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1. Introduction  

Biped walking is one of the major research targets in recent humanoid robotics, and many 
researchers are now interested in Passive Dynamic Walking (PDW) [McGeer (1990)] rather 
than that by the conventional Zero Moment Point (ZMP) criterion [Vukobratovic (1972)]. 
The ZMP criterion is usually used for planning a desired trajectory to be tracked by a 
feedback controller, but the continuous control to maintain the trajectory consumes a large 
amount of energy [Collins, et al. (2005)]. On the other hand, PDW enables completely 
unactuated walking on a gentle downslope, but PDW is generally sensitive to the robot's 
initial posture, speed, and disturbances incurred when a foot touches the ground. To 
overcome this sensitivity problem, ``Quasi-PDW'' [Wisse & Frankenhuyzen (2003); 
Sugimoto & Osuka (2003); Takuma, et al. (2004)] methods, in which some actuators are 
activated supplementarily to handle disturbances, have been proposed. Because Quasi-PDW 
is a modification of the PDW, this control method consumes much less power than control 
methods based on the ZMP criterion. In the previous studies of Quasi-PDW, however, 
parameters of an actuator had to be tuned based on try-and-error by a designer or on a priori
knowledge of the robot's dynamics. To act in non-stationary and/or unknown 
environments, it is necessary for robots that such parameters in a Quasi-PDW controller are 
adjusted autonomously in each environment. 
In this article, we propose a reinforcement learning (RL) method to train a controller 
designed for Quasi-PDW of a biped robot which has knees. It is more difficult for biped 
robots with knees to walk stably than for ones with no knees. For example, Biped robots 
with no knee may not fall down when it is in an open stance, while robots with knees can 
easily fall down without any control on the knee joints.  
There are, however, advantages of biped robots with knees.  Because it has closer dynamics 
to humans, it may help to understand human walking, and to incorporate the advantages of 
human walking into robotic walking. Another advantage is that knees are necessary to 
prevent a swing leg from colliding with the ground. In addition, the increased degrees of 
freedom can add robustness given disturbances such as stumbling. 

Source: Humanoid Robots: Human-like Machines, Book edited by: Matthias Hackel
ISBN 978-3-902613-07-3, pp. 642, Itech, Vienna, Austria, June 2007
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Our computer simulation shows that a good controller which realizes a stable Quasi-PDW 
by such an unstable biped robot can be obtained with as small as 500 learning episodes, 
whereas the controller before learning has shown poor performance. 
In an existing study [Tedrake, et al. (2004)], a stochastic policy gradient RL was successfully 
applied to a controller for Quasi-PDW, but their robot was stable and relatively easy to 
control because it had large feet whose curvature radius was almost the same as the robot 
height, and had no knees. Their robot seems able to sustain its body even with no control. 
Furthermore, the reward was set according to the ideal trajectory of the walking motion, 
which had been recorded when the robot realized a PDW. In contrast, our robot model has 
closer dynamics to humans in the sense that there are smaller feet whose curvature radius is 
one-fifth of the robot height, and knees. The reward is simply designed so as to produce a 
stable walking trajectory, without explicitly specifying a desired trajectory. Furthermore, the 
controller we employ performs for a short period especially when both feet touch the 
ground, whereas the existing study above employed continuous feedback control. Since one 
definition for Quasi-PDW is to emit intermittent control signals as being supplementary to 
the passivity of the target dynamics, a design of such a controller is important. 
The rest of the article is organized as follows.  Section 2 outlines our approach. Section 3 
introduces the details of the algorithm using policy gradient RL as well as simulation setup. 
Section 4 describes simulation results. We discuss in section 5 with some directions in future 
work.

2. Approach Overview 

Fig. 1 depicts the biped robot model composed of five links connected by three joints: a hip 
and two knees. The physical parameters of the biped robot model are shown in Table 1. The 
motions of these links are restricted in the sagittal plane. The angle between a foot and the 
corresponding shank is fixed. Because we intend to explore an appropriate control strategy 
based on the passive dynamics of the robot in this study, its physical parameters are set 
referring to the existing biped robots that produced Quasi-PDW [Wisse & Frankenhuyzen 
(2003); Takuma, et al. (2004)]. As described in Fig. 1, stands for the absolute angle between 
the two thighs, knee1 and knee2 denote the knee angles, and denotes the angular velocity of 
the body around the point at which the stance leg touches the ground. The motion of each 
knee is restricted within [0, /4] [rad]. 

Body

Thigh

Shank

Foot

Figure 1. 2D Biped Model 
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Table 1. Physical parameters of the robot.  Value of curvature radius 

Our approach to achieving adaptive controls consists of the following two stages. 
(1) The two knees are locked, and the initial posture which realizes PDW by this restricted 
system are searched for. The initial posuture is defined by the initial absolute angle between 
two thighs, s, and the initial angular velocity of the body around the point at which the 
stance leg touches the ground, s. These values are used for the initial setting of the robot in 
the next stage. 
(2) The two knees are then unlocked, and the robot is controlled by an intermittent 
controller with adjustable parameters. The parameters are modified by reinforcement 
learning (RL) so that the robot keeps stable walking. 
These two stages are described in detail in the followings. 

2.1 Searching for the initial conditions 

In the first stage, we searched for an initial posture, denoted by s and s, which realize 
PDW by the robot with the locked knees, on a downslope with a gradient of = 0.03 [rad]. 
For simplicity, we fixed s = /6 [rad] and searched a region from 0 to [rad/sec] by /180 
[rad/sec], for s that maximizes the walking distance. The swing leg of compass-like biped 
robots which have no knees necessarily collides with the ground, leading to falling down. 
Thus, in this simulation, the collision between the swing leg and the ground was ignored. 
We found s = 58 × /180 [rad/sec] was the best value such to allow the robot to walk for 
seven steps. 

2.2 Design of a Controller 

In light of the design of control signals for the existing Quasi-PDW robots, we apply torque 
inputs of a rectangular shape to each of the three joints (cf. Fig. 2). One rectangular torque 
input applied during one step is represented by a fourdimensional vector = { Hip,Amp,

Hip,Dur, Kne,Flx, Kne,Ext}. Hip,Amp and Hip,Dur denote the amplitude and the duration of the 
torque applied to the hip joint, respectively, and Kne,Flx and Kne,Ext are the amplitude of 
torques that flex and extend the knee joint of the swing leg, respectively. The manipulation 
of the knees follows the simple scheme described below to avoid the collision of the 
swinging foot with the ground, so that a swing leg is smoothly changed into a stance leg (cf. 
Fig. 2). First, the knee of the swing leg is flexed with Kne,Flx [Nm] when the foot of the swing 
leg is off the ground (Fig. 2(b)). This torque is removed when the foot of the swing leg goes 
ahead of that of the stance leg (Fig. 2(c)), and, in order to make the leg extended, a torque of 

Kne,Ext is applied after the swing leg turns into the swing down phase from the swing up 
phase according to its passive dynamics (Fig. 2(d)). To keep the knee joint of the stance leg 
being extended, 1 [Nm] is applied to the knee joint. is assumed to be distributed as a 
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Gaussian noise vector, while the mean vector τ is modified by the learning, as described in 

the next section. 

time [sec]
0

0

Torque [Nm]

(a) (d) (e)

(1)

(2)

(3)

Torque [Nm]

(c)

time [sec]

(b)

Amp

Dur

Kne,Flx

Kne,Ext-

Figure 2. Torque applied to the hip joint and the knee joint. (1) Motions of the swing leg 
during a single step. (2) Torque applied to the hip joint. (3) Torque applied to the knee joint 
of the swing leg. (a) A single step starts when both feet touch the ground. (b) After the 
swing leg is off the ground, the robot begins to bend the knee of the swing leg by applying a 
torque of Kne,Flx [Nm]. (c) The torque to the knee is removed when the foot of the swing leg 
goes ahead of that of the stance leg. (d) When the thigh of the swing leg turns into the swing 
down phase from the swing up phase, a torque of Kne,Ext [Nm] is applied in order to extend 
the swing leg. (e) The swing leg touches down and becomes the stance leg 

3. Learning a Controller 

3.1 Policy gradient reinforcement learning 

In this study, we employ a stochastic policy gradient method [Kimura & Kobayashi (1998)] 
in the RL of the controller’s parameter τ , by considering the requirement that the control 

policy should output continuous values. The robot is regarded as a discrete dynamical 
system whose discrete time elapses when either foot touches the ground, i.e., when the robot 
takes a single step. The state variable of the robot is given by sn = ( n, n), where n counts the 
number of steps, and n and n stand for the absolute angle between two thighs at the n-th 
step and the angular velocity of the body around the point at which the stance leg touches 
the ground, respectively. 
At the onset of the n-th step, the controller provides a control signal τ n, which determines 

the control during the step, according to a probabilistic policy (τ |τ ). At the end of this 

step, the controller is assumed to receive a reward signal rn. Based on these signals, a 
temporal-difference (TD) error is calculated by 

     = {r  + V(sn+1)} - V(sn),  (1) 

where (0 1) is the discount rate. V denotes the state value function and is trained by 
the following TD(0)-learning: 

    V(sn) = V(sn) +   (2) 
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where e is the eligibility and D is the eligibility trace. (0 1) is the diffusion rate of the 

eligibility trace and p is the learning rate of the policy parameter. After policy parameter 
nτ

is updated into 
1+nτ ,  the controller  emits a  new control signal according the new  policy 

(τ |
1+nτ ). Such a concurrent on-line learning of the state value function and the policy 

parameter is executed until the robot tumbles (we call this period an episode), and the RL 
proceeds by repeating such episodes. 

3.2 Simulation setup 

 In this study, the stochastic policy is defined as a normal distribution: 

( )
( )

( ) ( )−Σ−−×
Σ

= − ττττ
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so that the covariance is given by 
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where Hip,Amp, Hip,Dur, Kne,Flx and Kne,Ext are constant standard deviations of noise, set at 0.3,
0.05, 0.3 and 0.3, respectively. We assume each component of τ is 0 or positive, and if it 

takes a negative value accidentally it is calculated again, similarly to the previous study 
[Kimura, et al. (2003)]. The reward function is set up as follows. If a robot walks stably, n

and n should repeat similar values over steps. Furthermore, the robot should take no step in 
the same place, i.e., n+1 needs to be large enough. To satisfy these requirements, we define 
the reward function as 

( ).r
2

nnnn θθθ −−= ++ 11exp  (8) 
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Figure 3. Landscape of the reward function 

Figure 3. shows the landscape of this reward function. The value function is represented by 
a table over grid cells in the state space, and the value for each grid cell is updated by 
equation (2). In this study, we prepared 10 grid cells; the center of the fifth cell was for 

(Fig. 4), and the grid covered the whole state space, by assigning the 0-th cell to the range: 

 < 0, and the 9-th cell to the range:  > 2 . We used = 0.5, p = 0.01, and = = 0.95

0

0 1 4 5 6 72 3 8 9

s

Figure 4. Discretization of the state space 

In this study, we used a 3D dynamics simulator, Open Dynamics Engine [ODE]. In 
simulation experiments, motions of the robot were restricted in the sagittal plane by 
configuring a symmetric robot model with nine links (Fig. 5). It should be noted this nine-
links robot has equivalent dynamics to the five-links model (Fig. 1), under the motion 
restriction in the sagittal plane; this nine-links model was also adopted by Wisse and 
Frankenhuyzen (2003) and by Takuma et al. (2004). 

4. Simulation Results 

Although the physical parameters of our robot were set referring to the existing Quasi-PDW 
robots, our robot with unlocked knees was not able to produce stable walking by itself. 
Then, this section describes the way to train the controller according to our RL scheme. 
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Figure 5. Dynamics simulation of the nine-links model with ODE 

4.1 Passive walking without learning 

Figure 6. Stick diagram of the passive motion by the robot with knees. Plot intervals are 50 
[ms]
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Figure 7. Body’s trajectory of the passive robot with knees 
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First, we examined whether the robot with unlocked knees was able to produce stable 
walking on a downslope with  = 0.03 [rad], when it received no controls to the hip joint or 
the knee joints. The unlocked knees were controlled in the same manner as that described in 
section 2.2. Initial conditions were set at 0 = s[rad] and 0 = s [rad/sec], which are the 
same as those where the knee-locked model performed seven steps walking. As Fig. 7 
shows, the robot with unlocked knees walked for 80 cm and then fell down. The robot was 
not able to walk passively when the knees were unlocked but uncontrolled. 

4.2 Learning a controller  

The experiment in section 4.1 showed that the robot with unlocked knees was not able to 
produce stable walking without any control to the hip joint or the knee joints, even when 
starting from possibly good initial conditions s and s. Then, in this section, we applied on-
line RL to the automatic tuning of the parameter τ . At the beginning of each episode, the 

robot’s initial conditions were set at 0 = s, 0 = s, and the episode was terminated either 
when the robot walked for 20 steps or fell down. When the height of the robot’s ‘Body’ 
became smaller than 80% of its maximum height, it was regarded as a failure episode 
(falling down). RL was continued by repeating such episodes. 
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Figure 8. Moving averages of number of steps, cumulative reward, and distance to have 
walked

Fig. 8 shows the moving averages for ±20 episodes of walking steps (top), cumulative 
reward (middle), and walking distance (bottom), achieved by the robot. The steps increased 
after about 400 learning episodes, and went up to nearly 20 steps after about 500 learning 
episodes. In the early learning stage, the cumulative reward and walked distance were small 
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though the robot walked for more than 10 steps, indicating the robot was walking stumbling 
with small strides. Using the deterministic controller with the parameter τ after 500 

training episodes, the robot was able to walk for more than 20 steps (Fig. 9). The parameter 
at this time was τ = (0.70, 0.17, 0.93, 0.51). 
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Figure 9. Values of n and n during the walking for 50 steps by the controller after 500 
learning episodes 

Figure 10. Stick diagram motion by the robot after 500 learning episodes. Plot intervals are 
50 [ms] 
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4.3 Energy efficiency  

Table 2. Energy efficiency calculated as cmt. *These values are excerpted from literature [12] 

Table 2 compares energy efficiency of Quasi-PDW acquired in this study with the others. 
For this comparison, the dimension-less cost of transport,  

 cmt = (used energy)/(weight × distance)   (9) 

was employed [Collins, et al. (2005)]; cmt is suitable for comparing energy efficiency of 
simulators with that of real robots, because cmt evaluates the effectiveness of the mechanical 
design and controller independently of the actuator efficiency. Note that energy from the 
gravity is included in the calculation of cmt (= 0.093) for our simulated robot. The cmt value 
achieved by our on-line RL is larger than the one of the PDWcontrolled robot (Dynamite), 
while it is much smaller than the one of the ZMP criterion (ASIMO). 

4.4 Robustness against disturbances 

To see the robustness of the acquired Quasi-PDW against possible disturbances from the 
environment, we conducted two additional experiments. 
First, we let the robot with the control parameter after 500 training episodes walk on 
downslopes with various gradients. Fig. 11 shows the results for  = 0.02 - 0.05 [rad]. The 
robot was able to walk for more than 50 steps on downslopes with  = 0.02 - 0.04 [rad], and 
22 steps with 0.05 [rad]; the controller acquired through our on-line RL was robust against 
the variation (in the gradient) of the environment. Second, we applied impulsive torque 
inputs to the hip joint during walking. Fig. 12 shows the time-series of n in the same 
condition as Fig. 9, except that impulsive torque inputs were applied as disturbances at the 
time points with the arrows. Each disturbance torque was 1 [Nm] and was applied so as to 
pull the swing leg backward for 0.1 [sec] when 0.4 [sec] elapsed after the swing leg got off 
the ground. As this figure shows, n recovered to fall into the stable limit cycle within a few 
steps after disturbances, implying that the attractor of the acquired PDW is fairly robust to 
noise from the environment. 
Additional qualitative analysis by means of return map was performed in order to 
investigate changes in walking robustness through learning. Fig. 15 plots return maps 
during walking after disturbances as well as steady state walking at 440 and 500 episodes, 
respectively. In this figure, the return map is depicted by circles, crosses, and triangles for 
right after disturbance, next step, and two steps after, respectively (cf. Fig. 14). The maps for 
steady-state walking (Fig. 15(a),(c)) show the robot was walking stably by keeping n at
around 0.6 [rad] in both cases of after 440 and 500 learning episodes. The upper part of Table 
3 shows < n>, the average n during steady-state walking, after 440, 480, 500, 700, and 900 
learning episodes. < n> gets large after 500 episodes, which would be induced by the 
increase in the accumulated reward (Eq. 8). This reward increase was mainly due to the 
increase in the step length, even after n+1- n became almost zero achieved by making 
periodic walking. 
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Figure 11. Values of n and n on downslopes with various gradients 

The maps after disturbance (Fig. 15(b),(d)) show the disturbed walking recovered quickly 
the steady-state walking. The lower part of Table 3 shows the average step required for 
recovery did not decrease in a monotonic fashion, but they are all small enough regardless 
of the gradual increase in < n> through learning. 

Table 3. Mean values of n during steady walking and of numbers of steps necessary to 
recover steady walking after the disturbance 
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Figure 15. Return maps after 440 or 500 learning episodes 

5. Discussion 

In this study, we proposed an on-line RL method suitable for Quasi-PDW by a 2D biped 
robot, whose possession of knees makes the system unstable. Our study is underlaid by the 
perspective of low energy consumption and good correspondence to human walking. RL 
was applied not only for the hip joint but also for the knee joints of the robot, and our 
learning method was successful in making the unstable robot produce stable walking after 
as small as 500 training episodes, despite of usage of simple intermittent controllers. 
Although the controller itself was simple, simulation experiments on downslopes with 
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various gradients and through addition of impulsive disturbances have shown that the 
stochastic policy gradient method with a reward function that encourages continuing 
rhythmic walking steps have successfully contributed to making the PDW robust against 
various noise in the environment. 
Our learning method consisted of two stages, as described in section 2. After roughly 
searching in the first stage for an initial angular velocity with which the robot with locked 
knees walked for several steps, RL was applied to the robot with unlocked knees, starting 
from the initial condition obtained in the first stage. This two-stages learning reminds us of a 
developmental progression found at least in humans [Bernstein (1968); Newell & 
Vaillancourt (2001)] which increases the degree of freedoms as the learning proceeds; after a 
primitive control is achieved for a restricted system with a low dimensionality, frozen 
dimensionality is gradually released to realize more complex and smooth movements by the 
high-dimensional system. Furthermore, animals seem to employ different controllers in the 
initiation phase and in the maintenance phase for effect e.g., it has been known that three 
steps in average are required to initiate stationary walking in humans [Miller & Verstraete 
(1996)]. We consider the first stage of our approach could correspond to the initiation stage 
above.
As another reason for our successful results, our adaptive controller was trained by RL as to 
apply intermittent energy for maintaining stable PDW. This intermittent control was 
inspired by the studies of the measurement of human EMG [Basmajian (1976)] and robot 
control based on the idea of Quasi-PDW conducted by Collins et al. (2005) or by Takuma et 
al. (2004). To develop an energy-efficient control method of robots, considerable care about 
the passivity of the robot should be taken, as Collins suggested. Furthermore, the dynamics 
of robots with many degrees of freedom generally constitutes a nonlinear continuous 
system, and hence controlling such a system is usually very difficult. Our approach 
successfully realized efficient learning, which required as small as 500 learning episodes 
even with learning for knee joints, by introducing the policy that emits intermittent control 
signals and a reward function encouraging stable motions, both of which well utilized the 
passivity of the robot. Our learning method is not restricted to locomotion, since the 
computational problem and the importance of passivity are both general, although what 
kind of controllers should be activated or switched when and how are remained as 
interesting and significant problems for general applicability. From a theoretical point of 
view, our results indicate that passivity of the robot together with the two-stages scheme 
effectively restricted a high-dimensional control space of the robot. Nakamura et al. 
demonstrated that an RL in which a central pattern generator (CPG) was employed 
succeeded in training a simulated biped robot which had also five links including knees 
[Nakamura, et al. (2004)]. In their method, the control space was restricted such that the 
outputs of the controller were likely rhythmic control signals. Combination of such CPG-
constrained learning scheme and the passivity constrained learning scheme would be 
interesting not only for more robust locomotion but also for control of various types of high-
dimensional robots. It should also be noted here that CPG seems to be employed for human 
locomotion [Dietz, et al. (2002)]. Our approach would be plausible in the perspective of 
energy efficiency and understanding of human walking [Basmajian (1976)]. Along with this 
issue, how to incorporate the idea of energy efficiency into the reward function is 
interesting. Another interesting avenue for future work is to devise a method to produce 
stable walking on a level ground. In addition, we are conducting experiments with a real 
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biped robot [Ueno, et al. (2006)], which would enhance the applicability of the current 
methodological study. 
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