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École Centrale de Nantes, Université de Nantes, U.M.R. 6597, 1 rue de la Noë, 
BP 92101, 44321 Nantes Cedex 3, France. 
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1. Introduction 

One of the main objectives of current research on walking robots is to make their gaits more 
fluid by introducing imbalance phases. For example, for walking robots without actuated 
ankles, which are under actuated in single support, dynamically stable walking gaits have 
been designed with success (Aoustin & Formal’sky 2003; Chevallereau et al. 2003; Zonfrilli 
et al. 2002; Aoustin et al. 2006; Pratt et al. 2001; Westervelt et al. 2003). Both the design of 
reference motions and trajectories and the control of the mechanism along these trajectories 
usually require the knowledge of the whole state of the robot. This state contains internal 
variables which are easy to measure using encoders for example, and also the absolute 
orientation of the robot with respect to the horizontal plane. For robots with unilateral 
constraints with the ground, it may not be possible to derive the latter information from 
internal measurements, as in the case of the absolute orientation of a biped in single 
support. Of course, technological solutions exist such as accelerometers, gyrometers, inertial 
units… But the implementation of these solutions is expensive and difficult. 
In order to overcome these difficulties, we propose to use a state observer which, based 
on the measurements of the joint variables and on a dynamic model of the robot, provides 
estimates of the absolute orientation of the walking robot during imbalance phases. This 
strategy was first validated in simulation for a three link biped without feet, using 
nonlinear high gain observers and a nonlinear observer based on sliding modes with a 
finite time convergence (Lebastard et al. 2006a) and (Lebastard et al. 2006b), for walking 
gaits composed of single support phases and impacts. The main drawback with this 
family of observers is that, when only some of the degrees of freedom are measured, a 
state coordinates transformation is necessary to design their canonical form (Gauthier & 
Bornard 1981; Krener & Respondek 1985; Bornard & Hammouri 1991; Plestan & 
Glumineau 1997). 
In this chapter, the observer is an extended Kalman filter and it is applied to

SemiQuad, a prototype walking robot built at our institute. SemiQuad is a five link 

mechanism with a platform and two double-link legs. It is designed to study quadruped 
gaits where both front legs (resp. rear legs) have identical movements. Its unique front 
leg (resp. rear leg) acts as the two front legs (resp. rear legs) of the quadruped, so that 
SemiQuad can be considered as an implementation of a virtual quadruped, hence its 

Source: Humanoid Robots, New Developments, Book edited by: Armando Carlos de Pina Filho
ISBN 978-3-902613-02-8, pp.582, I-Tech, Vienna, Austria, June 2007
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name. The legs have passive (uncontrolled) feet that extend in the frontal plane. Due to 

this, the robot is stable in the frontal plane. Four motors located in haunches and knees 
drive the mechanism. The locomotion of the prototype is a planar curvet gait. In double 
support, our prototype is statically stable and over actuated. In single support, it is 
unstable and under actuated. 
The reference walking gaits have been designed using an intuitive strategy which is such 
that the absolute orientation is not required. Still, it contains imbalance phases during which 
the observer can be used, and its results evaluated. The estimation results being correct, 
such an observer can be used for contexts where the absolute angle is necessary. 
Furthermore, the idea can be useful for other types of walking robots, such as bipeds with 
imbalance phases. 
The organization of this chapter is the following. Section 2 is devoted to the model of 
SemiQuad. It also contains the data of its physical parameters. The intuitive gaits which were 
designed for SemiQuad are presented in section 3. The statement of the problem of 
estimation of the absolute orientation of SemiQuad is defined in Section 4. Simulation results 
and experimental results avec presented in section 5. Section 6 presents our conclusions and 
perspectives.

2. Presentation and dynamic models of SemiQuad

2.1 SemiQuad

The prototype (see figure 1) is composed of a platform and two identical double-link legs 
with knees. The legs have passive (uncontrolled) feet that extend in the frontal plane. Thus, 
the robot can only execute 2D motions in the sagittal plane, as considered here. There are 
four electrical DC motors with gearbox reducers to actuate the haunch joints between the 
platform and the thighs and the knee joints. Using a dynamic simulation, we have chosen 
parameters of the prototype (the sizes, masses, inertia moments of the links) and convenient 
actuators. The parameters of the four actuators with their gearbox reducers are specified in 
Table 1. The lengths, masses and inertia moments of each link of SemiQuad are specified in 
Table 2. 

Fig. 1. Photography of SemiQuad.
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DC motor 
+gearbox

length 
(m)

mass 
(kg)

gearbox
ratio

Rotor inertia 
(kg.m2)

Electromagnetical
torque constant (N.m)/A 

in haunch 
In knee 

0.23
0.23

2.82
2.82

50
50

3.25 10-5

2.26 10-5

0.114
0.086

Table 1. Parameters of actuators 

physical parameters 
of each link

mass 
(kg)

length 
(m)

Center of mass
locations (m)

Moment of inertia 

(kg.m2)

around the center 
of mass Ci (I=1,…,5)

links 1 and 5: shin
link 3: platform 

+actuators in each haunch
links 2 and 4: thigh 

+actuators in each knee 

m1 = m5 = 0.40

m3 = 6.618 

m2 = m4 = 3.21

l1 = l5 = 0.15

l3 = 0.375 

l2 = l4=0.15

s1 = s5 = 0.083

s3 = 0.1875 

s2 = s4 = 0.139 

I1 = I5 = 0.0034 

I3 = 0.3157 

I2 = I4 = 0.0043 

Table 2. Parameters of SemiQuad 

The maximum value of the torque in the output shaft of each motor gearbox is 40 N.m . This 

saturation on the torques is taken into account to design the control law in simulation and in 
experiments. The total mass of the quadruped is approximately 14 kg. The four actuated 
joints of the robot are each equipped with one encoder to measure the angular position. The 
angular velocities are calculated using the angular positions. Currently the absolute 
platform orientation angle α (see figure 2) is not measured. As explained before, the 

proposed walking gait does not require this measurement. Each encoder has 2000 pts/rev 
and is attached directly to the motor shaft. The bandwidth of each joint of the robot is 
determined by the transfer function of the mechanical power train (motors, gearboxes) and 
the motor amplifiers that drive each motor. In the case of SemiQuad, we have approximately 
a 16 Hz bandwidth in the mechanical part of the joints and approximately 1.7 kHz for the 
amplifiers. The control computations are performed with a sample period of 5 ms (200 Hz). 
The software is developped in C language. 

Fig. 2. SemiQuad’s diagram: generalized coordinates, torques, forces applied to the leg tips, 
locations of mass centers. 
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2.2 Dynamic model of SemiQuad

Figure 2 gives the notations of the torques, the ground reactions, the joint variables and the 
Cartesian position of the platform. Using the equations of Lagrange, the dynamic model of 
SemiQuad can be written: 

+ + = Γ + +
1 2e e e e e e R 1 R 2D q H q G B D R D R   (1) 

with, =

T

T:e p pq q x z . The vector q is composed of the joint actuated variables and the 

absolute orientation of the platform, =
T

: 1 2 3 4q ; ( )p px ,z  are the Cartesian 

coordinates of the platform center. The joint angle variables are positive for counter 

clockwise motion. eD (q) ( )×7 7  is the inertia positive definite matrix. The matrix 

eH (q,q) ( )×7 7  represents the Coriolis and centrifugal forces and eG (q) ( )×7 1  is the vector of 

the gravity forces. eB  is a constant matrix composed of ones and zeros. Each matrix 

jRD (q) ( )×7 2  ( j =1,2 ) is a jacobian matrix which represents the relation between feet 

Cartesian velocities and angular velocities. It allows to take into account the ground reaction 

j
R on each foot. If foot j is not in contact with the ground, then =

T

jR 0,0 . The 

term =Γ Γ Γ Γ Γ
T

: 1 2 3 4  is the vector of four actuator torques. Let us assume that during 

the single support, the stance leg acts as a pivot joint. Our hypothesis is that the contact of 
the swing leg with the ground results in no rebound and no slipping of the swing leg. Then, 
in single support, equation (1) can be simplified and rewritten as:  

+ + = ΓDq Hq G B  (2) 

As the kinetic energy = T1
K q Dq

2
does not depend on the choice of the absolute frame (see 

(Spong, M. & Vidyasagar M. 1991)) and furthermore variable α defines the absolute orientation 

of SemiQuad, the inertia matrix D ( )×5 5 does not depend on α , and then ( )= , , ,1 2 3 4D D . As 

for the case of equation (1), the matrix H(q,q) ( )×5 5  represents the Coriolis and centrifugal 

forces and G(q) ( )×5 1  is the vector of gravity forces. B  is a constant matrix composed of ones 

and zeros. Equation (2) can be written under the following state form: 

( )
= + Γ

Γ
-1 rel

q
x = f(x) g(q )

D -Hq - G + B
 (3) 

With =
TT Tx q q and the joint angle vector =

T

1 2 3 4relq . The state space is 

defined as ] ]{ }∈ ⊂ = = < < ∞ ∈ −π π
T 510 T T

Mx X R x q q  q q ;  q , . From these definitions, it 

is clear that all state coordinates are bounded. 

2.3 Discrete Model 

Our objective is to design an extended Kalman filter with a sampling period ∆ to observe the 
absolute orientation α . Then it is necessary to find a discrete model equivalent to (3). A 

possible solution is to write + −
≈

∆
k 1 kx x

x  and (3) becomes:  
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= + ∆ + Γk+1 k k relk kx x (f(x ) g(q ) )  (4) 

For SemiQuad, we have preferred to sample the generalized coordinates and their velocities 
using approximations to a different order by a Taylor development:  

∆ ∆ ∆ + + ∆ +
n

2 nx(t) x (t)
x(t + ) = x(t) + x(t) + ...

2! n!
,  (5) 

From (5), developments to second order and first order have been used for the generalized 
coordinates and their velocities, respectively. Limiting the order where possible limits the 
noise, but using second order developments for position variables introduces their second 
order derivative and allows to make use of the dynamic model.  

2
k 1 k k k

5 1k 1 k k

q q q q

q q q 02

+

×+

∆
≈ + ∆ +  (6) 

With this method, a discrete model of (3) is calculated. If we add the equation 
corresponding to the measurement of the joint angles, we obtain the following system:  

( )
1

1 2 3 4 4 4

+ = Γ

= = θ θ θ θ = =

sk k k

T

xk k k

x f (x , )

y h(x ) Cx with C I
 (7) 

2.4 Impulsive impact equation 

The impact occurs at the end of the imbalance phase, when the swing leg tip touches the 
ground, i.e. : 

{ }fx S x X  q=q∈ = ∈ where fq is the final configuration of SemiQuad. The instant of impact 

is denoted by iT . Let us use the index 2 for the swing leg, and 1 for the stance leg during the 

imbalance phase in single support. We assume that: 

♦ the impact is passive, absolutely inelastic; 

♦ the swing leg does not slip when it touches the ground; 

♦ the previous stance leg does not take off; 

♦ the configuration of the robot does not change at the instant of impact. 
Given these conditions, at the instant of an impact, the contact can be considered as 

impulsive forces and defined by Dirac delta-functions 
jj R iR I (t T )= ∆ −  (j=1, 2). Here 

j Nj Tj

T

R R RI I I= , is the vector of the magnitudes of the impulsive reaction in leg j 

(Formal’sky 1974). The impact model is calculated by integrating (1) between iT− (just before 

impact) and iT+ (just after impact) . The torques provided by the actuators at the joints, and 

Coriolis and gravity forces, have finite values, thus they do not influence the impact. 
Consequently the impact equation can be written in the following matrix form: 

( )
1 1 2 2e e e R R R RD (q) q q D (q)I D (q)I+ −− = +  (8) 

Here, q is the configuration of SemiQuad at it T= , eq−  and eq+ are the angular velocities just 

before and just after impact, respectively. Furthermore, the velocity of the stance leg tip 
before impact is null. Then we have:  
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1
2 1
0

T
R eD q+

×=  (9) 

After impact, both legs are stance legs, and the velocity of their tip becomes null:  

1

2

4 1
0

T
R

eT
R

D
q

D
+

×=  (10) 

3. Walking gait strategy for SemiQuad

By analogy with animal gaits with no flight phase, SemiQuad must jump with front or back leg 
to realize a walking gait. There is no other way to avoid leg sliding. Then it is necessary to take 
into account that SemiQuad is under actuated in single support and over actuated in double 
support. Let us briefly present the adopted strategy to realize a walking gait for SemiQuad. It
was tested first in simulation to study its feasibility and then experimentally (Aoustin et al. 
2006). A video can be found on the web page http://www.irccyn.ec-
nantes.fr/irccyn/d/en/equipes/Robotique/Themes/Mobile. Figure 4 represents a sequence of stick 
configurations for one step to illustrate the gait. Let us consider half step n as the current half 
step, which is composed of a double support, a single support on the rear leg and an impact on 
the ground. During the double support, SemiQuad has only three degrees of freedom. Then its 
movement can be completely prescribed with the four actuators. A reference movement is 
chosen to transfer the platform centre backwards. This is done by defining a polynomial of 
third order for both Cartesian coordinates xp and zp. The coefficients of these polynomials are 
calculated from a choice of initial and final positions, of the initial velocity and an intermediate 
position of the platform centre. The reference trajectories for the four actuated joint variables 
are calculated with an inverse geometric model. Then, by folding and immediately thrusting 
the front leg, the single support phase on the rear leg starts. During this imbalance phase, 
SemiQuad has five degrees of freedom and its rotation is free around its stance leg tip in the 
sagittal plane. Reference trajectories are specified with third order polynomial functions in 
time for the four actuated inter-link angles. However, the final time Tp of these polynomial 
functions is chosen smaller than the calculated duration Tss of the single support phase, such 

that before impact the four desired inter-link angles id(  i = 1,..., 4)  become constant. Using this 

strategy, we obtain the desired final configuration of our prototype before the impact even if 
Tss is not equal to the expected value. 

= + + +

= θ ≤ ≤

2 3
0 1 2 3 pid

ie p p ssid

a a t a t a t     if    t < T

(T )    if   T   t  T
 (11) 

The coefficients of these polynomials are calculated from a choice of initial, intermediate and 
final configurations and of the initial velocity for each joint link. Just after impact, the next 
half step begins and a similar strategy is applied (figure 4). The tracking of the reference 
trajectories is achieved using a PD controller. The gains, which were adjusted using pole 
placement, were tested in simulation and in experiments. Figure 3 shows the evolutions of 

the absolute orientation variable (t)  and its velocity (t) , obtained from the simulation of 

SemiQuad for five steps. These graphs clearly show that the dynamics of the absolute 
orientation cannot be neglected in the design of a control law based on a state feedback. The 
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durations of the double support phase and the single support phase are 1.5 s and 0.4 s 
respectively. 

Fig. 3. Evolution of (t)  and (t)  in simulation during the walking gait for five steps. 

4. Observation of the absolute orientation of SemiQuad 

System (3) is generically observable if the following matrix O has a full rank (see (Plestan & 

Glumineau 1997)), which is equal to 10, with 1 p( k ,...,k )  the p observability indexes. 

( )−−Ο = p1
k 1k 1

1 1 p pf fdh ... dL h ... dh ... dL h  (12) 

where dh is the gradient vector of function h (see system (7)) with respect to the state vector 
x, and dLfh is the Lie derivative of h along the vector field f. We have also checked that the 
equivalent property is satisfied by the discrete model. This means that, at each sampling 
time tk, it is possible to find an observability matrix with 10 independent rows or columns. 
Having checked system observability, we propose an extended Kalman filter to observe the 
absolute orientation. The design of this extended Kalman filter is now described. 
In practice, due to uncertainty in the determination of parameters and to angular 
measurement errors, system (3), and of course system (7), are only approximations. A 
standard solution is to represent modelling and measurement errors as additive noises 
disturbing the system. 
Let us consider the associated ``noisy’’ system:  

( )
1+ = Γ + α

= = + β

sk k k k

T

1 2 3 4k k k

x f (x , )

y C(x )
 (13) 

In the case of a linear system, if k and k  are white Gaussian noises, mutually independent 

and independent of x, the Kalman filter is an optimal estimator. When the system is not linear, 
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it is possible to use the extended Kalman filter (EKF) by linearizing the evolution equation fs

and the observation equation (which is in our case linear) around the current state estimate. 
Although convergence and optimality are no longer guaranteed, the interest and the 
effectiveness of the extended Kalman filter have been proved in many experimental cases. The 
extended Kalman filter is very often used as a state observer (Bonnifait & Garcia 1998). 

(a) Double support (half step n) : 
The projection of the platform center 

is halfway between the leg tips

(f) Double support (end of half step n and start of half step n+1): 
 Just after landing with an impact of the front leg. After half step 

n, the platform center has moved forward.

(b) Double support (half step n) :
The projection of the platform center is 

closer to the back leg tip

(g) Double support (half step n+1) : 
The projection of the platform center is 

closer to the front leg tip. 

(c) Double support (half step n): 
The front leg is unbent just before 
take off (before the single support)

(h) Double support (half step n+1): 
The back leg is unbent just before take off 

(before the next single support phase)

(d) Single support (half step n): 
Just after jump of the front leg, 

the front leg is bent.

(i) Single support (half step n+1) : 
Just after jump of the back leg, 

the back leg is bent. 

(e) Single support (half step n): 
The distance between the leg tips 

is larger than in the previous 
double support phase.

(j) Single support (half step n+1): 
The distance between the leg tips is smaller than 

in the previous double support phase.

Fig. 4. Plot of half steps n and n+1 of SemiQuad. as a sequence of stick figures. 
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In the case of our system, the equations of the extended Kalman filter are: 

• a priori estimation: uses data available before tk+1

1

1

−
+

−
α+

= Γ

= +

sk k k

T
k k k k

x f (x , )

P A P A Q
 (14) 

• a posteriori estimation: uses data available at tk+1

( )
( )

1 1 1 1 1

10 101 1 1

− −
+ + + + +

−
×+ + +

= + −

= −

k k k k k

k k k

x x K y Cx

P I K C P
 (15) 

with:

=

∂
=

∂
k

s
k

x x

f
A

x
and ( )

−− −
β+ + += +

1T T
k 1 k 1 k 1K P C CP C Q  

Here yk+1 are the measured joint variables, which are the first four components of vector xk

at time tk, and k+1
-Cx is the a priori estimation of these joint variables. Q and Q  are the 

covariance matrices of k and k , K is the Kalman gain and P the estimated covariance 

matrix of prediction ( -P at tk) and estimation ( P at tk) errors. 

5. Simulation and experimental results. 

For the simulation and experimental tests, the physical parameters defined in section 2 are 

used. The sampling period  is equal to 5 ms. The incremental encoders having N=2000 

points per revolution, the variance of measurement is taken equal to ( )2 23 N =8.225 10-4.

The errors of incremental encoders being independent, we have chosen Q =8.225 10-4
×4 4I .

The components of Q for the configuration variables are determined by trial and error 

from simulation and experimental results. The components of Q for velocity variables are 

derived from the values for position variables, taking into account the sampling period, and 
are larger than those corresponding to position variables. 

−

−
=

10
5x5 5x5

5
5x5 5x5

3.0 10 I 0
Q

0 3.0 10 I

The initialization of the covariance matrix P takes into account a determination of  less precise 

and fixes the variances on the velocities, as for Q , taking into account of the sampling period. 

−

=

10
4x4 4x1 4x5

-5
0 1x4 1x5

-2
5x4 5x1 5x5

8 10 I 0 0

P 0 1.7 10 0

0 0 5 10 I

All the tests in simulations and in experiments were done following the scheme of figure 5. In 

simulations, the joint variables i and their velocities i  (i=1,2,3,4) obtained by integration of 

the direct dynamic model of SemiQuad and the control torques i  (i=1,2,3,4) are the inputs of 

the extended Kalman filter. For the experimental tests, the joint variables i  (i=1,2,3,4) are 

measured and differentiated to obtain the velocities i . These eight variables, together with 
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the four experimental torques i  (i=1,2,3,4) are the inputs of the extended Kalman filter. In 

both cases, the state vector T

1 2 3 4 1 2 3 4
 is estimated. 

Semiquad
i

(i = 1,2,3,4)

Estended 
Kalman 

Filter
ii

.
(i = 1,2,3,4)

i
(i = 1,2,3,4)

i i
, , (i = 1,2,3,4)

ii

.
(i = 1,2,3,4)

Fig. 5. Principle of tests of the extended Kalman filter with SemiQuad.

5.1 Simulation results 

Figure 6 shows the evolution of the estimated and real orientations of the platform during a 
single support phase of the cyclic walking gait of SemiQuad. The initial error, which has been 
set to 0.0262 rad (1.5 degree), is rapidly reduced, andthe estimated orientation converges 
towards the real orientation. Let us notice that a maximum value of 1.5 degree for the initial 

error is reasonable because experimentally (0)  is determined by the geometric model at 

the end of the previous double support. 
In the model used by the observer, we do not consider any friction. We have 

performed robustness tests of our estimator by adding a viscous friction, Γ =i v iF

(i=1,2,3,4), and a Coulomb friction Γ =i s iF  (i=1,2,3,4) to the simulation model. Figure 

7 shows the estimated and real orientations of the platform of SemiQuad in the case 
when a viscous friction is added. The coefficient Fv equals to 0.1 N.m.s/rad. Similarly, 
figure 8 shows the estimated and the real orientations of the platform of SemiQuad in 
the case of a Coulomb friction, with a coefficient Fs equal to 0.2 N.m. Last robustness 
test (figure 9) presents the estimated and real orientations of the platform of 
SemiQuad with an inertia reduced by 5% for the platform in the simulator. In practice, 
5% precision on inertia is feasible (see identification results in (Lydoire & Poignet 
2003)).
From these robustness tests, we can conclude that we have no finite time convergence. 
However, the final relative errors of the estimated orientations of the platform of SemiQuad
are small. Since it will be possible to update the initial condition of the estimator during the 
next double support phase, with the measurements of the encoders and the geometrical 
relations, such errors are not a problem. 

5.2 Experimental results 

At each step, the estimator is initialized with the configurations and the velocities at the 
end of the previous double support phase. At each sampling time, velocities are obtained 
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by the usual differentiation operation 
− −

= i i
i

(k ) ((k 1) )
 (i=1,2,3,4). No filtering is 

applied to smooth the measured joint variables i , their velocities i and the four torques 

i  (i=1,2,3,4). 

Fig. 6. Absolute orientation (t)  of the platform: real (solid) and estimated (dashed). 

Fig. 7. Absolute orientation (t)  of the platform: real (solid) and estimated (dashed), with a 

supplement viscous friction. 
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Fig. 8. Absolute orientation (t)  of the platform: real (solid) and estimated (dashed), with a 

supplement Coulomb friction. 

Fig. 9. Absolute orientation (t)  of the platform: real (solid) and estimated (dashed), with an 

error on the inertia of the platform. 
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Figure 10 shows the estimation of the absolute orientation of the platform (t) . The 

duration of the single support phase is 15% smaller than in simulation. It can probably be 
explained by the fact that our knowledge of the physical parameters of the robot is not 
perfect, and that we neglected effects such as friction in the joints. 

Currently, there is no experimental measured data about the evolution of (t)  in single 

support, because SemiQuad is not equipped with a sensor such as a gyrometer or a 
gyroscope. However, in double support, using the geometric and kinematic models it is 

possible to calculate (t)  and (t) . In addition to providing initial conditions for the 

observer, this also allows to calculate the orientation at the end of the single support phase, 
just after impact. The corresponding value is displayed as a star on the next graph, and is 
equal to 0.01 rad (0.57 degree). The difference between this value and the estimated value at 
the same instant is almost 3 degrees. 

Fig. 10. Estimation of the absolute orientation (t)  of the platform using the experimental data. 

6. Conclusion 

An application of the digital extended Kalman filter has been presented for the problem of 
estimating the absolute orientation of SemiQuad, a 2D dynamically stable walking robot. There 
are some differences between simulations and experiments, but the results still prove the 
ability of our observer to yield a short term estimation of the orientation of the robot. The 
precision is sufficient for the estimation to be useful for calculating the dynamic model and 
monitoring the balance of the robot. This task is important for SemiQuad, and vital for bipeds, 
to which the idea is also applicable (see Lebastard, Aoustin, & Plestan 2006 for a different type 
of observer). Given the possibility to re-initialize the observer at each double support phase, 
even if very short, as it can be for bipeds, the observer can provide the absolute orientation 
over time without the use of any additional sensor, which was the goal of our work. 
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In a near future, we plan to equip SemiQuad with a gyrometer to fully evaluate the 
performance of our estimator over time. Our perspective is to use the estimated orientation 
in advanced feedback controllers. 
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