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Far-Field, Multi-Camera, Video-to-Video Face 
Recognition

Aristodemos Pnevmatikakis and Lazaros Polymenakos 
Athens Information Technology 

Greece

1. Introduction  

Face recognition on still images has been extensively studied. Given sufficient training data 
(many gallery stills of each person) and/or high resolution images, the 90% recognition 
barrier can be exceeded, even for hundreds of different people to be recognized (Phillips et 
al., 2006). Face recognition on video streams has only recently begun to receive attention 
(Weng et al., 2000; Li et al., 2001; Gorodnichy, 2003; Lee et al., 2003; Liu and Chen, 2003; 
Raytchev and Murase, 2003; Aggarval et al., 2004; Xie et al., 2004; Stergiou et al., 2006). 
Video-to-video face recognition refers to the problem of training and testing face recognition 
systems using video streams. Usually these video streams are near-field, where the person 
to be recognized occupies most of the frame. They are also constrained in the sense that the 
person looks mainly at the camera. Typical such video streams originate from video-calls 
and news narration, where a person’s head and upper torso is visible. 
A much more interesting application domain is that of the far-field unconstrained video 
streams. In such streams the people are far from the camera, which is typically mounted on a 
room corner near the ceiling. VGA-resolution cameras in such a setup can easily lead to quite 
small faces – down to less than ten pixels between the eyes (Stiefelhagen et al., 2007), 
contrasted to over two hundred pixels in many of the latest face recognition evaluations 
(Phillips et al., 2006). Also, the people go about their business, almost never facing the camera 
directly. As a result, faces undergo large pose, expression and lighting variations. Part of the 
problem is alleviated by the use of multiple cameras; getting approximately frontal faces is 
more probable with four cameras at the corners of a room than with a single one. The problem 
is further alleviated by the fact that the goal is not to derive a person’s identity from a single 
frame, but rather from some video duration. Faces to be recognized are collected from a 
number of frames; the person identity is then established based on that collection of faces. 
Far-field unconstrained video-to-video face recognition needs to address the following 
challenges: 
• Detection, tracking and segmentation of the faces from the video streams, both for 

system training and recognition. 
• Selection of the most suitable faces to train the system and to base the recognition upon. 
• The face recognition algorithm needs to cope with very small faces, with unconstrained 

pose, expression and illumination, and also with inaccurate face framing. 
• Fusion of the individual decisions on faces, to provide the identity of the person given 

some time interval. 

Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007
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In section 2 of this chapter we will present the state-of-the-art in video-to-video face 
recognition, mostly near-field with people moving towards the camera. In section 3 we will 
address all the before-mentioned challenges of video-to-video face recognition, by analyzing 
the tradeoffs of different face segmentation approaches, face recognition methods and 
decision fusion strategies. We will base our analysis on a publicly available database of 
videos, built by the partners of the CHIL project (Waibel et al., 2004) and already used in the 
CLEAR 2006 evaluations (Stiefelhagen et al., 2007). This database offers recordings at five 
different sites, 26 individuals, two different gallery video lengths and four different probe 
video lengths. 

2. Algorithms and databases for video-to-video face recognition 

Video-to-video face recognition is split into two tasks. Firstly stills containing faces are 
extracted from the gallery and probe videos, generating the gallery and probe stills. Then, 
traditional still-to-still face recognition is applied, with one addition: the goal is the 
recognition of a person throughout the complete probe video, i.e. using all the probe stills 
coming from it. Hence, apart from recognition, the video-to-video face recognition task has 
some sort of face detection/tracking and utilization of temporal information embedded in it. 
Even though video-to-video face recognition is a relatively new field, many algorithms can 
be found in the literature. These algorithms differ on the face detection, the way the face 
recognizer utilizes temporal information, as well as on the video databases they are tested 
with.
These algorithms are categorized regarding the way temporal information is used, to report 
people identities per probe video and not per extracted probe still. There are algorithms 
based on post-decision fusion (Xie et al., 2004; Stergiou et al., 2006), while others embed the 
use of temporal information within the face recognizer (Weng et al., 2000; Li et al., 2001; Lee 
et al., 2003; Liu and Chen, 2003; Raytchev and Murase, 2003; Aggarval et al., 2004). An 
exception to this categorization can be found in (Gorodnichy, 2003), where temporal 
information is only utilized in face detection, to provide the best still to attempt recognition. 
The subjects are approaching the camera, allowing for a coarse-to-fine face detection 
scheme.
Xie et al. employ post-decision methods (Xie et al., 2004). Their classifier is a polynomial 
correlation filter bank with non-linear output combination. It operates on faces extracted 
using template matching in a head region found by motion. Since the videos they employ 
are near-field, such a detector suffices. 
Weng et al. are concerned with the computational burden of training in a batch mode from 
many and long gallery videos and propose an iterative tree building algorithm for on-line 
training (Weng et al., 2000). They do not address face detection at all. Their approach falls a 
bit short of the nearest neighbour classifier and is a good candidate when the amount of 
data prohibits batch training. Another graph-based approach is (Raytchev and Murase, 
2003), where face sequences act as nodes and node attraction and repulsion are defined in 
the sequence proximity matrix. Two clustering algorithms are introduced that can lead to 
unsupervised face recognition. 
Li et al. utilize a pose estimator to fit a multi-view dynamic face model on the video frames 
(Li et al., 2001). This gives pose invariant textures. Kernel discriminant analysis of those 
textures yields identity surfaces. Trajectories are defined on these surfaces using gallery 
videos, and are compared with those from probe videos for recognition. Lee et al. split the 



Far-Field, Multi-Camera, Video-to-Video Face Recognition 469

gallery stills extracted from the videos of each person into pose manifolds (Lee et al., 2003). 
They then use the temporal information to learn the transition probabilities between those 
pose manifolds and to handle occlusions. Face detection is again not addressed. They show 
their approach to be superior to temporal voting across the 20 last extracted probe stills. 
Unlike other video-to-video face recognition methods, they report performance on a per 
still, not video probe basis, which does not reflect the goal of such algorithms. Liu and Chen 
use temporal information in gallery face sequences to train Hidden Markov Models 
(HMMs) (Liu and Chen, 2003). The probe face sequences are analyzed with each of the 
trained HMMs, to yield the person identity based on maximum likelihood scores. Face 
sequences are manually extracted from the videos. They show enhanced performance 
compared to post decision fusion using voting. Aggarval et al. use temporal information to 
learn ARMA pose variation models from gallery and probe face sequences (Aggarval et al., 
2004). They then employ model matching criteria to associate a gallery model to each probe 
one. Face detection is again not addressed. 
All the above algorithms perform face detection and recognition independently. Zhou et al. 
on the other hand perform face tracking and recognition jointly in a particle filtering 
framework by adding an identity variable in the state vector and demanding identity 
consistency across time. In (Zhou et al., 2003) they show good performance employing the 
extracted probe stills as appearance models for tracking, while in (Zhou et al., 2004) they 
improve tracking robustness for moderate pose changes and occlusions using adaptive 
appearance and state transition models. 
The various databases used for video-to-video face recognition are characterized by the 
number of individuals, the degree of pose and illumination variations, the recording 
conditions (far, medium or near field), the duration of the gallery and probe videos and the 
number of probe videos. Some things are common in these databases. The number of 
different people to be recognized is much smaller than the still-to-still face recognition 
databases. While in the latest Face Recognition Grand Challenge (Philips et al., 2006) there 
are thousands of different individuals, all video-to-video face recognition algorithms are 
tested on video databases of 10 to 33 individuals. The only exception is (Weng et al., 2000), 
which employs 143 individuals. There is no significant temporal separation between gallery 
and probe videos; the difficulty of the task stems from the fact that there is action depicted 
in the videos, that results to gross pose, expression and illumination changes and the lower 
quality images, as the resolution of the faces is typically much smaller than the one found in 
still-to-still face recognition databases. Most of the algorithms are tested with videos taken 
indoors. Exceptions can be found in some experiments of (Zhou et al., 2003) and in 
(Raytchev and Murase, 2003). In most cases the recording conditions are near-field: The 
faces occupy a significant part of the image, either during the whole of the video (Weng et 
al., 2000; Li at al., 2001; Liu and Chen, 2003) or towards the end of it as the people are 
walking towards the camera (Gorodnichy, 2003; Raytchev and Murase, 2003; Zhou et al., 
2003; Xie et al., 2004). The only truly far-field video recordings known to the authors are  
those collected by the partners of the CHIL project (Waibel et al., 2004) and already used in 
the Classification of Events, Activities and Relationships (CLEAR 2006) evaluations 
(Stiefelhagen et al., 2007). Unfortunately, many of the algorithms in the field are only tested 
on custom built video databases, which are not publicly available, or for which not all the 
necessary data are reported. Unlike still-to-still face recognition, there have been no 
evaluations for its video-to-video counterpart. The single exception are the CLEAR 2006 and 
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the upcoming CLEAR 2007 evaluations (Stiefelhagen et al., 2007), which include a video-to-
video face recognition task. Table 1 summarizes the most commonly used and publicly 
available video databases. 

Parameter MoBo CLEAR 2006 

No. of people 25 26 

Camera views Single, facing person 4, at room corners 

Gallery duration 10 sec 15 and 30 sec 

Probe duration 10 sec 1, 5, 10 and 20 sec 

No. of probe videos 74 
613 (1 sec), 411 (5 sec), 289 (10 
sec) and 178 (20 sec), 

Scenario Walking on a treadmill 
Moving freely: meeting with 
presentation

Pose, expression 
Approximately frontal; always 
both eyes visible 

Any pose, natural talking 
expression

Illumination Constant 
Changes due to projector 
beam, overhead lights 

Recording
conditions

Medium field, 30 to 40 pixels 
wide faces 

Far field, median eye distance 
9 pixels 

Table 1. Summary of publicly available video databases used for video-to-video face 
recognition. The frame rate is 30 fps 

Note that the pose variations in the CLEAR 2006 database are extreme: some of the shorter 
videos do not contain any face with both eyes visible. This is alleviated by the use of 4 
different camera views: one of the views is bound to capture some frames with faces having 
both eyes visible. The durations reported in Table 1 for this database are per camera view; 
there are actually four times as much frames to extract faces from. 
While some of the algorithms that jointly utilize temporal information and perform 
recognition claim better results than post-decision fusion, the latter should not be 
discounted for two reasons. Firstly, only simple (not weighted) voting is used in these 
comparisons. Secondly, all these algorithms are based on learning the evolution of a face 
manifold, as pose, expression and illumination change with time. On the one hand, there 
can be valid changes in the probe videos not present in the gallery videos. On the other 
hand, the face manifold depends on the appearance of the face, which is not only dependant 
on pose, expression and illumination, but also on face detection accuracy. The randomness 
of face detection errors leads to greater face manifold spreading with random transitions. 
Attempting to learn such random transitions just overfits the classifier on the gallery data. 
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The effect of these errors is even more pronounced on far-field viewing conditions and 
unconstrained people movement, where face detection is much harder. All these algorithms 
have not been tested on such videos. For this reason, we have chosen the post-decision 
fusion scheme in (Stergiou et al., 2006) for the far-field, unconstrained video-to-video face 
recognition system detailed in the next section. 

3. Proposed face recognition system 

In this section we analyze the different options for video-to-video face recognition using the 
CLEAR 2006 database. We present different solutions for all the detection and recognition 
subtasks and we investigate their effect on recognition rate. For the reasons discussed in 
section 2 we choose a post-decision fusion scheme to utilize the temporal information in the 
video streams. 

3.1 Face detection for gallery and probe generation 

The CLEAR 2006 database comes with a set of annotations (Stiefelhagen et al., 2007). The 
face bounding box is marked every 1sec, while the centers of the eyes every 200ms. The 
lower frequency of the face annotations is due to the severe difficulty of this kind f 
annotation. Hence the first option for face detection is to simply use these labels to extract 
the faces. The labels are linearly interpolated to provide the eyes of the person in each frame. 
Should two eyes exist, the face is cropped, normalized and added to the probe or gallery. 
Normalization accounts for face geometry and illumination changes. First the marked eyes 
are positioned on specific coordinates on a 34 by 42 template that contains mostly the face 
for approximately frontal views of the people. This is a big template for most of the faces; it 
is selected to favor upsampling of the small faces to downsampling of the large ones. No 
deliberate perturbation of the eye positions is carried out to alleviate the effect of eye 
labeling errors (Lee et al., 2003; Ekenel and Pnevmatikakis, 2006). Such an approach is very 
important for small galleries, and has been applied in the past on still-to-video face 
recognition on data similar to those of the CLEAR2006 (Ekenel and Pnevmatikakis, 2006), 
but the rich gallery of this dataset is enough to randomize the errors and alleviate their 
effect. Then the intensity is made zero-mean, unit variance. Although more aggressive 
normalization techniques exist to account for illumination changes (Pnevmatikakis & 
Polymenakos, 2005), these also degrade performance under pose and expression changes 
(Pnevmatikakis & Polymenakos, 2005). Hence the mild normalization approach is taken 
here, to provide some immunity to illumination changes without degrading performance 
under pose changes too much. The normalized gallery images extracted for one person are 
shown in Figure 1. 
Evidently there are problems with the accuracy of the interpolated labels, or the 200 ms 
labels themselves, that lead to scaling errors, shifting and rotation of the faces. Such effects 
can be from minor up to major, leading to image segments that are definitely not faces (end 
of row four, beginning of row five). Also, there are pose variations, both left-right (even 
extreme profile with only one eye visible – row five) and up-down. Finally note the large 
resolution changes; there are faces where details are visible, and others that are a blur due to 
the upsampling to bring them to a standard size (contrast the level of detail in the two last 
rows). The gross resolution variation present in the probe videos is apparent in the 
histogram of eye distances shown in Figure 2. 
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Figure 1. Gallery faces cropped from the 15 sec gallery videos, using all four cameras, for 
one person 
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Figure 2. Histogram of the eye distances of the faces segmented from the probe videos using 
the manual annotations. The video-to-video face recognition system has to cope with eye 
distances of 4 to 28 pixels 
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When the view is not approximately frontal, then the template might include other parts of 
the head, or even background. Such views are not wanted, and some means for 
automatically discarding them is needed. Note at this point that automatic selection of faces 
is a prerequisite only for the probe videos. But it is not only cumbersome to manually filter 
the gallery stills; such a selection can cause mismatches between the automatically selected 
probe stills and the manually selected gallery stills. For both these reasons an automatic 
mechanism for the selection of faces is utilized. This mechanism employs a measure of 
frontality, based on the supplied face bounding boxes and eye positions. Frontal views 
should have both eyes symmetrically positioned around the vertical face axis. This 
symmetry is enumerated in the frontality measure. The measure can unfortunately be 
inaccurate for two reasons. The first has to do with the provided label files: eye positions are 
provided every 200 ms, while face bounding boxes every 1 sec, causing larger errors due to 
interpolation. The second reason has to do with the positioning of the head: when it is not 
upright, then the major axis of the face does not coincide with the central vertical axis of the 
face bounding box. Nevertheless, employing the proposed frontality measure rids the 
system from most of the non-frontal faces at the expense of missing some frontal but tilted 
ones. As for the threshold on frontality, this should not be too strict to diminish the training 
and testing data. It is set to 0.1 for all training durations and testing durations up to 10 sec. 
For testing durations of 20 sec, it is doubled, as the abundance of images in this case allows 
for a stricter threshold. A final problem with the application of the frontality threshold is 
that there are some testing segments for which both eyes are never visible. This leads to 
empty segments. These profile faces can in principle be classified by face recognizers trained 
on profile faces, but such classifiers have not been implemented in the scope of these 
experiments. The still gallery and probe sets generated using the face annotations are 
summarized in Table 2. 

Face cropping method 
Interpolated hand-
annotated eye centers 

Viola-Jones detector 

Face normalization 
De-rotation using the eye 
centers, scaling to 42 by 34 
pixels

No de-rotation, scaling to 
48 by 36 pixels 

Length (sec) 15 30 15 30 

Min 47 56 118 251 

Average 241 517 428 886 

Gallery 
stills per 
person

Max 613 1213 890 1696 

Length (sec) 1 5 10 20 1 5 10 20 

Min 0 0 0 0 1 2 19 81 

Average 16 78 148 301 25 127 226 515 

Max 60 282 479 930 90 348 793 1406 

Probe
stills per 
video

Empty videos 13% 3.4% 1.7% 1.1% 0 0 0 0 

Table 2. Summary of the gallery and probe still sets generated from the CLEAR 2006 videos 
using either the provided face annotations or the trained cascaded detector 

Basing the gallery and probe generation of video-to-video face recognition on annotations is 
not good practice. Annotations and expensive and inaccurate, both because it is difficult to 
label facial features on far-field recordings, and because interpolation is needed, as the 
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frames are annotated sparsely. Also, actual systems have to be fully automatic. Hence a face 
detector is needed. As multiple people are present in the frames, and the faces are tiny 
compared to the frame size, the natural choice for a detector is the boosted cascade of simple 
features (Viola and Jones, 2001). Although many improvements on the original algorithm 
have been proposed (Li and Zhang, 2004; Schneiderman, 2004), we opted to stick to the 
original version that uses AdaBoost and its implementation in OpenCV (Bradski, 2005), as 
this is publicly available. Although a trained cascade of simple classifiers is already 
provided with OpenCV, it is not suitable for our needs as the faces in our far-field 
recordings are too small. That detector has very high miss rate. A more suitable detector is 
thus trained. To do so we use 6,000 positive samples (images with marked faces), 20,000 
negative samples (images with no human or animal face present), an aspect ratio of 3/4, 
minimum feature size 0, 99.9% hit rate, 50% false alarm, tilted features, non-symmetric faces 
and gentle AdaBoost learning (Bradski, 2005). We run the cascaded classifier on all the 
frames of the gallery and probe videos, and we collect the faces. Note that due to the 
existence of many people in the frames, the labels are still needed to tell apart the person 
under consideration from the other meeting participants. If any detection exists close to the 
provided face bounding box, then it is selected as the face of interest. The temporally 
subsampled gallery images for the same person shown in Figure 1 are shown in Figure 3. 

Figure 3. Temporally subsampled gallery faces automatically cropped from the 15 sec 
gallery videos, using all four cameras, for one person 
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Comparing the faces in Figure 1 and 3, it is evident that using the automatic detection 
scheme we get more faces, but less accurately framed than with the face annotations. Also, 
there is no attempt to geometrically normalize the faces based on the eye positions, nor any 
filtering of profile faces. The statistics of the automatically extracted gallery and probe stills 
are also shown in Table 2. 

3.2 Classification 

For classification the gallery faces are vectorized by rearranging the intensities of their pixels 
into a vector, e.g. by reading the intensities in a column-wise fashion. The mean vector is 
subtracted, yielding zero-mean vectors, to be used for the training of the classifiers. 
The classifiers employed are of the linear subspace projection family. Both Principal 
Components Analysis (PCA) (Turk and Pentland, 1991) and Linear Discriminant Analysis 
(LDA) (Belhumeur et al., 1997) are employed to build unsupervised and supervised 
projection matrices respectively. PCA aims at transforming the training vectors so that their 
projections in lower-dimensional spaces has maximum scatter. This guarantees optimality in 
terms of minimum squared error of the representation of the original vectors in any lower-
dimensional space (Duda et al., 2000). The determination of the transformation matrix does 
not require any class information, hence it is unsupervised. Although the optimality in 
representation does not offer any guarantee for optimality in classification, the use of PCA 
has led to the successful Eigenface face recognition method (Turk and Pentland, 1991). The 
dimension D of the recognition subspace onto which the training vectors are projected is a 
parameter of the method, to be determined empirically. Suppressing some of the 
dimensions along which the scatter of the projected vectors is smallest not only increases the 
speed of the classification, but also seems to be suppressing variability that is irrelevant to 
the recognition, leading to increased performance. LDA on the other hand aims at 
maximizing the between-class scatter under the constraint of minimum within-class scatter 
of the training vectors, effectively minimizing the volume of each class in the recognition 
space, while maximizing the distance between the classes (Duda et al., 2000). The 

dimensions of the LDA subspace is − 1K , where K is the number of classes. The 
determination o the LDA projection matrix requires class information, hence it is 
supervised. LDA suffers from ill-training (Martinez and Kak, 2001), when the training 
vectors do not represent well the scatter of the various classes. Nevertheless, given sufficient 
training, its use in the Fisherfaces method (Belhumeur et al., 1997) has led to very good 
results. 
LDA is better for large faces with accurate eye labels (Rentzeperis et al., 2006), but PCA is 
more robust as face size and eye labeling accuracy drop. LDA is robust to illumination 
changes (Belhumeur et al., 1997). PCA can be made more robust to illumination changes if 
some of the eigenvectors corresponding to the largest eigenvalues are excluded from the 
projection matrix, but this reduces the robustness of PCA under eye misalignment errors. At 
far-field viewing conditions, resolution is low and the accurate determination of the eye 
position is very difficult, even for human annotators. To demonstrate the difficulties the far-
field viewing conditions impose on face recognition, a comparison of the error rate of PCA, 
PCA without the three eigenvectors correspond=ding to the three largest eigenvalues (PCA 
w/o 3) and LDA is carried out in Figure 4, for different face resolutions and eye alignment 
accuracies. Note that the database used for these experiments is not the video database of 
CLEAR 2006, but HumanScan (Jesorsky et al., 2001) that offers very large faces which can be 
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decimated to smaller dimensions and the evaluation methodology is the one presented in 
(Pnevmatikakis and Polymenakos 2005). The probability of misclassification (PMC) 
increases below 10 pixels of eye distance, even with perfect eye labelling, and LDA can 
become worse than PCA, even when as many as 10 gallery faces per person are used (Figure 
4.a). The PMC degrades even less gracefully when the faces are registered with incorrect eye 
positions. For 5 gallery faces per person and RMS eye alignment errors greater than 5% of 
the eye distance, PCA and LDA perform similarly. PCA w/o 3 becomes worse than PCA for 
eye misalignments larger than 2% of the eye distance 
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Figure 4. Effect of far-field viewing conditions on linear subspace projection face 
recognition. (a) Performance as a function of face resolution. (b) Performance as a function 
of eye misalignment 

It is evident from the above example that the performance of LDA and PCA at the face 
resolutions and eye misalignments of interest is expected to be very close, but each method 
performs better under different conditions. When there are many probe images per testing 
segments, LDA is expected to be a better choice to PCA. The latter is expected to surpass 
LDA when there are fewer gallery images or more probe images to fuse the individual 
decisions. Hence both methods are used, and their results are fused, as explained in the next 
section. A note is due at this point for the application of LDA. Contrary to the Fisherfaces 
algorithm (Belhumeur et al., 1997), in this case the small sample size problem (Yu and Yang, 
2001) does not apply. The number of pixels of the faces is smaller than the available gallery 
stills, no matter the gallery duration or the face cropping method employed. Hence no PCA 
step is used, without the need for a direct LDA algorithm (Yu and Yang, 2001). 
According to the Eigenfaces (Turk and Pentland, 1991) or Fisherfaces (Belhumeur et al., 
1997) methods, the gallery images are represented by their class means after projection to 
the recognition space. Recognition is based on the distance of a projected gallery face from 
those means. This is not effective in the case of unconstrained movement of the person, since 
then the intra-personal variations of the face manifold due to pose variations can be far more 
pronounced than the extra-personal variations (Li et al., 2001). In this case it is better to use a 
nearest neighbour classifier. The implication is that all the projected gallery faces have to be 
kept and compared against every probe projected face. 
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Different distance metrics can be used for classification. When the probe faces are compared 
to the gallery class centres, then the weighted Euclidian distance is used for PCA projection 
and the Cosine for LDA projection (Pnevmatikakis & Polymenakos, 2005). When the 
comparison is against any individual gallery face, then the Euclidian distance is used. 
Although the individual recognition rate for each probe face is not the goal of the video-to-
video system, it is instructive to report it for the different options of LDA and PCA 
classifiers. This is done in Figure 5 for the manually cropped faces using the annotations and 
the automatically cropped faces from the 15 sec long gallery and the 1 sec long probe videos. 
Obviously, for manual cropping, the best recognition results with PCA (46.5%) are obtained 
using the nearest neighbour classifier and retaining 35 dimensions in the recognition space. 
The best individual results with LDA (44.1%) are again obtained using the nearest 
neighbour classifier. For automatic cropping, the best recognition results with PCA (57.5%) 
are obtained using the nearest neighbour classifier and retaining 45 dimensions in the 
recognition space. The higher optimum recognition subspace dimension for this case is 
justified by the higher maximum recognition subspace dimension due to the increased 
normalized resolution of the automatically cropped faces. The best individual results with 
LDA (49.9%) are again obtained using the nearest neighbour classifier, but notice in this case 
how worse the LDA performance is compared to PCA. 
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Figure 5. Individual PMC for the manually cropped faces using the annotations (a) and the 
automatically cropped faces (b) from the 15 sec long gallery and the 1 sec long probe videos. 
The effect of projection type (PCA or LDA), classifier (class centre or NN) and recognition 
space dimension is shown 

Finally, the correlation of successful individual recognition to face resolution and frontality 
is investigated. The probability density functions (PDF) of eye distance and frontality 
conditioned on correct or wrong recognition results are shown in Figure 6, again for the 
manually cropped faces using the annotations in the 15 sec long gallery and the 1 sec long 
probe videos. It can be seen that compared to the PDFs given wrong results, the shift of the 
PDFs given correct results towards larger eye distances or frontality values is very small. 
This signifies that the performance of the system does not depend significantly on the pose 
or the size of the faces. 
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Figure 6. Conditional PDFs of eye distance and frontality leading to correct or wrong 
recognition 

3.3 Post-decision fusion 

A two-stage fusion scheme is employed, based on the sum rule (Kittler et al., 1998). The first 
stage performs fusion jointly across time and camera views, while the second stage fuses the 
results of the two classifiers. The fusion scheme is illustrated in Figure 7. 

Figure 7. Two-stage fusion scheme. The PMC shown at the various stages of the scheme 
correspond to the 15 sec gallery videos, face extraction using the provided annotations and 
classifying the extracted probe stills according to the distance from the gallery class centres 

The individual decisions for the probe faces are fused using the sum rule (Kittler et al., 

1998). According to the sum rule, each of the decision iID  of the probe faces in a testing 
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segment casts a vote that carries a weight iw . The weights iw  of every decision such as 

=iID k  are summed to yield the weights kW  of each class: 

=

=
: i

k i
i ID k

W w  (1) 

where = 1, ,k K  and K is the number of classes. Then the fused decision based on the N

individual identities is: 

( ) ( )= arg maxN
k

k

ID W  (2) 

The weight iw  in the sum rule for the i-th decision is the sixth power of the ratio of the 

second-minimum distance (1)
id  over the minimum distance (1)

id :

=

6(2)

(1)
i

i

i

d
w

d
 (3) 

This choice for weight reflects the classification confidence: If the two smallest distances 
from the class centers are approximately equal, then the selection of the identity leading to 
the smallest distance is unreliable. In this case the weight is close to unity, weighting down 
the particular decision. If on the other hand the minimum distance is much smaller than the 
second-minimum, the decision is heavily weighted as the selection of the identity is reliable. 
The sixth power allows for a few very confident decisions to be weighted more then many 
less confident ones. The suitability of the proposed weights is demonstrated in Figure 8, 
where the conditional cumulative density functions (CDF) of the weights, conditioned on 
correct or wrong recognition are shown for the manually cropped faces using the 
annotations and the automatic detection scheme, in the 15 sec long gallery and the 1 sec long 
probe videos. 
It is evident from Figure 8 that the probability of wrong recognition diminishes as the 
proposed weight increases, hence they can be used in a weighted voting scheme. The fused 
recognition rate of PCA increases from the 71.7% obtained by majority voting, to 72.8% 
obtained by using the proposed weighted voting scheme. Also, the weights for the faces 
cropped using the automatic detection scheme are more suitable than those of the manual: 
The CDFs given wrong decisions are practically the same, while the CDF given correct 
decisions for the automatic scheme is shifted to larger weights compared to that for manual 
cropping. Hence, not only the individual recognition rates for the automatic scheme are 
higher (see Figure 5), but in addition it is expected that the gain due to fusion will be higher. 
Indeed, fusing the individual PCA results on the manually cropped probes from the 1 sec 
long videos, we obtain a recognition rate of 53.8%, with a relative increase from the 
individual rate of 15.7%. On the other hand, fusing the individual PCA results on the 
automatically cropped probes, we obtain a recognition rate of 72.8%, with a relative increase 
from the individual rate of 26.5%. 

The decisions ( )PCAID  and ( )LDAID  of the PCA and the LDA classifiers are again fused using 

the sum rule to yield the reported identity. For this fusion, the class weights kW  of equation 

(1) are used instead of the distances in equation (3). Setting: 
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the weights of the PCA and LDA decisions become: 
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Then the fused PCA/LDA decision is: 
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Figure 8. Conditional cumulative density functions of the weights, conditioned on correct or 
wrong recognition are shown for the manually cropped faces using the annotations and the 
automatic detection scheme, in the 15 sec long gallery and the 1 sec long probe videos. The 
weights from the PCA classifier are used 

3.4 Performance 

The performance of the video-to-video face recognition system described in this section is 
presented next. This system using the manual annotations for gallery and probe still 
generation and classification based on the distance from projected gallery class centres has 
been evaluated in CLEAR 2006. Performance can be significantly boosted using the nearest 
neighbour classifier, especially for the 30 sec long gallery videos. An even greater 
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performance boost is achieved by using the automatic face detection scheme. The somehow 
degraded framing of the faces in some still images thus generated is by far compensated by 
the larger number of gallery stills available for training and the larger number of probe stills 
per test, that allow for more efficient post-decision fusion. The recognition rate in the probe 
videos is presented in Table 3 and Figure 9. For comparison, also the best performance 
achieved in the CLEAR 2006 evaluations is also included. 

15 sec gallery duration 30 sec gallery duration 

Probe duration (sec) Method

1 5 10 20 1 5 10 20 

Annotations, distance from 
class centres (Man-centre) 

49.4 70.3 75.8 79.8 52.7 68.9 73.4 75.3 

Annotations, nearest 
neighbour (Man-NN) 

53.8 72.3 78.2 83.1 60.7 79.6 85.5 91.6 

Viola-Jones detector, nearest 
neighbour (VJ-NN) 

72.8 86.6 87.9 93.3 79.5 93.47 93.8 97.8 

CLEAR-Best 62.3 73.2 79 80.7 71 81.5 83.9 85.2 

Table 3. Average recognition rates for the various probe video durations, given any of the 
two gallery video durations. The first three entries correspond to the different options for 
the system described in this section, while the last one refers to the best performance 
reported (across all systems) in the CLEAR 2006 evaluations 
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Figure 9. Average recognition rates for the various probe video durations, for (a) 15 sec 
gallery videos duration and (b) 30 sec gallery videos duration 

Next we investigate the effect of the amount of probe faces extracted from the videos and of 
the weights obtained when the probes are recognized individually on the correct recognition 
over the complete sequence. Figure 10 depicts the scatter plot of the maximum weight 
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versus the number of probe faces extracted, for each of the 1 sec long probe videos that lead 
to correct or wrong recognition. 
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Figure 10. Scatter plot of the maximum weight versus the number of probe faces extracted, 
for each of the 1 sec long probe videos that lead to correct (asterisks) or wrong (points) 
recognition 

The more probe faces the system extracts and the highest the maximum weight from the 
individual recognition is, the easiest is the person in the video correctly recognized. For all 
practical reasons, when there is a weight higher than 2.5 or there are more than 30 extracted 
probe faces, the person is identified correctly. Given longer probe video durations, these 
conditions are more likely to be met. Of course this depends on the situation depicted in the 
video, for example a person looking down all the time. 
Finally, it is interesting to investigate if some people are harder to recognize than others. The 
bar graph of Figure 11 depicts the recognition rates for the 26 different people, under the 
two training and four testing conditions. Some people that are hard to recognize remain so 
no matter the gallery or probe video lengths. This variation in the performance across 
different people can not be attributed to the properties of the extracted gallery or probe 
faces; like their number, eye distance of frontality metric. It is due to the difference in 
matching between training and testing conditions: Some people act similarly in the gallery 
and probe videos, hence appearing similar, while others do not. 
It is evident from Figure 11 that not always people that are very difficult to recognize in one 
of the eight training and testing conditions remain difficult in other conditions. This is 
because the actions of a person in the probe and gallery videos can be more or less matched 
as those videos change. For example, the most difficult person in the 15 sec gallery video 
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and 1 sec probe videos, is easier than people 2 and 7 in the 10 sec probe videos, and easier 
than people 2-6, 8, 10 and 14 in the 30 sec gallery video. 
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Figure 11. Per person recognition rates for the different durations of the probe videos 
(grouped) and for the 15 sec  (a) or 30 sec (b) long gallery videos. The people are sorted by 
ascending recognition rate for the 1 sec long probe and the 15 sec long gallery videos 

Finally, there is a large deviation in recognition performance in the 15 sec gallery video and 
1 sec probe videos. This drops somewhat for longer probe and gallery videos. This is 
demonstrated in Figure 12, where the standard deviation of the recognition rate across the 
26 different people is depicted for the four probe video durations and the two gallery video 
durations. Hence increasing the probe or gallery durations tend to make performance across 
different people both better and more uniform. 
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Figure 12. Standard deviation of the recognition rate across the 26 different people for the 
four probe video durations and the two gallery video durations. Performance across the 
different people is more uniform as the durations increase 

4. Conclusion and possible extensions 

In this chapter we have presented the tradeoffs in video-to-video face recognition, applied 
on far-field, unconstrained recordings. We have demonstrated that given long probe video 
durations the performance of a system based on a frontal Viola-Jones face detector, linear 
subspace projection and nearest neighbour classifier more or less solves the problem, with 
average recognition rates above 95%. In applications where long probe videos are 
impractical, performance is still low (recognition rates of 74% or 80% for 1 sec probe and 15 
sec or 30 sec gallery video durations), especially given that the number of people are limited 
to the modest number of 26. To further enhance performance, there are some possible 
system enhancements: 

• Multiple face detectors can be trained, including poses other than frontal. Also, face 
detection can be coupled with a probabilistic tracker based on particle filtering (Zhou et 
al., 2004) or a deterministic tracker based on colour histograms using CAMShift 
(Bradski, 1998). This will provide more stills, capturing more pose variations. 

• Other distance metrics (weighted Euclidian, cosine) can be used for nearest neighbour 
classification. 

• Modelling of face sequences, similar to the exemplar approach of (Zhou et al., 2003), to 
automatically detect outliers that are not smooth pose transitions, but rather face 
detector errors. The cleaner face sequences thus obtained can be used to model pose 
transitions, allowing more efficient utilization of temporal information than weighted 
voting (Weng et al., 2000; Li et al., 2001; Lee et al., 2003; Liu and Chen, 2003; Aggarval et 
al., 2004). 
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