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Motion Planning and Reconfiguration for 
Systems of Multiple Objects 

Adrian Dumitrescu1

University of Wisconsin–Milwaukee 
U.S.A. 

1. Abstract 

This chapter surveys some recent results on motion planning and reconfiguration for 
systems of multiple objects and for modular systems with applications in robotics. 

1 Introduction 

In this survey we discuss three related reconfiguration problems for systems of multiple 
objects.
(I) Consider a set of n pairwise disjoint objects in the plane that need to be brought from a 
given start (initial) configuration S into a desired goal (target) configuration T. The motion 
planning problem for such a system is that of computing a sequence of object motions 
(schedule) that achieves this task. If such a sequence of motions exists, we say that the 
problem is feasible and say that it is infeasible otherwise. 
The problem is a simplified version of a multi-robot motion planning problem [23], in which 
a system of robots, whose footprints are, say disks, are operating in a common workplace. 
They have to move from their initial positions to a set of specified target positions. No 
obstacles other than the robots themselves are assumed to be present in the workplace; in 
particular, the workspace is assumed to extend throughout the entire plane. In many 
applications, the robots are indistinguishable so any of them can occupy any of the specified 
target positions; that is, the disks are unlabeled. Another application which permits the 
same abstraction is moving around large sets of heavy objects in a warehouse. Typically, 
one is interested in minimizing the number of moves and designing efficient algorithms for 
carrying out the motion plan. There are several types of moves, such as sliding or lifting, 
which lead to different models that will be discussed in Section 2. 
(II) A different kind of reconfiguration problem appears in connection to so-called self-
reconfigurable or metamorphic modular systems. A modular robotic system consists of a 
number of identical robotic modules that can connect to, disconnect from, and relocate 
relative to adjacent modules, see examples in [15, 11, 26, 27, 28, 32, 34, 35, 36, 39]. Typically, 
the modules have a regular symmetry so that they can be packed densely, with small gaps 
between them. Various practical realizations are under way at different sites. Such a system 
can be viewed as a large swarm of physically connected robotic modules that behave 
collectively as a single entity. 

1 Computer Science, University of Wisconsin–Milwaukee, Milwaukee, WI 53201-0784, USA. Email: 
ad@cs.uwm.edu. Supported in part by NSF CAREER grant CCF-0444188. 

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany
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The system changes its overall shape and functionality by reconfiguring into different 
formations. In most cases individual modules are not capable of moving by themselves; 
however, the entire system may be able to move to a new position when its members 
repeatedly change their positions relative to their neighbors, by rotating or sliding around 
other modules [10, 26, 38], or by expansion and contraction [32]. In this way the entire 
system, by changing its aggregate geometric structure, may acquire new functionalities to 
accomplish a given task or to interact with the environment. 
Shape changing in these composite systems is envisioned as a means to accomplish various 
tasks, such as reconnaissance, exploration, satellite recovery, or operation in constrained 
environments inaccessible to humans,(e.g., nuclear reactors, space or deep water). For another 
example, a self-reconfigurable robot can aggregate as a snake to traverse a tunnel and then 
reconfigure as a six-legged spider to move over uneven terrain. A novel useful application is 
to realize self-repair: a self-reconfigurable robot carrying some additional modules may 
abandon the failed modules and replace them with spare units [32]. It is usually assumed that 
the modules must remain connected all (or most) of the time during reconfiguration. 
The motion planning problem for such a system is that of computing a sequence of module 
motions that brings the system in a given initial configuration I into a desired goal 
configuration G. Reconfiguration for modular systems acting in a grid-like environment, 
and where moves must maintain connectivity of the whole system has been studied in [18, 
19, 20], focusing on two basic capabilities of such systems: reconfiguration and locomotion. 
We present details in Section 3. 
(III) In many cases, the problem of bringing a set of pairwise disjoint objects (in the plane or 
in the space) to a desired goal configuration, admits the following abstraction: we have an 
underlying finite or infinite connected graph, the start configuration is represented by a set 
of n chips at n start vertices and the target configuration by another set of n target vertices. 
A vertex can be both a start and target position. The case when the chips are labeled or 
unlabeled give two different variants of the problem. In one move a chip can follow an 
arbitrary path in the graph and end up at another vertex, provided the path (including the 
end vertex) is free of other chips [13]. 
The motion planning problem for such a system is that computing a sequence of chip 
motions that brings the chips from their initial positions to their target positions. Again, the 
problem may be feasible or infeasible. We address multiple aspects of this variant in Section 
4. We note that the three (disk) models mentioned earlier do not fall in the above graph 
reconfiguration framework, because a disk may partially overlap several target positions. 

2 Models of reconfiguration for systems of objects in the plane 

There are several types of moves that make sense to study, as dictated by specific 
applications, such as: 

1. Sliding model: one move is sliding a disk to another location in the plane without 
intersecting any other disk, where the disk center moves along an arbitrary (open) 
continuous curve [5]. 

2. Lifting model: one move is lifting a disk and placing it back in the plane anywhere 
in the free space, that is, at a position where it does not intersect (the interior of) 
any other disk [6]. 

3. Translation model: one move is translating a disk in the plane along a fixed direction 
without intersecting any other disk [1]. 
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It turns out that moving a set of objects from one place to another is related to certain 
separability problems [14, 9, 21, 22]; see also [31]. For instance, given a set of disjoint 
polygons in the plane, may each be moved “to infinity” in a continuous motion in the plane 
without colliding with the others? Often constraints are imposed on the types of motions 
allowed, e.g., only translations, or only translations in a fixed set of directions. Usually only 
one object is permitted to move at a time. Without the convexity assumption on the objects, 
it is easy to show examples when the objects are interlocked and could only be moved 
“together” in the plane; however they could be easily separated using the third dimension, 
i.e., in the lifting model. 

Table 1: Comparison summary: number of moves for disks in the plane/ chips in the grid. 

It can be shown that for the class of disks, the reconfiguration problem in each of these 
models is always feasible [1, 5, 6, 9, 21, 22]. This follows essentially from the feasibility in the 
sliding model and the translation model, see Section 2.1. For the more general class of 
convex objects, one needs to allow rotations. For simplicity we will restrict ourselves mostly 
to the case of disks. We are thus lead to the following generic question: Given a pair of start 
and target configurations, each consisting of n pairwise disjoint disks in the plane, what is 
the minimum number of moves that suffice for transforming the start configuration into the 
target configuration for each of these models? 

Fig. 1. 2n – 1 moves are necessary (in either model) to bring the n segments from vertical 
position to horizontal position. 

If no target disk coincides with a start disk, so each disk must move at least once, obviously 
at least n moves are required. In general one can use (a variant of) the following simple 
universal algorithm for the reconfiguration of n objects using 2n moves. To be specific, 
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consider the lifting model. In the first step (n moves), move all the objects away anywhere in 
the free space. In the second step (n moves), bring the objects “back” to target positions. For 
the class of segments (or rectangles) as objects, it is easy to construct examples that require 
2n – 1 moves for reconfiguration, in any of the three models, even for congruent segments, 
as shown in Figure 1. A first goal is to estimate more precisely where in the interval [n, 2n]
the answer lies for each of these models. The best current lower and upper bounds on the 
number of moves necessary in the three models mentioned can be found in Table 1. It is 
quite interesting to compare the bounds on the number of moves for the three models, 
translation, sliding and lifting, with those for the graph variants discussed in Section 4. 
Table 1 which is constructed on the basis of the results in [1, 5, 6, 13] facilitates this 
comparison. 
Some remarks are in order. Clearly, any lower bound (on the number of moves) for lifting is 
also valid for sliding, and any upper bound (on the number of moves) for sliding is also valid 
for lifting. Another observation is that for lifting, those objects whose target position coincides 
with their start position can be safely ignored, while for sliding this is not true. A simple 
example appears in Figure 2: assume that we have a large disk surrounded by n – 1 smaller 
ones. The large disk has to be moved to another location, while the n –1 smaller disks have to 
stay where they are. One move is enough in the lifting model, while n – 1 are needed in the 
sliding model: one needs to make space for the large disk to move out by moving out about 
half of the small disks and then moving them back in to the same positions. 

Fig. 2. One move is enough in the lifting model, while n – 1 are needed in the sliding model 
for this pair of start and target configurations with n disks each (here n = 1). Start disks are 
white and target disks are shaded. 

A move is a target move if it moves a disk to a final target position. Otherwise, it is a non-
target move. Our lower bounds use the following argument: if no target disk coincides with 
a start disk (so each disk must move), a schedule which requires x non-target moves, must 
consist of at least n + x moves. 

2.1 The sliding model 

It is not difficult to show that, for the class of disks, the reconfiguration problem in the 
sliding model is always feasible. More generally, the problem remains feasible for the class 
of all convex objects using sliding moves which follows from Theorem 1 below. This old 
result appears in the work of Fejes Tóth and Heppes [21], but it can be traced back to de 
Bruijn [9]; some algorithmic aspects of the problem have been addressed more recently by 
Guibas and Yao [22]. 
Theorem 1 [9, 21, 22] Any set of n convex objects in the plane can be separated via translations all 
parallel to any given fixed direction, with each object moving once only. If the topmost and 
bottommost points of each object are given (or can be computed in O(n log n) time), an ordering of 
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the moves can be computed in O(n log n)time. 
The universal algorithm mentioned earlier can be adapted to perform the reconfiguration of 
any set of n convex objects. It performs 2n moves for the reconfiguration of n disks. In the 
first step (n moves), in decreasing order of the x-coordinates of their centers, slide the disks 
initially along a horizontal direction, one by one to the far right. Note that no collisions can 
occur. In the second step (n moves), bring the disks ”back” to target positions in increasing 
order of the x-coordinates of their centers. (General convex objects need rotations and 
translations in the second step). Already for the class of disks, Theorem 3 shows that one 
cannot do much better in terms of the number of moves. 
Theorem 2 [5] Given a pair of start and target configurations S and T, each consisting of n congruent 
disks, sliding moves always suffice for transforming the start configuration into the 
target configuration. The entire motion can be computed in  time. On the other hand, 

there exist pairs of configurations that require  moves for this task. 
We now briefly sketch the upper bound proof and the corresponding algorithm in [5] for 
congruent disks. First, one shows the existence of a line bisecting the set of centers of the 
start disks such that the strip of width 6 around this line contains a small number of disks. 
More precisely the following holds: 
Lemma 1 [5] Let S be a set of n pairwise disjoint unit (radius) disks in the plane. Then there exists a 

line   that bisects the centers of the disks such that the parallel strip of width 6 around  (that is, 
runs in the middle of this strip) contains entirely at most disks. 

Let S’ and T’ be the centers of the start disks and target disks, respectively, and let be the line 
guaranteed by Lemma 1. We can assume that is vertical. Denote by s1 = [n/2] and s2 = [n/2] the 
number of centers of start disks to the left and to the right of  (centers on can be assigned to 
the left or right). Let be the number of start disks contained entirely in the 
vertical strip of width 6 around . Denote by t1 and t2 the number of centers of target disks to the 
left and to the right of , respectively. By symmetry we can assume that 
Let R be a region containing all start and target disks, e.g., the smallest axis-aligned rectangle that 
contains all disks. The algorithm has three steps. All moves in the region R are taken along 
horizontal lines, i.e., perpendicularly to the line . The reconfiguration procedure is schematically 
shown in Figure 3. This illustration ignores the disks/targets in the center parallel strip. 

Fig. 3. Algorithm with three steps for sliding congruent disks. The start disks are white and 
the target disks are shaded. 

STEP 1 Slide to the far right all start disks whose centers are to the right of  and the (other) 
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start disks in the strip, one by one, in decreasing order of their x-coordinates (with ties broken 
arbitrarily). At this point all t2 n/2 target disk positions whose centers lie right of are free. 
STEP 2 Using all the  remaining disks whose centers are to the left of , in 
increasing order of their x-coordinates, fill free target positions whose centers are right of ,
in increasing order of their x-coordinates: each disk slides first to the left, then to the right 
on a wide arc and to the left again in the end. Note that  . Now all the target 
positions whose centers lie left of  are free. 
STEP 3 Move to place the far away disks: first continue to fill target positions whose centers 
are to the right of  , in increasing order of their x-coordinates. When done, fill target 
positions whose centers are left of , in decreasing order of their x-coordinates. Note that at 
this point all target positions whose centers lie left of  are free. 
The only non-target moves are those done in STEP 1 and their number is 

, so the total number of moves is .
The first simple idea in constructing a lower bound is as follows: The target configuration 
consists of a set of n densely packed unit (radius) disks contained, for example, in a square 
of side length . The disks in the start configuration enclose the target positions using 
concentric rings, that is,  rings, each with  start disk positions, as shown in 
Figure 4. Now observe that for each ring, the first move which involves a disk in that ring 
must be a non-target move. The number of rings is , from which the lower bound 

 follows. 

Fig. 4. A lower bound of  moves:  rings, each with   start disk 
positions. Targets are densely packed in a square formation enclosed by the rings. 

This basic idea of a cage-like construction can be further refined by redesigning the cage[5]. 
The new design is more complicated and uses “rigidity” considerations which go back to 
the stable disk packings of density 0 of K. Böröczky[7]. A packing C of unit (radius) disks in 
the plane is said to be stable if each disk is kept fixed by its neighbors [8]. More precisely, C
is stable if none of its elements can be translated by any small distance in any direction 
without colliding with the others. It is easy to see that any stable system of (unit) disks in the 
plane must have infinitely many elements. Somewhat surprisingly, K. Böröczky [7] showed 
that there exist stable systems of unit disks with arbitrarily small density. These can be 
adapted for the purpose of constructing a lower bound in the sliding model for congruent 
disks. The details are quite technical, and we only sketch here the new cage-like 
constructions shown in Figure 5. 
Let us refer to the disks in the start (resp. target) configuration as white (resp. black) disks. 
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Now fix a large n, and take n Use of them to build three junctions connected by 
three “double-bridges” to enclose a triangular region that can accommodate n tightly 
packed nonoverlapping black disks. Divide the remaining white disks into three roughly 

equal groups, each of size  and rearrange each group to form the initial section 
of a “one-way bridge” attached to the unused sides of the junctions. Each of these bridges 

consists of five rows of disks of “length” roughly where the length of a bridge is the 
number of disks along its side. The design of both the junctions and the bridges prohibits 

any target move before one moves out a sequence of about  white adjacent 
disks starting at the far end of one of the one-way bridges. The reason is that with the 
exception of the at most 3 × 4 = 12 white disks at the far ends of the truncated one-way 
bridges, every white disk is fixed by its neighbours. The total number of necessary moves is 
at least  for this triangular ring construction, and at least 

 for the hexagonal ring construction. 
For disks of arbitrary radii, the following result is obtained in [5]: 

Fig. 5. Two start configurations based on hexagonal and triangular cage-like constructions. 
Targets are densely packed in a square formation enclosed by the cage. 
For disks of arbitrary radii, the following result is obtained in [5]: 

Theorem 3 [5] Given a pair of start and target configurations, each consisting of 
_
disks of arbitrary 

radii, 2n sliding moves always suffice for transforming the start configuration into the target 
configuration. The entire motion can be computed in O(n log n) time. On the other hand, there exist 
pairs of configurations that require 2n – o(n)moves for this task, for every sufficiently large n. 

Fig. 6. A simple configuration which requires about 3n/2 moves (basic step for the recursive 
construction).
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The upper bound follows from the universal reconfiguration algorithm described earlier. 
The lower bound is a recursive construction shown in Figure 7. It is obtained by iterating 
recursively the basic construction in Figure 6, which requires about 3n/2 moves: note that 
the target positions of the n – 1 small disks lie inside the start position of the large disk. This 
means that no small disk can reach its target before the large disk moves away, that is, 
before roughly half of the n – 1 small disks move away. So about 3n/2 moves in total are 
necessary. 
In the recursive construction, the small disks around a large one are replaced by the ”same” 
construction scaled (see Figure 7). All disks have distinct radii so it is convenient to think of 
them as being labeled. There is one large disk labeled 0, and 2m + 1 groups of smaller disks 
around it close to the vertices of a regular (2m + 1)-gon (m  1). The small disks on the last 
level or recursion have targets inside the big ones they surround (the other disks have 
targets somewhere else). Let m  1 be fixed. If there are levels in the recursion, about 

non-target moves are necessary. The precise calculation for m = 1 
yields the lower bound , see [5]. 

Fig. 7. Recursive lower bound construction for sliding disks of arbitrary radii: m = 2 and k = 3. 

2.2 The translation model 

This model is a constrained variant of the sliding model, in which each move is a translation 
along a fixed direction; that is, the center of the moving disk traces a line segment. With 
some care, one can modify the universal algorithm mentioned in the introduction, and find 
a suitable order in which disks can be moved “to infinity” and then moved “back” to target 
position via translations all almost parallel to any given fixed direction using 2n translation
moves [1]. 

Fig. 8. A two-disk configuration that requires 4 translation moves. 
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That this bound is best possible for arbitrary radii disks can be easily seen in Figure 8. The 
two start disks and the two target positions are tangent to the same line. Note that the first 
move cannot be a target move. Assume that the larger disk moves first, and observe that its 
location must be above the horizontal line. If the second move is again a non-target move, 
we have accounted for 4 moves already. Otherwise, no matter which disk moves to its target 
position, the other disk will require two more moves to reach its target. The situation when 
the smaller disk moves first is analogous. One can repeat this basic configuration with two 
disks, using different radii, to obtain configurations with an arbitrary large (even) number 
of disks, which require 2n translation moves. 

Fig. 9. A configuration of 6 congruent disks that requires 9 translation moves. 

Theorem 4 [1] Given a pair of start and target configurations, each consisting of 
_
disks of arbitrary 

radii, 2n translation moves always suffice for transforming the start configuration into the target 
configuration. On the other hand, there exist pairs of configurations that require 2n such moves. 
For congruent disks, the configuration shown in Figure 9 requires 3n/2 moves, since from 
each pair of tangent disks, the first move must be a non-target move. The best known lower 
bound, [8n/5], is from [1]; we illustrate it in Figure 10. The construction is symmetric with 
respect to the middle horizontal line. Here we have groups of five disks each, where to 
move one group to some five target positions requires eight translation moves. In each 
group, the disks S2, S4 and S5 are pairwise tangent, and S1 and S3 are each tangent to S2; the 
tangency lines in the latter pairs are almost horizontal converging to the middle horizontal 
line. There are essentially only two different ways for “moving” one group, each requiring 
three non-target moves: (i) S1 and S3 move out, S2 moves to destination, S4 moves out, S5

moves to destinations followed by the rest. (ii) S4, S5 and S2 move out (to the left), S1 and S3

move to destinations followed by the rest. 

Fig. 10. Reconfiguration of a system of 10 congruent disks which needs 16 translation 
moves. Start disks are white and target disks are shaded. 
Theorem 5 [1] Given a pair of start and target configurations, each consisting of n congruent disks, 
2n – 1 translation moves always suffice for transforming the start configuration into the target 
configuration. On the other hand, there exist pairs of configurations that require [8n/5] such moves. 

2.3 The lifting model 

For systems of n congruent disks, one can estimate the number of moves that are always 
sufficient with relatively higher accuracy. The following result is obtained in [6]: 
Theorem 6 [6] Given a pair of start and target configurations S and T, each with n congruent disks, 
one can move disks from S to T using n + O(n2/3) moves in the lifting model. The entire motion can 
be computed in O(n log n) time. On the other hand, for each n, there exist pairs of configurations 
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which require moves for this task. 
The lower bound construction is illustrated in Figure 11 for n = 25. Assume for simplicity 
that n = m2 where m is odd. We place the disks of T onto a grid X X of size m m where X 
= {2, 4, …, 2m} We place the disks of S onto a grid of size (m – 1) x (m – 1) so that they 
overlap with the disks from T. The grid of target disks contains 4m – 4 disks on its 
boundary. We “block” them with 2m – 2 start disks in S by placing them so that each start 
disk overlaps with two boundary target disks as shown in the figure. We place the last start 
disk somewhere else, and we have accounted for (m – 1)2 + (2m – 2) + 1 = m2  start disks. As 
proved in [6], at least n + [m/2] moves are necessary for reconfiguration (it can be verified 
that this number of lifting moves suffices for this construction). 

Fig. 11. A pair of start and target configurations, each with n = 25 congruent disks, which 
require 27 lifting moves. The start disks are white and the target disks are shaded. 

The upper bound n + O(n2/3) of is technically somewhat more complicated. It uses a binary 
space partition of the plane into convex polygonal (bounded or unbounded) regions 
satisfying certain properties. Once the partition is obtained, a shifting algorithm moves disks 
from some regions to fill the target positions in other regions, see [6] for details. Since the 
disks whose target position coincides with their start position can be safely ignored in the 
beginning, the upper bound yields an efficient algorithm which performs a number of 
moves close to the optimum (for large n).
For arbitrary radius disks, the following result is obtained in [6]: 
Theorem 7 [6] Given a pair of start and target configurations S and T, each with n disks with 
arbitrary radii, 9n/5 moves always suffice for transforming the start configuration into the target 
configuration. On the other hand, for each n, there exist pairs of configurations which require 
[5n/3]moves for this task. 
The lower bound is very simple. We use disks of different radii (although the radii can be 
chosen very close to the same value if desired). Since all disks have distinct radii, one can 
think of the disks as being labeled. Consider the set of three disks, labeled 1, 2, and 3 in 
Figure 12. The two start and target disks labeled i are congruent, for i= 1,2,3. To transform 
the start configuration into the target configuration takes at least two non-target moves, thus 
five moves in total. By repeatedly using groups of three (with different radii), one gets a 
lower bound of 5n/3 moves, when n is a multiple of three, and [5n/3] in general. 

We now explain the approach in [6] for the upper bound for 
_
disks of arbitrary radii. Let S = 

{S1, …, Sn} and T = {t1, …, tn} be the start and target configurations. We assume that for each 
i, disk Si is congruent to disk ti i.e., ti is the target position of Si; if the correspondence 
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 is not given (but only the two sets of disks), it can be easily computed by sorting 
both S and T by radius. 

Fig. 12. A group of three disks which require five moves to reach their targets; part of the 
lower bound construction for lifting disks of arbitrary radii. The disks are white and their 
targets are shades. 

In a directed graph D = (V,E), let  denote the degree of vertex v, where  is 

the out-degree of v and  is the in-degree of v. Let  be the maximum size of a subset 
V' of V such that , the subgraph induced by V', is acyclic. In [6] the following inequality 
is proved for any directed graph: 

For a disk , let  denote the interior of . Let S be a set of k pairwise disjoint red disks, and 
T be a set of l pairwise disjoint blue disks. Consider the bipartite red-blue disk intersection 

graph G = (S,T,E), where . Using the triangle 
inequality (among sides and diagonals in a convex quadrilateral), one can easily show that 
any red-blue disk intersection graph G = (S,T,E) is planar, and consequently 

. We think of the start and target disks being labeled from 1 
to n, so that the target of start disk i is target disk i. Consider the directed blocking graph D = 
(S,F) on the set S of n start disks, where 

If we say that disk i blocks disk j. (Note that  does not generate any 

edge in D.) Since if then , we have . The algorithm 
first eliminates all the directed cycles from D using some non-target moves, and then fills 
the remaining targets using only target moves. Let 

be the average out-degree in D. We have  which further implies (by Jensen’s 
inequality): 

Let  be a set of disks of size at least n/5 and whose induced subgraph is acyclic in D.
Move out far away the remaining set S” of at most 4n/5 disks, and note that the far away 
disks do not block any of the disks in S’. Perform a topological sort on the acyclic graph 
D[S’] induced by S’, and fill the targets of these disks in that order using only target moves. 
Then fill the targets with the far away disks in any order. The number of moves is at most 
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 as claimed. Figure 13 shows the bipartite intersection graph G and the 
directed blocking graph D for a small example, with the corresponding reconfiguration 
procedure explained above. Similar to the case of congruent disks, the resulting algorithm 
performs a number of moves that is not more than a constant times the optimum (with ratio 
9/5).

Fig. 13. The bipartite intersection graph G and the directed blocking graph D. Move out: 4, 5, 
7, 8; no cycles remain in D. Fill targets: 3,2,1,6, and then 4,5,7,8. The start disks are white and 
the target disks are shaded. 

2.4 Further questions 

Here are some interesting remaining questions pertaining to the sliding and translation 
models: 

(1) Consider the reconfiguration problem for congruent squares (with arbitrary 

orientation) in the sliding model. It can be checked that the  upper 

bound for congruent disks still holds in this case, however the 
lower bound based on stable disk packings cannot be used. Observe that the 

 lower bound for congruent disks in the lifting model (Figure 11) can 
be realized with congruent (even axis-aligned) squares, and therefore holds for 
congruent squares in the sliding model as well. Can one deduce better bounds for 
this variant? 

(2) Derive a  upper bound for the case of congruent disks in the translation 

model (where δ  is a positive constant), or improve the  lower bound. 
(3) Consider the reconfiguration problem for congruent labeled disks in the sliding 

model. It is easy to see that  the lower bound for arbitrary disks holds, since 
the construction in Figure 12 can be realized with congruent disks. Find a 

 upper bound (where δ is a positive constant), or improve the 
lower bound. 

3. Modular and reconfigurable systems 

In [20] a number of issues related to motion planning and analysis of rectangular 
metamorphic robotic systems are addressed. A distributed algorithm for reconfiguration 
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that applies to a relatively large subclass of configurations, called horizontally convex 
configurations is presented. Several fundamental questions in the analysis of metamorphic 
systems were also addressed. In particular the following two questions have been shown to 
be decidable: (i) whether a given set of motion rules maintains connectivity; (ii) whether a 
goal configuration is reachable from a given initial configuration (at specified locations). 
For illustration, we present the rectangular model of metamorphic systems introduced in [18, 
19, 20]. Consider a plane that is partitioned into a integer grid of square cells indexed by 
their center coordinates in the underlying x-y coordinate system. This partition of the plane 
is only a useful abstraction: the module-size determines the grid size in practice, and 
similarly for orientation. 
At any time each cell may be empty or occupied by a module. The reconfiguration of a 
metamorphic system consisting of n modules is a sequence of configurations (distributions) 

of the modules in the grid at discrete time steps t=0,1,2…, see below. Let be the 

configuration of the modules at time t, where we often identify  with the set of cells 
occupied by the modules or with the set of their centers. We are only interested in 

configurations that are connected, i.e., for each t, the graph  must be connected, 

where for any , is the set of edges connecting pairs of cells in  that are side-adjacent. 
The following two generic motion rules (Figure 14) define the rectangular model [18, 19, 20]. 
These are to be understood as possible in all axis parallel orientations, in fact generating 16 
rules, eight for rotation and eight for sliding. A somewhat similar model is presented in [10]. 

• Rotation: A module m side-adjacent to a stationary module f rotates through an 
angle of 90° around f either clockwise or counterclockwise. Figure 14(a) shows a 
clockwise NE rotation. For rotation to take place, both the target cell and the cell at 
the corresponding corner of f that m passes through (NW in the given example) 
have to be empty. 

• Sliding: Let f1 and f2 be stationary cells that are side-adjacent. A module  that m is 
side-adjacent to f1 and adjacent to f2 slides along the sides of f1 and f2 into the cell 
that is adjacent to f and side-adjacent to f2. Figure 14(b) shows a sliding move in the 
E direction. For sliding to take place, the target cell has to be empty. 

The system may execute moves sequentially, when only one module moves at each discrete 
time step, or concurrently (when more modules can move at each discrete time step). 
Parallel execution has the advantage to speed up the reconfiguration process. If concurrent 
moves are allowed, additional conditions have to be imposed, as in [19, 20]. In order to 
ensure motion precision, each move is guided by one or two modules that are stationary 
during the same step. 

Fig. 14. Moves in the rectangular model: (a) clockwise NE rotation and (b) sliding in the E
direction. Fixed modules are shaded. The cells in which the moves take place are outlined in 
the figure. 
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The following recent result settles a conjecture formulated in [20]. 
Theorem 8 [18] The set of motion rules of the rectangular model guarantees the feasibility of motion 
planning for any pair of connected configurations V and V’ having the same number of modules. That 
is, following the above rules, V and V’ can always be transformed into each other so that all 
intermediate configurations are connected. 
The algorithm is far from being intuitive or straightforward. The main difficulties that have 
to be overcome are: dealing with holes and avoiding certain deadlock situations during 
reconfiguration. The proof of correctness of the algorithm and the analysis of the number of 
moves (cubic in the number of modules, for sequential execution) are quite involved. At the 
moment, this is for reconfiguration without the presence of obstacles! 
We refer to a set of modules that form a straight line chain in the grid, as a straight chain. It is 
easy to construct examples so that neither sliding nor rotation alone can reconfigure them to 
straight chains. Conform with Theorem 8, the motion rules of the rectangular model 
(rotation and sliding, Figure 14) are sufficient to guarantee reachability, while maintaining 
the system connected at each discrete time step. This has been proved earlier for the special 
class of horizontally convex systems [20]. 
A somewhat different model can be obtained if, instead of the connectedness requirement at 
each time step, one imposes the so-called single backbone condition [20]: a module moves 
(slides or rotates) along a single connected backbone (formed by the other modules). If 
concurrent moves are allowed, additional conditions have to be imposed, as in [20]. A subtle 
difference exists between requiring the configuration to be connected at each discrete time 
step and requiring the existence of a connected backbone along which a module slides or 
rotates. A one step motion that does not satisfy the single backbone condition appears in 
Figure 15: the initial connected configuration practically disconnects during the move and 
reconnects at the end of it. Our algorithm has the nice property that the single backbone 
condition is satisfied during the whole procedure. 

Fig. 15. A rotation move which temporarily disconnects the configuration. 

We now briefly discuss another rectangular model for which the same property holds. The 
following two generic motion rules (Figure 16) define the weak rectangular model. These are 
to be understood as possible in all axis-parallel orientations, in fact generating eight rules, 
four diagonal moves and four side moves (axis-parallel ones). The only imposed condition 
is that the configuration must remain connected at each discrete time step. 

• Diagonal move: A module m moves diagonally to an empty cell corner-adjacent to cell(m). 
• Side move: A module m moves to an empty cell side-adjacent to cell(m).
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Fig. 16. Moves in the weak rectangular model: (a) NE diagonal move and (b) side move in 
the E direction. The cells in which the moves take place are outlined in the figure. 

The same result as in Theorem 8 holds for this second model [18]; however, its proof and 
corresponding reconfiguration algorithm, are much simpler. It remains to be seen how these 
two models compare in a practical realization. 
Theorem 9 [18] The set of motion rules of the weak rectangular model guarantees the feasibility of 
motion planning for any pair of connected configurations having the same number of modules. 
A different variant of inter-robot reconfiguration is useful in applications for which there is 
no clear preference between the use of a single large robot versus a group of smaller ones 
[12]. This leads to the merging of individual smaller robots into a larger one or the splitting 
of a large robot into smaller ones. For example, in a surveillance or rescue mission, a large 
robot is required to travel to a designated location in a short time. Then the robot may create 
a group of small robots which are to explore in parallel a large area. Once the task is 
complete, the robots might merge back into the large robot that carried them. 
As mentioned in [17], there is considerable research interest in the task of having one 
autonomous vehicle follow another, and in general in studying robots moving in formation. 
[19] examines the problem of dynamic self-reconfiguration of a modular robotic system to a 
formation aimed at reaching a specified target position as quickly as possible. A number of 
fast formations for both rectangular and hexagonal systems are presented, achieving a 
constant ratio guarantee on the time to reach a given target in the asymptotic sense. 
For example in the rectangular model, for the case of even n  4, there exist snake-like 

formations having a speed of . Fig. 17 shows the case n = 20, where the formation at time 0 
reappears at time 3, translated diagonally by one unit. Thus by repeatedly going through 

these configurations, the modules can move in the NE direction at a speed of .

Fig. 17. Formation of 20 modules moving diagonally at a speed of  (diagonal formation). 

We conclude this section with some remaining questions on modular and reconfigurable 
systems related to the results presented: 

(1) The reconfiguration algorithm in the rectangular model takes fewer than 2n3moves 
in the worst case (with the current analysis). On the other hand, the reconfiguration 
of a vertical chain into a horizontal chain requires only moves, and it is 
believed that no other pair of configurations requires more. This has been shown to 
hold in the weak rectangular model, but it remains open in the first model. 

(2) Extend the algorithm(s), for reconfiguration under the presence of obstacles. 
(3) Study weather the analogous rules of rotation and sliding in three dimensions 

permit the feasibility of motion planning for any pair of connected configurations 
having the same number of modules. 
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4 Reconfigurations in graphs and grids 

In certain applications, objects are indistinguishable, therefore the chips are unlabeled; for 
instance, a modular robotic system consists of a number of identical modules (robots), each 
having identical capabilities [18, 19, 20]. In other applications the chips may be labeled. The 
variant with unlabeled chips is easier and always feasible, while the variant with labeled 
chips may be infeasible: a classical example is the 15-puzzle on a 4 x 4 grid — introduced by 
Sam Loyd in 1878 — which admits a solution if and only if the start permutation is an even 
permutation [24, 33] Most of the work done so far concerns labeled versions of the 
reconfiguration problem, and we give here only a short account. 
For the generalization of the 15-puzzle on an arbitrary graph (with k = v – 1 labeled chips in 
a connected graph on v vertices), Wilson [37] gave an efficiently checkable characterization 
of the solvable instances of the problem. Kornhauser et al. have extended his result to any k

v – 1 and provided bounds on the number of moves for solving any solvable instance [25]. 
Ratner and Warmuth have shown that finding a solution with minimum number of moves 
for the (N x N) extension of the 15-puzzle is intractable [30], so the reconfiguration problem 
in graphs with labeled chips is NP-hard. 
Auletta et al. gave a linear time algorithm for the pebble motion on a tree [3]. This problem is 
the labeled variant of the same reconfiguration problem studied in [13], however each move 
is along one edge only. 
Papadimitriou et al. studied a problem of motion planning on a graph in which there is a 
mobile robot at one of the vertices s, that has to reach to a designated vertex t using the 
smallest number of moves, in the presence of obstacles (pebbles) at some of the other 
vertices [29]. Robot and obstacle moves are done along edges, and obstacles have no 
destination assigned and may end up in any vertex of the geraph. The problem has been 
shown to be NP-complete even for planer graphs, and a ration polynomial time 
approximation algorithm was given in [29]. 
The following results are shown in [13] for the “chips in graph” reconfiguration problem 
described in part (III) of Section 1. 

(1) The reconfiguration problem in graphs with unlabeled chips U-GRAPH-RP is NP-
hard, and even APX-hard. 

(2) The reconfiguration problem in graphs with labeled chips L-GRAPH-RP is APX-
hard. 

(3) For the infinite planar rectangular grid, both the labeled and unlabeled variants L-
GRID-RP and U-GRID-RP are NP-hard. 

(4) There exists a ratio 3 approximation algorithm for the unlabeled version in graphs 
U-GRAPH-RP. Thereby one gets a ratio 3 approximation algorithm for the 
unlabeled version U-GRID-RP in the (infinite) rectangular grid. 

(5) It is shown that n moves are always enough (and sometimes necessary) for the 
reconfiguration of n unlabeled chips in graphs. For the case of trees, a linear time 
algorithm which performs an optimal (minimum) number of moves is presented. 

(6) It is shown that 7n/4 moves are always enough, and 3n/2 are sometimes 
necessary, for the reconfiguration of n labeled chips in the infinite planar 
rectangular grid (L-GRID-RP). 

Next, we give some details showing that in the infinite grid, n moves always suffice for the 
reconfiguration of n unlabeled chips, and of course it is easy to construct tight examples. 
The result holds in a more general graph setting (item (5) in the above list): Let G be a 
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connected graph, and let V and V’ two -element subsets of its vertex set V(G). Imagine that 
we place a chip at each element of V and we want to move them into the positions of V’ (V
and V’ may have common elements). A move is defined as shifting a chip from v1 to 

along a path in G so that no intermediate vertices are occupied. 
Theorem 10 [13] In G one can get from any n-element initial configuration V to any n-element final 
configuration V’ using at most n moves, so that no chip moves twice. 
It is sufficient to prove the theorem for trees. We argue by induction on the number of chips. 
Take the smallest tree T containing V and V’, and consider an arbitrary leaf l of T. Assume 
first that the leaf l belongs to V: say l=v. If v also belongs to V’, the result trivially follows by 
induction, so assume that this is not the case. Choose a path P in T, connecting v to an 
element v’ of V’ such that no internal point of P belongs to V’. Apply the induction 
hypothesis to V\{v} and V’\{v’} to obtain a sequence of at most n-1 moves, and add a final 
(unobstructed) move from to. 
The remaining case when the leaf l belongs to V’ is symmetric: say l=v’; choose a path P in T,
connecting v’ to an element v of V such that no internal point of P belongs to V. Move first v
to v’ and append the sequence of at most n-1 moves obtained from the induction hypothesis 
applied to V\{v} and V’\{v’}. This completes the proof. 
Theorem 10 implies that in the infinite rectangular grid, we can get from any starting 
position to any ending position of the same size n in at most n moves. It is interesting to 
compare this to the problem of sliding congruent unlabeled disks in the plane, where one 

can come up with cage-like constructions that require about  moves [5], as discussed in 
Section 2.1. Here are some interesting remaining questions on reconfigurations in graphs 
and grids: 

(1) Can the ratio approximation algorithm for the unlabeled version in graphs U-
GRAPH-RP be improved? Is there an approximation algorithm with a better ratio 
for the infinite planar rectangular grid? 

(2) Close or reduce the gap between the 3n/2 lower bound and the 7n/4 upper bound 
on the number of moves for the reconfiguration of n labeled chips in the infinite 
planar rectangular grid. 

5 Conclusion 

The different reconfiguration models discussed in this survey have raised new interesting 
mathematical questions and revealed surprising connections with other older ones. For 
instance the key ideas in the reconfiguration algorithm in [18] were derived from the 
properties of a system of maximal cycles, similar to those of the block decomposition of 
graphs [16]. 
The lower bound configuration with unit disks for the sliding model in [5] uses “rigidity” 
considerations and properties of stable packings of disks studied a long time ago by 
Böröczky [7]; in particular, he showed that there exist stable systems of unit disks with 
arbitrarily small density. A suitable modification of his construction yields our lower bound. 
The study of the lifting model offered other interesting connections: the algorithm for unit 
disks given in [6] is intimately related to the notion of center point of a finite point set, and to 
the following fact derived from it: Given two sets each with n pairwise disjoint unit disks, 
there exists a binary space partition of the plane into polygonal regions each containing 
roughly the same small number  of disks and such that the total number of disks 
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intersecting the boundaries of the regions is small . The reconfiguration algorithm for 
disks of arbitrary radius relies on a new lower bound on the maximum order of induced 
acyclic subgraphs of a directed graph [6], similar to the bound on the independence number of 
an undirected graph given by Turán’s theorem [2]. 
The ratio 3 approximation algorithm for the unlabeled version in graphs is obtained by 
applying the local ratio method of Bar-Yehuda [4] to a graph H constructed from the given 
graph G. Regarding the various models of reconfiguration for systems of objects in the 
plane, we currently have combinatorial estimates on the number of moves that are 
necessary in the worst case. From the practical viewpoint one would like to covert these 
estimates into approximation algorithms with a good ratio guarantee. As shown for the 
lifting model, the upper bound estimates on the number of moves give good approximation 
algorithms for large values of n. However further work is needed in this direction for the 
sliding model and the translation model in particular. 
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