired 
trajectories. The typical gait is analyzed by numerical simulations, and an experimental 
case study using a simple machine is performed to show the validity of the proposed 
method. 

Source: Humanoid Robots, New Developments, Book edited by: Armando Carlos de Pina Filho
ISBN 978-3-902613-02-8, pp.582, I-Tech, Vienna, Austria, June 2007
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2. Compass-like Biped Robot 

In this chapter, a simplest planar 2-link full-actuated walking model, so-called compass-like 
walker (Goswami et al., 1996), is chosen as the control object. Fig. 1 (left) shows the 
experimental walking machine and closed up of its foot which was designed as a nearly 
ideal compass-like biped model. This robot has three DC motors with encoders in the hip 
block to reduce the weight of the legs. The ankle joints are driven by the motors via timing 
belts. Table  lists the values of the robot parameters. Fig. 1 (right) shows the simplest ideal 

compass-like biped model of the experimental machine, where Hm , m  [kg] and l a b

[m] are the hip mass, leg mass and leg length, respectively. Its dynamic equation during the 
single-support phase is given by 

( ) ( , ) ( )M C g , (1) 

where T

1 2
 is the angle vector of the robot's configuration, and the details of the 

matrices are as follows: 
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and the control torque input vector has the form of 

1

2

1 1

0 1

u

u
Su

. (3) 

The transition is assumed to be inelastic and without slipping. With the assumption and 
based on the law of conservation of angular momentum, we can derive the following 
compact equation between the pre-impact and post-impact angular velocities 

Q Q , (4) 

where
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and  [rad] is the half inter-leg angle at the heel-strike instant given by 

1 2 2 1 0
2 2

. (6) 

For further details of derivation, the authors should refer to the technical report by Goswami 
et al. This simplest walking model can walk down a gentle slope with suitable choices of 
physical parameters and initial condition. Goswami et al. discovered that this model exhibits 
period-doubling bifurcations and chaotic motion (Goswami et al., 1996) when the slope 
angle increases. The nonlinear dynamics of passive walkers are very attractive but its 
mechanism has not been clarified yet. 
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Fig. 1. Experimental walking machine and its foot mechanism (left), and its ideal model (right). 

Hm
 3.0 kg

m  0.4 kg

l a b 0.680 m
a  0.215 m
b  0.465 m

Table 1. Physical parameters of the experimental machine. 

3. Passive Dynamic Walking Mechanism Revisited 

Passive dynamic walking has been considered as a clue to elucidate to clarify the essence of 
efficient dynamic walking, and the authors believe that it is worth investigating the 
automatic gait generation mechanism. The impulsive transition feature, non double-support 
phase, can be intuitively regarded as vigor for high-speed and energy-efficient walking. In 
order to get the vigor, the walking machine must restore the mechanical energy efficiently 
during the single-support phase, and the impulsive and inelastic collision with the ground 
dissipates it discontinuously. In the following, we describe it in detail. 
The passive dynamic walker on a gentle slope can be considered to walk actively on a virtual
level ground whose gravity is cosg  as shown in Fig. 2. The left robot in the figure is 

propelled forward by the small gravity element of sing , and the right one walks by 

equivalent transformed torques. By representing this mechanism in the level walking, 
energy-efficient dynamic bipedal gait should be generated. The authors proposed virtual 
gravity concept for the level walking and called it “virtual passive dynamic walking.” 
(Asano & Yamakita, 2001) The equivalent torques 

1u  and 
2u  are given by transforming the 

effect of the horizontal gravity element sing  as shown in Fig. 2 left. 
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Let us define virtual total mechanical energy E  under the gravity condition of Fig. 2 as 

follows: 

),()(
2
1),,( PM      (7) 

where the virtual potential energy is given by 

1 2, cos cos cosHP m l ma ml mb g . (8) 

In the case of passive dynamic walking on a slope, the total mechanical energy is kept 

constant during the single-support phase, whereas E  does not exhibit such behaviour. Fig. 

3 shows the simulation results of passive dynamic walking on a gentle slope whose 
magnitude is 0.01 [rad]. (c) and (d) show the evolutions of the equivalent transformed 

torques and virtual energy E , respectively. From (c), we can see that both 1u  and 2u  are 

almost constant-like and thus the ZMP should be kept within a narrow range. This property 
is effective in the virtual passive dynamic walking from the viewpoint of the stability of foot 
posture (Asano & Yamakita, 2001). It is apparent from (d) that the mechanical energy is 
dissipated at the transition instant and monotonically restored during the swing phase. Such 
energy behaviour can be considered as an indicator of efficient dynamic walking. 

Fig. 2. Gravity acceleration mechanism of passive dynamic walking. 

In general, we can state the following. 

CH1) The total mechanical energy of the robot E  increases monotonically during the swing 

phase.
CH2)

1 0  always holds. 

CH3) There exists an instant when 
1 2 0 .

CH1 and CH2 always hold, regardless of physical and initial conditions, but CH3 does not 
always hold, as it depends on physical parameters and slope angle. We can confirm CH2 
and CH3 from Fig. 3 (a) and (b). It is also clear that CH1 holds from Fig. 3 (d). From the 
results, the essence of a passive dynamic gait should be summarized as follows. 
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E1) The walking pattern is generated automatically, including  impulsive transitions, and 
converges to a steady limit cycle. 
E2) The total mechanical energy is restored during the single-support phase monotonically, 
and is dissipated at every transition instant impulsively by heel-strike with the floor. 
E2 is considered to be an important characteristic for dynamic gait generation, and is the 
basic concept of our method. We will propose a simple method imitating the property in the 
next section. 

Fig. 3. Simulation results of passive dynamic walking on a slope where 0.01  [rad].
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4.Energy Constraint Control 

In our previous works, we have proposed virtual passive walking considering an artificial 
gravity condition called virtual gravity (Asano & Yamakita, 2001). This imitates the gravity 
acceleration mechanism of the original passive dynamic walking. A virtual gravity in the 
walking direction acts as a driving force for the robot and the stable limit cycle can be 
generated automatically without any gait design in advance. Determining a virtual gravity 
is, however, equivalent to that of control inputs, so there is no freedom to control other 
factors, for example, ZMP control. By imitating the property of monotonic energy 
restoration, however, we can formulate a simple method with a freedom of the control 
inputs. 

4.1 The Control Law 
The total mechanical energy of the robot can be expressed as 

T1
, ( ) ( )

2
E PM , (9) 

where P  is the potential energy. The power input to the system is the time-change rate of 
the total energy, that is 

T TE Su . (10) 

Suppose now that we use a simple control law imitating the characteristic CH1, monotonic 
energy restoration. Let 0  be a positive constant and consider the following condition: 

E . (11) 

This means that the robot's mechanical energy increases monotonically with a constant rate 
of . We call this control or gait generation method “Energy Constraint Control (ECC)”. In 

this method, the walking speed becomes faster w.r.t. the increase of , in other words, the 

magnitude of  corresponds to the slope angle of virtual passive dynamic walking. Here let 

us consider the following output function: 
TH E , (12) 

and the target constraint condition of Eq. (11) can be rewritten as 0H . Therefore, the 

ECC can be regarded in this sense as an output zeroing control. 
Following Eqs. (10) and (11), the detailed target energy constraint condition is expressed as 

T

1 1 1 2 2E u uSu , (13) 

which is a redundant equation on the control inputs. The dynamic gait generation then 

yields a problem of how to solve the redundant equation for the control inputs 1u  and 2u  in 

real-time. The property of ECC strategy is that the control inputs can be easily determined 

by adjusting the feed-forward parameter , which can be determined by considering the 

magnitude of E  of virtual passive dynamic walking. 

4.2 Relation between ZMP and Reaction Moment
The actual walking machine has feet and a problem of reaction moment then arises. The 
geometrical specifications of the stance leg and its foot are shown in Fig. 4. In this chapter, 
the ZMP is calculated by the following approach. We assume: 
1. The mass and volume of the feet can be ignored. 
2. The sole always fits with the floor. 
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Under these assumptions, we can calculate the ZMP in the coordinate shown in Fig. 4 left as: 

1ZMP
n

u

R

 (14) 

where 1u  [Nm] is the ankle torque acting not on the foot link but on the leg link and nR  [N] 

is the vertical element of the reaction force, respectively. 

From Fig. 4, it is obvious that the ZMP is always shifted behind the ankle joint when driving 
the stance-leg forward, however, at the transition instant, the robot is critically affected by 
the reaction moment from the floor as shown in Fig. 4 right. Considering the reaction 
moment effect, we can reform the ZMP equation for the simplest model as follows: 

1 rmZMP
n

u u

R

 (15) 

where
rm 0u  represents the equivalent torque of the reaction moment, and the ZMP is 

shifted backward furthermore. rmu  acts as a disturbance for the transition. Since the actual 

walking machines generally have feet with toe and heel, this problem arises. From the 
aforementioned point of view, we conclude that the ZMP should be shifted forward the 
ankle-joint just after the transition instant to cancel the reaction moment. Based on the 
observation, in the following, we consider an intuitive ZMP manipulation algorithm 
utilizing the freedom of the redundant equation of (13). 

Fig. 4. Foot mechanism and reaction moment at the heel-strike instant. 

4.3 Principal Ankle-joint Torque Control
From a practical point of view, as mentioned above, the two most important control factors 
of dynamic bipedal walking are mechanical energy restoration and ZMP control. To keep 
the energy constraint condition of Eq. (11), we should reconsider the solution algorithm. 
Firstly, we should consider mechanical energy restoration to generate a gait, and secondly, 
ZMP condition must be guaranteed without destroying the constraint condition. Based on 
the considerations, we first discuss the following solution approach: 

1. Determine the value of .

2. Determine the ankle torque 1u .

3. By substituting  and 1u  into Eq. (13), we can solve it for 2u .

In order to shift the ZMP, let us consider the following simple ankle-joint torque control:  

1uR
1u

R

0
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1

0

0 otherwise

u s T
u

u

 (16) 

where s  is a virtual time that is reset at every transition instant and 1.0s . This comes 

from the fact that 1u  must be negative to shift the ZMP forward the ankle-joint, and if 1 0u

the ZMP moves behind the ankle-joint. In this case, 2u  is obtained after 1u  as follows: 

1
2

1 2

u
u . (17) 

Note that 2u  has a singularity at 
1 2 0  which was mentioned before as CH3. This 

condition must be taken into account. We then propose a switching control law described 

later. Before it, we consider a more reasonable switching algorithm from u  to u . In 

general, for most part of a cycle from the beginning, the condition 
1 2 0  holds (See Fig. 

3 (b)), and thus the sign of 2u  of Eq. (17) is identical with that of 
1 1u . If 

1u u , this sign 

is positive because of 
1, 0  and 0u . At the beginning of a cycle, 

1u  increases 

monotonically because of 
1 0  (See Fig. 3 (b)). Therefore in general the condition 

1 1

d
0

d
u u

t
 (18) 

holds regardless of the system parameter choice. Therefore, if 
1u  at the beginning, it is 

reasonable to switch when  

1 0u  (19) 

so as to keep 2u  of Eq. (17) always positive under the condition of 
1 2 0 . In addition, 

by this approach the hip-joint torque can always contribute the mechanical energy 

restoration. The switching algorithm of 1u  is summarized as follows: 

1

1

0

0 otherwise

u u
u

u

. (20) 

The value of u  must be determined empirically based on the simulation results of virtual 

passive dynamic walking, whereas u  should be determined carefully so as not to destroy 

the original limit cycle or disturb the forward acceleration. Choosing the suitable 

combination between  and u  is the most important for generating a stable limit cycle. 

4.4 Principal Hip-joint Torque Control
As mentioned before, we must switch the controller to avoid the singularity of CH3 at the 
end of the single-support phase. As a new method, we propose the following new strategy: 

1. Determine the value of .

2. Determine the hip torque 2u .

3. By substituting  and 2u  into Eq. (13), we can solve it for 1u .

In this case, 1u  is determined by the following formula: 
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1 2 2

1

1

u
u . (21) 

Note that here we use the assumption of CH2. In this paper, as a reasonable candidate of 2u ,

we consider the following form: 

2 1 2u . (22) 

Assuming 0 , this leads the following inequality: 
2

1 2 2 1 2 0u , (23) 

therefore it is found that this hip-joint torque 2u  also contributes the mechanical energy 

restoration.
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Fig. 5. Simulation results of dynamic walking by ECC considering ZMP control. 

4.5 Switching Control 
In order to manipulate the ZMP as well as to avoid the singularity, we must consider a 
switching algorithm from the principal ankle to hip-joint torque control. We here introduce 

the switching timing as 
1

 [rad]. At this instant, we reset  so that 2u  becomes 

continuous according to the following relationship: 
sw

sw sw 1
2 1 2 sw sw

1 2

u
u . (24) 

from which we can calculate  as follows: 
sw

1

2
sw sw

1 2

u  (25) 

where the superscript “sw” stands for the switching instant. The obtained  is used during 

its cycle and reset at every switching instant. Since 2u  is continuous, 1u  also becomes 

continuous. 
Fig. 5 shows the simulation results of the dynamic walking by ECC with the proposed 

switching control. The control parameters are chosen as 0.07  [J/s], 0.15u , 0.05u

[Nm] and 0.05  [rad], respectively. By the effect of the principal ankle –joint torque 

control, the ZMP is shifted forward the ankle-joint without destroying the energy 
restoration condition. From Fig. 5 (b), we can see that the hip-joint torque becomes very 
large during the ZMP is shifted forward, but this does not affect the ZMP condition and the 
postural stability of foot is maintained. 

4.6 Discussion
Here, we compare our method with approach proposed by Goswami et al. “energy tracking 
control.” (Goswami et al., 1997) Their approach is formulated as 

etcE E E , (26) 

where E  [J] (constant) is the reference energy and positive scalar etc  is the feedback gain. 

A solution of Eq. (13) by constant torque ratio 0  which gives the condition 
1 2u u  is 

obtained as 

1uR
1u

R
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etc

1 2

1

11

E E , (27) 

and in our case, a solution by constant torque ratio is given by 

1 2

1

11

. (28) 

Figs. 6 and 7 respectively show the simulation results of active dynamic walking on a level 
by the torques of Eqs. (27) and (28) without manipulating the ZMP actively. The two cases 
are equal in walking speed. From the simulation results, we can see that, in our approach, 
the maximum ankle-joint torque is about 3 times smaller than that of Goswami's approach 
and this yields better ZMP condition. In this sense, we should conclude that the mechanical 
energy must be restored efficiently but its time-change rate should be carefully chosen to 
guarantee the ZMP condition.  

Fig. 6. Simulation results of dynamic walking by energy tracking control where 
etc 10.0 ,

10.0  and 22.0E  [J]. 
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Fig. 7. Simulation results of dynamic walking by ECC where 0.34  [J/s] and 10.0 .

5. Experiments 

In order to confirm the validity of the proposed method, we carried out actual walking 
experiment using our developed machine introduced in Fig.1. All encoders of the 
servomotors are interfaced to a computer (Pentium III 1.0 GHz) running Windows 98. To 
implement the control law, we used RtMaTX (Koga, 2000) for real-time computation with 
the sampling period 1.0 [ms]. 
Since the proposed methods are so called model-matching control, they are not robust for 
uncertainty. In this research, we use model following control of the motion generated by 
VIM (Virtual Internal Model) which is a reference model in computer. Every post-impact 
condition of VIM is reset to that of the actual machine. By using the VIM, the uncertainties 
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of identification, which is crucial factor in the case of model matching control, can be 
compensated. The dynamics of VIM is given by 

d d d d d d d
ˆˆ ˆ( ) ( , ) ( )M C g , (29) 

where d  is the control input to drive the VIM and is determined by 
d
 and 

d
. The control 

input for the actual robot is given by 

d d d d d

d d d d

ˆˆ ˆ( ) ( , ) ( )

dD P I t

M u C g

u K K K

 (30) 

The virtual internal model started walking from the following initial condition:  

0.68 0.14
(0) , (0)

0.62 0.14

,

and its state was calculated and updated in real-time. At every transition instant, the 
angular positions of VIM were reset to that of the actual machine. PID controller drives the 
ankle-joint of the swing leg during the single-support phase so that the foot keeps the 
posture horizontal. 
The experimental results are shown in Fig. 8. The adjustment parameters are chosen as 

0.075  [J/s], 0.15u , 0.05u  [Nm] and 0.05 [rad] empirically. Fig. 8 (a) and (b) 

show the evolution of angular positions and velocities of the actual machine, respectively. 
The actual angular velocities are calculated by differentiation thorough a filter whose 
transfer function is 70 / 70s . A stable dynamic walking is experimentally realized based 

on ECC via model following control. 

Fig. 8. Experimental results of dynamic walking by ECC. 
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6. Improving Robust Stability by Energy Feedback Control 

Eq. (26) implies that the walking system becomes robust through the reference energy 
tracking. In other words, this control expands the basin of attraction of a limit cycle, 
however, our method Eq. (13) is so called the feed-forward control, which gives only energy 
change ratio without any information to attract the trajectories. Based on the observations, in 
this section, we firstly analyze the stability of the walking cycle and then consider an energy 
feedback control law in order to increase the robustness of the walking system. 
Let us then consider an energy feedback control using a reference energy trajectory. 
Consider the following control 

T

d dE E E ESu , (31) 

which determines the control input so that the closed energy system yields 

d d

d

d
E E E E

t
 (32) 

where 0  is the feedback gain. The original energy constraint control can be recognized 

as the case of 
dE  and 0  in Eq. (31). By integrating Eq. (11) w.r.t. time, we can obtain 

the reference energy 
dE  using virtual time s  as 

d 0( )E s E s  (33) 

where
0E  [J] is the energy value when 0s  [s]. A solution of Eq. (31) using constant torque 

ratio  yields 

d d

1 2

1

11

E E E
Su . (34) 

Although autonomy of the walking system is destroyed by this method, we can improve the 
robustness of the walking system. 
 One way to examine the gait stability is Poincaré return map from a heel-strike collision to 
the next one. The Poincaré return map is denoted below as F :

1k kx F x  (35) 

where the discrete state kx  is chosen as  

2 1

1

2

[ ] [ ]

[ ]

[ ]

k

k k

k

k

x
, (36) 

that is, relative hip joint angle and angular velocities just after k-th impact. The function F
is determined based on Eqs. (1) and (3), but cannot be expressed analytically. Therefore, we 
must compute F  by numerical simulation following an approximation algorithm. 

In the case of steady walking, the relation F x x  holds and x  is the equilibrium point 

of state at just after transition instant. For a small perturbation 
kx  around the limit cycle, 

the mapping function F  can be expressed in terms of Taylor series expansion as 

k k kF x F x x x F x  (37) 

where
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xxx

xF
F

)(  (38) 

is the Jacobian (gradient) around x . By performing numerical simulations, F  can be 

calculated approximately. The all eigenvalues of F  are in the unit circle and the results are 

omitted. Although the robustness of the walking system is difficult to evaluate 
mathematically, the maximum singular value of F  should imply the convergence speed of 

gait; smaller the value is, faster the convergence to the steady gait is. Fig. 9 shows the 
analysis result of maximum singular value of F  w.r.t  in the Fig. 7 case with energy 

feedback control where 
0 21.8575E  [J] and 10.0 . The maximum singular value 

monotonically decreases with the increase of . The effect of improvement of the gait 

robustness by feedback control can be confirmed. Although applying this method destroys 
autonomy of the walking system, we can improve the robustness. 

Fig. 9. Maximum singular value of F  w.r.t. the feedback gain .

6. Extension to a Kneed Biped 

This section considers an extension of ECC to a kneed biped model. We treat a simple planar 
kneed biped model shown in Fig. 10, and its dynamic equation is given by 

1

2

1 1

( ) ( , ) ( ) 0 1

0 0

u

u
M C g Su

 (39) 

We consider the following assumptions. 
1. The knee-joint is passive. 
2. It can be mechanically locked-on and off. 
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Fig. 10. Model of a planar underactuated biped robot. 

The ECC then yields a problem of how to solve the following redundant equation: 

1 1 1 2 2E u u  (40) 

for the control inputs in real-time. Since the knee-joint is free, we can give the control input 
by applying the form of Eq. (28) as 

1 2

1

11

0

Su
. (40) 

On the other hand, a kneed biped has a property of obstacle avoidance, in other words, 
guaranteeing the foot clearance by knee-bending. To improve the advantageous, we 
introduce an active knee-lock algorithm proposed in our previous work (Asano & Yamakita, 
2001) in the following. The passive knee-strike occurs when 

2 3
 during the single-

support phase, and its inelastic collision model is given by 

T( ) ( ) I IM M J  (41) 

g
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where T
0 1 1IJ

 and I  is the Lagrange’s indeterminate multiplier vector and means 

the impact force. We introduce an active knee-lock algorithm before the impact and 
mechanically lock the knee-joint at a suitable timing. Let us then consider the dissipated 

mechanical energy at this instant. Define the dissipated energy ksE  as 

0)()(
2

1
)()(

2

1
MMEks

 (42) 

This can be rearranged by solving Eq. (41) as 
2

T 1 2 3T 1 T

ks 1 T

1

2 2
I I I I

I I

E J J M J J
J M J

. (43) 

This shows that the condition to minimize the energy dissipation is 
2 3

, and this leads 

ks 0E . In general, there exists the timing in the kneed gait. After locking-on the knee-

joint, we should lock-off it and the timing should be chosen empirically following a certain 
trigger. In this section, we consider the trigger as 0gX  [m] where 

gX
 is the X-position of 

the robot’s center of mass. Fig. 11 shows the phase sequence of a cycle with the knee-lock 
algorithm, which consists of the following phases. 

1. Start
2. 3-link phase I 
3. Active knee-lock on 
4. Virtual compass phase (2-link mode) 
5. Active knee-lock off 
6. 3-link phase II 
7. Passive knee-strike 
8. Compass phase (2-link mode) 
9. Heel-strike 

Fig. 12 shows the simulation results of dynamic walking by ECC where 5.0  and 

4.0 . The physical parameters are chosen as Table 2. From Fig. 12 (b) and (d), it is 

confirmed that the passive knee-joint is suitably locked-on without energy-loss, and after 
that, active lock-off and passive knee-strike occur. Fig. 13 shows the stick diagram for one 
step. We can see that a stable dynamic bipedal gait is generated by ECC.  

Fig. 11. Phase sequence of dynamic walking by ECC with active lock of free knee-joint. 
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Fig. 12. Simulation results of dynamic walking of a kneed biped by ECC where 5.0

[J/s] and 4.0 .
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1m 2 3m m 5.0 kg

2m
 3.0 kg

3m
 2.0 kg

Hm
 10.0 kg

I 2

2 3 2 3 1/m m a b m 0.243 2kg m

1a 2 3 2 3 3 1/m l a m a m 0.52 m

1b
 0.48 m

2a
 0.20 m

2b
 0.30 m

3a
 0.25 m

3b
 0.25 m

1l 1 1a b 1.00 m

2l 2 2a b 0.50 m

3l 3 3a b 0.50 m

Table 2. Parameters of the planar kneed biped. 

Fig. 16. Stick diagram of dynamic walking with free knee-joint by ECC 
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7. Conclusions and Future Work 
In this chapter, we have proposed a simple dynamic gait generation method imitating the 
property of passive dynamic walking. The control design technique used in this study was 
shown to be effective to generate a stable dynamic gait, and numerical simulations and 
experiments have proved its validity. 
The authors believe that an energy restoration is the most essential necessary condition of 
dynamic walking and its concept is worth to be taken into consideration to generate a 
natural and energy-efficient gait. In the future, extensions of our method to high-dof 
humanoid robots should be investigated. 
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