
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

20

A Generalized Robot Path Planning Approach
Without The Cspace Calculation

Yongji Wang1, Matthew Cartmell2 , QingWang1 Qiuming Tao1

1State Key Laboratory of Computer Science and Laboratory for Internet Software
Technologies, Institute of Software, Chinese Academy of Sciences, Beijing, China

2Department of Mechanical Engineering, University of Glasgow, Glasgow, G12 8QQ,
U.K.

1. Introduction

One of the ultimate goals of robotics is to create autonomous robots. Such robots could accept

high level instructions and carry out tasks without further human supervision or intervention.

High level input commands would specify a desired task and the autonomous robot would

compute how to complete the task itself. Progress towards autonomous robots is of great

research and practical interest, with possible applications in any environment hostile to

humans. Examples are underwater work, space exploration, waste management and bomb

disposal among many others. One of the key technical issues towards such an autonomous

robot is the Path Planning Problem (PPP): How can a robot decide what paths to follow to

achieve its task. The PPP can be described as follows: given a robot with an initial configuration,

a goal configuration, its shape and a set of obstacles located in the workspace, find a collision-

free path from the initial configuration to the goal configuration for it.

PPP has been an active field during the past thirty years. Although seemingly trivial, it has

proved notoriously difficult to find techniques which work efficiently, especially in the

presence of multiple obstacles. A significant and varied effort has been made on this

complicated problem (Wang et al., 2005; Wang et al., 2004; Wang & Lane, 2000; Wang &

Lane, 1997; Wang, 1995; Wang, 1997; Wang et al., 2000; Wang & Cartmell, 1998c; Wang &

Cartmell, 1998a; Wang & Cartmell, 1998b; Wang & Linnett, 1995; Wang et al., 1994a; Wang

et al., 1994b; Petillot et al., 1998; Petillot et al., 2001; Park et al., 2002; Ruiz et al., 1999; Trucco

et al., 2000; Brooks & Lozano-Perez, 1985; Conn & Kam, 1997; Connolly, 1997; Hu et al., 1993;

Huang & Lee, 1992; Hwang & Ahuja, 1992; Khatib, 1986; Latombe, 1991; Lozano-Perez, 1983;

Lu & Yeh, 2002; Lumelsky, 1991; Oriolo et al., 1998; Xu & Ma, 1999; Zhang & Valavanis,

1997). Various methods for dealing with the basic find-path problem and its extensions,

such as Vgraph, Voronoi diagram, exact cell decomposition, approximate cell

decomposition, potential field approach, and optimization-based approach have been

developed. A systematic discussion on these old methods can be found in references (Wang

et al., 2005; Wang, 1995; Latombe, 1991).

In any robot path planning method, robot and obstacle representation is the first thing to be

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

434 Mobile Robots, Perception & Navigation

considered. PPP essentially deals with how to find a collision_free path for a 3 Dimensional

(3D) object (robot) moving among another set of 3D objects (obstacles), satisfying various

constraints (Wang et al., 2005; Wang et al., 2004; Wang & Lane, 2000; Wang & Lane, 1997;

Wang, 1995; Wang, 1997; Wang et al., 2000). There are many reasons for having so many

different approaches developed. For example, assumptions made on both the shapes of the

robot and obstacles and the constraints imposed by the mechanical structure of the robot

contribute to them (Wang, 1997). The important thing for judging the reality of an approach

is whether the realistic constraints have been considered.
An important concept proposed in the early stage of robot path planning field is the
shrinking of the robot to a point and meanwhile the expanding of the obstacles in the
workspace as a set of new obstacles. The resulting grown obstacles are called the
Configuration Space (Cspace) obstacles. The find-path problem is then transformed into
that of finding a collision-free path for a point robot among the Cspace obstacles. This
idea was first popularized by Lozano-Perez (Lozano-Perez, 1983) in the Artificial
Intelligence Laboratory, MIT as a basis of the spatial planning approach for the find-path
and find-place problems, and then extended by Latombe (Latombe, 1991) as a basis for all
motion planning approaches suitable for a point robot. However, the research experiences
obtained so far have shown that the calculation of Cspace obstacles is very hard in 2D
when the following situations occur. 1. Both the robot and obstacles are not polygons; and
2. The robot is allowed to rotate. The situation gets even worse when the robot and
obstacles are 3D objects with various shapes (Ricci, 1973; Blechschmidt & Nagasuru, 1990;
Barr, 1981; Chiyokura, 1988). For this reason, direct path planning approaches without the
Cspace calculation is quite useful and expected.
The objective of this chapter is to present a new approach to the PPP without the Cspace
calculation. The chapter is based on our previous work (Wang et al., 2005; Wang et al., 2004;
Wang & Lane, 2000; Wang & Lane, 1997), and in the following we will present the
background of the new method to show its principle.

Historically the Constrained Optimization and Constructive Solid Geometry (COCSG)

method is first proposed in (Wang & Lane, 1997), and two assumptions made in it are that:

1. The Cspace obstacles in the workspace can be approximately represented by inequalities;

and 2. The robot can be treated as a point. The mathematical foundations for the

Constructive Solid Geometry (CSG), the Boolean operations, and the approximation

techniques are developed to represent the free space of the robot as a set of inequalities

(Ricci, 1973; Wang & Lane, 1997). The fundamental ideas used include: 1. The free Cspace of

the robot is represented as a set of inequality constraints using configuration variables; 2.

The goal configuration is designed as the unique global minimum point of the objective

function, and the initial configuration is treated as the start point for the spatial search; and

3. The numerical algorithm developed for solving nonlinear programming problem is

applied to solve the robot motion planning problem and every immediate point generated

in this way guarantees that it is in the free space, and therefore is collision free. The

contribution of the above paper is that for the first time, the idea of inequality is introduced

to represent objects and the optimization technique is used for the efficient search.

However, we can still observe that two issues arise from the above problem formulation.

One is how to exactly rather than approximately deal with the shapes of both the robot and

the obstacles, and the other is how to calculate the Cspace obstacles. In reference (Wang &

A Generalized Robot Path Planning Approach Without The Cspace Calculation 435

Lane, 2000), we further investigate the effect of obstacle shapes on the problem formulation,

and introduce the new concept of the first and second kinds of obstacles. When the second

kind of obstacles is considered, the PPP leads to a generalized constrained optimization

problem (GCOP) with both logic AND and OR relationships, which is totally different from

the traditional standard constrained optimization problem with only logic AND relationship

among the constraints. A mathematical transformation technique is developed to solve the

GCOP. The original contributions of this paper include threefold: First, from the viewpoint

of optimization theory, it is the first one to propose such a GCOP; Second, a method is

developed to solve such a GCOP; Third, from the viewpoint of PPP, this paper inherits the

advantage of the previous method in (Wang & Lane, 1997) and further generalizes its ability

to deal with various shapes of obstacles.

The issue that has not been addressed by the above two papers is the calculation of the

Cspace obstacles. We deal with the PPP with the first kind of obstacles in (Wang et al., 2004)

and the second kind of obstacles in (Wang et al., 2005) respectively, without the need to

calculate the Cspace obstacles. A sufficient and necessary condition for a collision free path

for the robot and the obstacles is then derived in the form of a set of inequalities that lead to

the use of efficient search algorithms. The principle is that the points outside the obstacles in

the 3D workspace are represented by implicit inequalities, the points on the boundary of a

3D robot are expressed in the form of a parametric function, and the PPP is formulated as a

semi-infinite constrained optimization problem with the help of the mathematical

transformation. To show its merits, simulation results with different shapes of robot and

obstacles in 3D space are presented.

In this chapter we will present a comprehensive introduction to the principle of the PPP

without the Cspace calculation, including the mathematical background, robot and obstacle

representation, sufficient and necessary condition for collision-free path, algorithm

efficiency, and the simulation results. Particularly, we will also discuss the constraints that

must be considered in the future work and explain mathematically the reason why these

constraints can lead to more difficulties in this area.

The rest of the chapter is organized as follows. Section 2 gives a brief description of

inequality constraints and the formulations for optimization theory. In particular, a

previously-developed, generalized constrained optimization and the mathematical

translation needed for its solution are also presented in this section. In Section 3, obstacle

and robot presentation method is presented. The implicit function inequalities for

representing the outside of the obstacles and the parametric function equalities for

representing the surface points of 3D robot are developed. In Section 4, we investigate

how to convert the robot path planning problem into a semi-infinite constrained

optimization problem. Simulation results are presented in Section 5. Finally conclusions

are given in Section 6.

2. Mathematical Background

In this section we will give a brief introduction to various optimization problems, i.e. the
standard constrained optimization problem (SCO), generalized constrained optimization
problem (GCO), and semi-infinite constrained problem (SICO). The essential part of the
mathematical transformation which can transfer a set of inequalities with logic OR
operations into one inequality is also introduced in subsection 2.4. Details of the nonlinear

436 Mobile Robots, Perception & Navigation

programming theory can be found in (Fletcher, 1987; Gill et al., 1981; Luenberger, 1984;
Polak & Mayne, 1984; Rao, 1984; Tanak et al., 1988).

2.1 Optimization Problems

Standard optimization theory (SOT) concerns the minimization or maximization of a
function subject to different types of constraints (equality or inequality) (Fletcher, 1987; Gill
et al., 1981). There are mainly four different types of optimization problem: Linear
Programming, Unconstrained Problems, Constrained Problems and Semi-infinite Constrained
Problems, as listed in Table 1. The last three parts together comprise the subject of Non-linear
Programming.

TYPE NOTATION

Unconstrained scalar min f(x)

Unconstrained min f(x)

Constrained min f(x) such that g(x) ≤ 0

Goal min γ such that f(x)-xγ ≤ Goal

Minmax min{max f(x)} such that g(x) ≤ 0

Nonlinear least squares min { f(x)*f(x)}

Nonlinear equations f(x)=0

Semi-infinite constrained min f(x) such that g(x) ≤ 0 & Φ(x,w) ≤ 0 for all w∈ ℜ 2

Table 1. Types of nonlinear minimization problems.

2.2 Standard Constrained Optimization (SCO)

The standard constrained optimization problem can be described as follows: find an optimal
point x* which minimizes the function:

 f(x) (1)
subject to:
 gi(x) = 0, i = 1, 2,…, t

 gj(x) ≤ 0, j = t+1, t+2,…, s

 xL ≤ x ≤ xU (2)

where t and s are positive integers and s t, x is an n-dimensional vector of the unknowns x
= (x1 , x2,…, xn), and f, gi (i = 1, 2,…, t) and gj (j = t+1, t+2,…, s) are real-valued functions of
the variables (x1 , x2,…, xn). xL = (L1, L2 ,…, Ln) and xU =(U1 ,U2, …, Un) are the lower and
upper bounds of x, respectively. The function f is the objective function, and the equations
and inequalities of (2) are constraints.
It is important to note that although not explicitly stated in the literature available, the logic
relationship among the constraints (equalities and inequalities) in (2) are logic AND

(denoted by “∧”). That is, constraints in (2) can be presented explicitly as:

 g1(x)=0 ∧ g2(x)=0 ∧ … ∧ gt(x)=0

∧ gt+1(x)≤0 ∧ gt+2(x)≤0 ∧ … ∧ gs(x)≤0 (3)

∧ L1≤x1≤U1 ∧ L2≤x2≤U2 ∧ … ∧ Ln≤xn≤Un.

Problem described by (1) and (2) is named as the standard constrained optimization
problem (SCOP).

A Generalized Robot Path Planning Approach Without The Cspace Calculation 437

2.3 Generalized Constrained Optimization (GCO)

The work reported in (Wang & Lane, 2000) has shown that some realistic problem can be
cast as a generalized constrained optimization problem of the following form:
Find an optimal point x* which minimizes the function

 f(x) (4)
subject to:

 g1(x)=0 ∧ g2(x)=0 ∧ … ∧ gt(x)=0

∧ gt+1(x)≤0 ∧ gt+2(x)≤0 … ∧ gs(x)≤0

∧ (h1,1(x)≤0 ∨ h1,2(x)≤0 ∨ …∨
11,kh (x)≤0)

∧ (h2,1(x)≤0 ∨ h2,2(x)≤0 ∨ …∨
22,kh (x)≤0)

∧ …

∧ (hm,1(x)≤0 ∨ hm,2(x)≤0 ∨ …∨ , mm kh (x)≤0)

∧ L1≤x1≤U1 ∧ L2≤x2≤U2 ∧ … ∧ Ln≤xn≤Un (5)

where, the symbol “∨” denotes the logic OR relationship, t, s, m, k1, k2, ..., km are all positive
integers, and hi,j(x), (i=1,2,…m; j=1,2,…ki), are real-valued functions of the variables x. The
problem described by (4) and (5) is named as the generalized constrained optimization
problem (GCOP) because the constraints have both logic AND and logic OR relationships.
The development of an algorithm for the solution to GCOP is important. There are two
ways to deal with the difficulty. The first is to develop some new algorithms which can
directly deal with the GCOP rather than adopting the algorithms available for the SCOP.
The second way is based on the idea of devising a mathematical transformation which is

able to convert each constraint: hi,1(x)≤0 ∨ hi,2(x)≤0 ∨ … ∨
, ii k
h (x)≤0 (i=1, 2, …, m) into one

new inequality Hi(x)≤ 0, i=1, 2, …, m, for any point x. As a result, the algorithms developed
for the SCOP can be directly applied to the GCOP.

2.4 A Mathematical Solution to Converting a Set of Inequalities with Logic OR Relation
into One Inequality

Here, we present a mathematical transformation which is able to realize the second idea in
subsection 2.3. Suppose there are m inequalities hi(x)<0, i=1,2,...,m, with Logic AND defined
as set A in (6). From a mathematical viewpoint, set A represents the point set of the inside

for a generalized n dimensional object, and its complement A represents the point set of the
outside and boundary of the object. In a 3D space, set definition (6) may be explained as
representing the set of all the inside points for an object whose surface is mathematically
represented by m continuous equations hi(x)=0 (i=1, 2,..., m).

 A = { x | h1(x)<0 ∧ ∧ hm(x)<0 } (6)

A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 } (7)

For each function hi(x), (i=1, 2, …, m), a new function of the following form is constructed (x
is omitted for simplicity):

 vi=(
2

ih +t2)1/2+hi i=1, 2, …, m (8)

438 Mobile Robots, Perception & Navigation

where t is a small, positive real number and satisfies t<<1. Note that vi is the function of a

point x and t. For the whole object, a function V of the following form is also constructed:

1 2

1

...
m

m i

i

V v v v v
=

= + + + = (9)

Now let us examine the properties of the two transformations from hi to vi and from vi to V.

First, function vi is always positive for any point x and any constant t, i.e., vi>0 always holds,

and second, it is an increasing function of hi, which suggests that the value of vi at the

points where hi>0 is much larger than the value at the points where hi<0. If t<<1, vi can be

approximately represented as

2

2

2 () 0, 0;

, 0;

(), 0.

i i

i i

i

h O t t h

v t h

O t h

+ >> > >

= ≈ =

≈ <

 i=1, 2,…, m (10)

where O(t2) represents a very small positive number with the order of t2 for t<<1. (10)

indicates that except for the points located at the vicinity of the surface hi=0, vi is large

compared with t when hi>0, and small compared with t when hi<0.

From Fig. 1 we can see that for the points located inside the object and in the vicinity of hi=0,

the value of all other functions hj (j=1,2,...,m and j≠i) is less than zero. This leads to vi in the

order of O(t2). Substituting (10) into (9) gives

1 2

2

1 2 3

2 1 3

1 2 1

2

1 2

, (0) (0) ... (0);

(), (0 0 0 ... 0)

(0 0 0 ... 0)

... (0 0 0 ... 0);

(), (0) (0) ... (0).

m

m

m

m m

m

t for h h h

t O t for h h h h

h h h hV

h h h h

O t for h h h

−

>> > ∨ > ∨ ∨ >

≈ + = ∧ ≤ ∧ ≤ ∧ ∧ ≤ ∨

= ∧ ≤ ∧ ≤ ∧ ∧ ≤ ∨=

∨ = ∧ ≤ ∧ ≤ ∧ ∧ ≤

≈ < ∧ < ∧ ∧ <

 (11)

Consequently, from (11), (6), and (7) we can observe that: function V is small, ≈O(t2),

compared with t, when all the hi are sufficiently negative, i.e. at those points which are

inside the object; V>>t+O(t2) at the set of outside points of the object where at least one of

the hi is greater than t; and V≈t in the vicinity of the boundaries of the object. Fig. 1

illustrates this situation.

Now let us consider the situation when t→0 to have a better understanding why

construction functions (8) and (9) are used as the mathematical transformation. As t→0, vi

tends to be

Fig. 1. Illustration of V as a function of point x in n-dimensional space.

A Generalized Robot Path Planning Approach Without The Cspace Calculation 439

0, 0;

0, 0.

i

i

i

h
v

h

> >

= ≤
 i=1, 2,…, m (12)

It is well-known that the sum of two positive values is positive, the sum of a positive value
and a zero is positive, and the sum of two zeroes is zero. Thus the addition operation of vi in
(9) corresponds to the Logic OR if we treat a positive value as a logic value “1” and a zero as
a logic value “0”. Thus we have

0, 0, {1,2,..., };

0, 0, {1,2,..., }.

i

i

h for some i m
V

h for all i m

> > ∈

= ≤ ∈
 (13)

This property indicates that when t=0 the sufficient and necessary condition for a point x
which falls into the outside of the object is that

1

0
m

i

i

V v
=

= > (14)

Note that the standard form for constraints in optimization problem (1) and (2) is less than
or equal to zero. Note that although (14) may change to the form (15), it does not allow the
condition “equal to zero”.

1

0
m

i

i

V v
=

− = − < (15)

In fact, the “equal to zero” case means the point lies on the boundary of the object.
However, it is not desirable for robot path planning to have the path too close to the

obstacles. Thus a small positive value ∆v can be introduced to control the distance of the
feasible path to the obstacle. If the following inequality is satisfied by a point x

1

m

i

i

V v v
=

= ≥ ∆ or

1

0
m

i

i

v v
=

∆ − ≤ (16)

then this point must be outside the obstacle determined by (6). If ∆v→0, the boundary

determined by

1

0
m

i

i

v v
=

∆ − ≤ tends to be the surface of the obstacle.

In summary, we have the following result.

Theorem 1: If the outside and the surface of an object is determined by (h1≥0 ∨ h2≥0 ∨ ... ∨ hm≥0),

then its outside and surface can also be determined by the inequality

1

0
m

i

i

v v
=

∆ − ≤ as the small

positive value ∆v→0. In other words, the satisfaction of the inequality

1

0
m

i

i

v v
=

∆ − ≤ for a point x

guarantees that this point falls outside the object.
A direct conclusion drawn from Theorem 1 is that a GCO problem can be converted into an
SCO problem by the transformations (8) and (9).

2.5 Semi-Infinite Constrained Optimization (SICO)

The semi-infinite constrained optimization problem is to find the minimum of a semi-
infinitely constrained scalar function of several variables x starting at an initial estimate xs.
This problem is mathematically stated as:

440 Mobile Robots, Perception & Navigation

Minimize

 f(x), x ∈ ℜ n, (17)
subject to:
 gi(x) = 0, i = 1, 2, …, t

 gj(x) ≤ 0, j= t+1, t+2,…, s

Φk(x, v) ≤ 0, k= 1, 2, …, r

 xL ≤ x ≤ xU, for all v∈ ℜ 2 (18)

where Φk(x, v) is a continuous function of both x and an additional set of variables v. The
variables v are vectors of at most length two. The aim is to minimize f(x) so that the

constraints hold for all possible values of Φk(x, v). Since it is impossible to calculate all

possible values of Φk(x, v), a region, over which to calculate an appropriately sampled set of
values, must be chosen for v. x is referred to as the unknown variable and v as the
independent variables.
The procedure for solving such an SICO with nonlinear constraints is as follows:
(a) Assign an initial point for x and a region for v;
(b) Apply a search algorithm to find the optimum solution x* and the corresponding
minimum objective function f(x*).
In the subsequent sections we will gradually illustrate that the 3D path planning problem
without the calculation of Cspace obstacles can be converted into a standard semi-infinite
constrained optimization problem.

3. Obstacle and Robot Representations

For robot path planning, the first thing is to give each of the objects a mathematical
representation, including obstacles and robot in the workspace. Modeling and manipulation
of objects is the research task of Computer Aided Design (CAD), Computer Aided
Manufacturing (CAM), and Computer Graphics (CG) (Ricci, 1973; Blechschmidt &
Nagasuru, 1990; Barr, 1981; Chiyokura, 1988; Hall & Warren, 1990; Berger, 1986; Comba,
1968; Franklin & Barr, 1981). A solid model should contain an informationally complete
description of the geometry and topology of a 3D object (Blechschmidt & Nagasuru, 1990).
A successful modeling system, in addition to many other features, must be capable of
representing the object’s surface and be able to unambiguously determine whether a point is
in the “inside” or “outside” of the object. In CAD, CAM, and CG, there are three traditional
categories of solid modeling systems, namely boundary representation (B-rep), spatial
decomposition, and constructive solid geometry (CSG) (Chiyokura, 1988). In our method,
two different categories of obstacles are distinguished, and CSG together with an
approximation approach are used to represent the various objects in real world in form of
inequality constraints.

3.1 General Representation of Obstacle and Classification

A 3D object S divides the 3D Euclidean space E 3 into three parts: the inside of the object
(denoted by I), the outside of the object (denoted by T), and the boundary (denoted by B), with

 I ∪ B ∪ T = E 3 (19)

 I ∩ B = B ∩ T = I ∩ T = (20)

A Generalized Robot Path Planning Approach Without The Cspace Calculation 441

Let x=(x, y, z) ∈ E 3 denote a point in 3D space. An obstacle can be described as a set of all
those points that fall into the inside of the obstacle, that is, an obstacle A can be described as:

 A = { x | x falls into the inside of A } (21)

Based on this set-formed representation, we can define an important concept “free space of
an obstacle” and get a basic condition for a collision-free point.
Definition 1: Free space of an obstacle: The set of points on or outside of the surface of a 3D
obstacle is defined as its free space. That is, the free space of an obstacle A (set-formed

representation) is just A , i.e., the complement of set A.
Proposition 1: The necessary and sufficient condition for a point x to be collision-free from an

obstacle A is that the point x must fall into the free space of A, that is, x∈ A .
The inside of a 3D object can be mathematically represented by one or several united
implicit function inequalities. According to the number of the inequalities, we categorize 3D
obstacles into two groups.
Definition 2: First group of obstacles: If the inside of a obstacle can be represented by only
one implicit function inequality, the obstacle is said to be in the first group. That is, if an
obstacle A can be represented as:

 A={ x h(x) <0 } (22)

where h(x) is an implicit function of x, then A belongs to the first group of obstacles.
Obviously the free space of A can be represented as the following:

A = { x h(x) ≥ 0 } (23)

Examples of the obstacles in the first group include spheres, ellipsoids, torus,
superellipsoids and so on (Ricci, 1973; Blechschmidt & Nagasuru, 1990; Barr, 1981; Berger,
1986; Franklin & Barr, 1981; Wang & Lane, 1997). A simple example of the first-group
obstacles is illustrated in Fig. 2.

Fig. 2. First group of obstacles: inside and outside of an obstacle.

Definition 3: Second group of obstacles: If the inside of an obstacle must be represented by
more than one united implicit function inequalities, the obstacle is said to be in the second
group. That is, if an obstacle A can be represented as:

 A ={ x h1(x)<0 ∧ h2(x)<0 ∧ … ∧ hm(x)<0 } (24)

where hi(x), i=1, 2, …, m, are all implicit functions of x and m is more than one, then A
belongs to the second group of obstacles.
For the second-group obstacle A, the free space can be represented as the following:

442 Mobile Robots, Perception & Navigation

A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 } (25)

For example, in Fig. 3, the 2-demensioned obstacle is a rectangle whose inside is surrounded
by four lines h1= x-a =0, h2= -x-a =0, h3= y-b =0, and h4= -y-b =0, where a and b are positive
values. The inside of the obstacle (denoted as A) is the intersection of regions Ai, i=1, 2, 3, 4,

where each Ai is defined as Ai={ (x, y) hi <0 }, that is:

 A = A1 ∩ A2 ∩ A3 ∩ A4

 = { (x, y) h1 <0 } ∩ { (x, y) h2 <0 } ∩ { (x, y) h3 <0 } ∩ { (x, y) h4 <0 }

 = { (x, y) h1 <0 ∧ h2 <0 ∧ h3 <0 ∧ h4 <0 } (26)

Fig. 3. Second group of obstacles: inside and outside of an obstacle described by more than
one implicit function inequalities.

where “∩”denotes intersection operation of a set and “∧” denotes logic AND. The free space
of the obstacle (just the union of region I, region II, …, region VIII, and the boundary of the
rectangle), can be represented as:

A =
43214321)(AAAAAAAA ∪∪∪=∩∩∩

 = { (x, y) h1 ≥ 0 } ∪ { (x, y) h2 ≥ 0 } ∪ { (x, y) h3 ≥ 0 } ∪ { (x, y) h4 ≥ 0 }

 = { (x, y) h1 ≥ 0 ∨ h2 ≥ 0 ∨ h3 ≥ 0 ∨ h4 ≥ 0 } (27)

where “∪” denotes union operation of a set and “∨” denotes logic OR.

3.2 Construction of Object’s Defining Inequality

According to section 3.1 we know the inequality “h (x) <0” is a general form to define a
representation of an object. We name it as defining inequality. How to construct defining
inequality for specific objects in real world? Here we present an approximated method.
To represent an object, another form equivalent to “h (x) <0” is “f(x) <1”. The latter form can
be easily transformed into “h (x) <0”, and is more applicable and convenient for constructing
defining inequalities of complex objects from those of the simple objects. In “f(x) <1”, the
function f(x) is named as defining function.
Definition 4: Defining Function: For an object S with its inside I, outside T, and boundary
B, a continuous and positive function f(x) is called the defining function of S if for any x =(x,

y, z)∈E 3, the following hold:

` f(x) = 1 ⇔ x ∈ B

A Generalized Robot Path Planning Approach Without The Cspace Calculation 443

 0< f(x) < 1 ⇔ x ∈ I (28)

 f(x) > 1 ⇔ x ∈ T.

For example, a defining function for a sphere with radius R and its centre at the origin of the
coordinate system is
 f(x) = (x/R)2 +(y/R)2+(z/R)2, (29)
and equality (x/R)2 +(y/R)2+(z/R)2 = 1 defines the surface of the sphere.
There are many categories of basic defining functions for object representation (called
“primitive solids”) such as Quadrics, Superquadrics, and Blobby functions (Berger, 1986).
a. Quadrics. A frequently used class of objects are the quadric surfaces, which are described
with second-degree equations (quadratics). They include spheres, ellipsoids, tori,
paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellipsoids, are
common elements of CAD and Graphics, and are often available in CAD and graphics
packages as primitives from which more complex objects can be constructed.
Sphere: In Cartesian coordinates, a spherical surface with radius r centered on the
coordinate origin is defined as the points (x, y, z) that satisfy the equation

 x2+y2+z2 = r2 (30)

Ellipsoid: An ellipsoidal surface can be described as an extension of a spherical surface,
where the radii in the three mutually perpendicular directions can have different
values. The Cartesian representation for points over the surface of an ellipsoid
centered on the origin is

 (x/rx)2 + (y/ry)2 + (z/rz)2 = 1 (31)

Slabs, i.e. region bounded by two parallel planes with the expression of (x/a)2 = 1, (y/b)2 = 1,
(z/c)2 = 1 and circular or elliptical cylinder with the expression of (x/a)2 + (y/h)2 = 1 are
special cases of this general ellipsoid, here a, b, c are positive real numbers.
Torus: A torus is a doughnut-shaped object. It can be generated by rotating a circle or other
conic about a specified axis. The Cartesian representation for points over the surface of a
torus can be written in the form

 2 2 2 2[(/) (/)] (/) 1x y zr x r y r z r− + + = (32)

where r is any given offset value.
b. Superquadrics. This class of objects is a generalization of the quadric representations and
provides more flexibility to describe objects (Franklin & Barr, 1981). Superquadrics are
formed by incorporating additional parameters into the quadric equations to provide
increased flexibility for adjusting object shapes. The number of additional parameters used
is equal to the dimension of the object: one parameter for curves and two parameters for
surfaces. The most useful one for CSG is superellipsoid.
Superellipsoid. A Cartesian representation for points over the surface of a superellipsoid is
obtained from the equation for an ellipsoid by incorporating two exponent parameters:

2

2 2 1 1

2 2 2

[() ()] () 1

s

s s s so o o

x y z

x x y y z z

r r r

− − −
+ + = (33)

where parameters s1 and s2 can be assigned any positive real value. For s1=s2=1, we get an
ordinary ellipsoid. Super-ellipsoid is also used to represent the robot in 3D space. We will
describe this in more detail in the next section.

444 Mobile Robots, Perception & Navigation

c. Blobby functions. Blobby function has been used in computer graphics for representing
molecular structure, water droplets and other liquid effects, melting objects, and muscle
shapes in the human body. In robotics, it is also useful for describing obstacles. Several
models have been developed for representing blobby objects as distribution functions over a
region of space. One way to do this is to model objects as combinations of Gaussion density
functions, or “bumps”. A surface function is then defined as

2
k ka r

k

k

b e T
− = (34)

where 2 2 2 2

k k k kr x y z= + + , parameter T is a specified threshold, and parameters ak and bk are

used to adjust the amount of blobbiness of the individual objects. Negative values for
parameter bk can be used to produce dents instead of bumps.
The defining functions (30) to (34) describe the solids in standard positions and orientations.
It is usually necessary to translate and rotate the objects to the desired configurations. The
rigid body transformations are invertible. Thus, the original inside-outside function can be
used after a function inversion. For example, substituting the translation x=(x’-a) into the
defining function (x/a)2 = 1 leads to a new defining function [(x’-a)/a]2=1, which describes
the surface of an infinite slab centered at x’=a and with the same thickness of 2a. More

generally, let M∈R3×3 denote the desired rotation matrix and B=[b1,b2,b3] denote the
translation vector. Then the translated and rotated solid S is given by:

 x’ = Mx +B (35)

and the new inside-outside defining function is calculated by inverting the translation and
substituting into the old inside-outside function; i.e.

 f ’(x’, y’, z’) = f(x, y, z) (36)

where

1

1

2

3

'

'

'

x x b

y M y b

z z b

−

−

= −

−

 (37)

M-1 is the inverse of the rotation matrix. Because the rotation matrix is always orthogonal, its
inverse is the same as its transpose, i.e. M-1=MT.
It’s easy to give out defining functions for basic object such as sphere and ellipsoids, directly
using primitive solids. But objects in real world are usually complex and cannot be directly
represented by primitive solids. A natural method to overcome this difficulty is constructing
complex objects from simple objects via set operations (union, intersection, and difference).
Given n defining functions f1(x), f2(x), and fn(x) for n objects, respectively, the defining
function for the intersection of the n objects is given by

 f I(x) = max(f1(x), f2(x), …, fn(x)) (38)

and the surface equation of the intersection of the n objects is given by

 max(f1(x), f2(x), …, fn(x)) = 1 (39)

Similarly, the defining function for the union of the n objects is given by

f U(x) = min(f1(x), f2(x), …, fn(x)). (40)

and the surface equation of the union of the n objects is given by

 min(f1(x), f2(x), …, fn(x)) = 1 (41)

A Generalized Robot Path Planning Approach Without The Cspace Calculation 445

For example, the intersection of the three infinite slabs with defining functions: f1(x)= (x/r)2,
f2(x)= (y/r)2, and f3(x)= (z/r)2 has the following surface equation max((x/r)2, (y/r)2, (z/r)2) =1,
which represent the surface of a cube.
Although equations (39) and (41) represent the exact surfaces of the intersection and union of the
n objects, they are not readily manipulated and computed. To realize a smooth blending of the n
objects into a final one, equations (39) and (41) must be approximated by means of suitable
functions. A certain degree of smoothing has been obtained in a particular technique for the
detection of intersections of 3D objects (Wang & Cartmell, 1998a), but this method does not apply
to non-convex objects. A currently wide-used method is the one reported in (Ricci, 1973). We use
that method here. The intersection and union can be smoothly approximated as:

 f I(x) = (f1m (x) + f2 m (x) + fn m (x))1/ m (42)

 f U(x) = (f1-m (x) + f2 -m (x) + fn- m (x)) -1/ m (43)

The resulting approximations of the surfaces for the intersection and union of the n objects
are respectively represented as:

 (f1m (x) + f2 m (x) + fn m (x))1/ m = 1 (44)

 (f1-m (x) + f2 -m (x) + fn- m (x)) -1/ m = 1 (45)

where m is a positive real number. m is used to control the accuracy of the smoothing
approximation and thus is called the control parameter. A larger m produces blending surfaces
that cling more closely to the primitive objects. Ricci (Ricci, 1973) proved that when m , the
approximations (42) and (43) give the exact description of the intersection and union respectively.
These approximations have the following advantages:
(i) Blending effects are primarily noticeable near surface intersections.
(ii) f I(x) and f U(x) are differentiable which may avoid the possible difficulties in
computation due to the differentiability of the max and min functions.
One problem that has been investigated in the previous literature (Wang & Lane, 1997) is
the choice of the control parameter m in Equations (44) and (45). Although Ricci (Ricci, 1973)
suggested that any positive real number may be chosen as the candidate, our experience has
shown that when using slabs as the basic primitives, some care must be taken. In this case, m
must be an integer, which leads to 2m as an even number. Some examples are given below.

(a) m = 1, 2, 4, 8, and 16 from inside to outside; (b) m = 3/2, 9/2, and 33/2 from inside to
 outside.

Fig. 4. Illustration of intersection f1∩f2. f1 = x2, f2 = y2, ((x2)m + (y2)m)1/m = 1.

446 Mobile Robots, Perception & Navigation

Figures 4(a) and 4(b) show two examples, using two slabs f1 (x)= x2, f2 (x)= y2 as basic primitives to
construct a rounded square with different orders (control parameters). In Figure 4(a), m has been
chosen to be an integer. When using m=1 to approximate the intersection of f1 (x) and f2 (x), the
result is a circle. As m increases the approximation to the intersection of f1 (x) and f2 (x), a square
with length and width being 1, get better. It can be seen that when m = 8 or 16, the approximation
is very close to the square. In Figure 4(b), the values of m are fractions rather than integers so that
2m is an odd number. The resulting approximate implicit function is not, as could be expected, a
closed curve. Closed curve here means that the number of real circuits is limited to one and that
the circuit does not extend to infinity. Only in the first quadrant it is a good approximation of the
intersection of f1 (x) and f2 (x). Furthermore, if m is chosen as a decimal so that 2m is not an integer,
then the resulting approximate implicit function is of real value only in the first quadrant: see the
figures given in (Franklin & Barr, 1981). The above discussion also applies to the union operation.
If, on the other hand, a circle or an ellipse is used as the primitive to construct a new object,
any positive number m able to keep the closeness of the intersection and union operation.
Figures 5 and 6 give two examples. Similarly as m increases, the approximation gets better.

Fig. 5. Illustration of intersection f1∩f2. f1 =x2+y2, f2 =(x-1)2+y2. m = 0.6, 0.8, 1, 2, 5, and 25 from
inside to outside.

Fig. 6. Illustration of union f1∪f2. f1 =[(x+4)2+y2]/32, f2 =[x2+(y+4)2]/32. m= 8, 4, 2, 1, 0.8, and 0.5
from inside to outside.

A Generalized Robot Path Planning Approach Without The Cspace Calculation 447

3.3 Robot Representation

Since robot is a movable and rotatable object in the workspace, to clearly model and
dynamically manipulate a robot in 3D space, we must be capable of representing not only its
shape and size, but also its spatial location and orientation. Robot representation means the
expression of a point, denoted by x=(x, y, z), on the boundary of the robot as the function of
its spatial position and orientation variables. Normally there are two mathematical ways to
describe the boundary of a robot. The first is the implicit function which takes the form of
g(x, y, z) = 0 for its boundary expression. The second is the parametric form, in which the x,
y, and z are expressed as functions of two auxiliary parameters v=(t1, t2), so that x=x(v)=x(t1,
t2), y=y(v)=y(t1, t2), and z=z(v)=z(t1, t2). In the following context, we will use both the
implicit and the parametric forms to formulate a robot.
Let the geometric centre point O of the robot, denoted by O(xo, yo, zo), be chosen as the

position parameters and let a set of three orientation angles, denoted by (θ1, θ2, θ3), be
chosen as the orientation parameters. Then a robot can be represented as:

 { (x, y, z) | g(x, y, z, xo, yo, zo , θ1, θ2, θ3) = 0 } (46)

and its equivalent parametric form can be expressed as:

 { (x, y, z) | x=x(xo, yo, zo, θ1, θ2, θ3, v),

 y=y(xo, yo, zo, θ1, θ2, θ3, v),

 z=z(xo, yo, zo, θ1, θ2, θ3, v) (47)

xo, yo , zo together with θ1, θ2, θ3 are responsible for determining the position and orientation

of a robot. We call (xo, yo, zo, θ1, θ2, θ3) as the robot’s space configuration variables.
The implicit function we use to describe the robot here is the superellipsoid proposed in
references (Barr, 1981; Berger, 1986), which is a Constructive Solid Geometry (CSG)
primitive for a broad family of robot and obstacles. The superellipsoid is defined as:

2

2 2 1 1

2 2 2

[() ()] () 1

s

s s s so o o

x y z

x x y y z z

r r r

− − −
+ + = (48)

Its parametric form is:

 bx= rx 1cos
s (t1) 2cos

s (t2)+ xo ;

 y= ry 1cos
s (t1) 2sin

s (t2)+ yo; - /2 t1 /2; 0 t2 2 (49)

 z= rz 1sin
s (t1)+ zo.

where rx , ry , rz define the geometric extent, s1 and s2 specify the shape properties (s1 is the
squareness parameter in the north-south direction; s2 is the squareness parameter in the
east-west direction), and xo, yo, zo describe the spatial location. The superellipsoid can be
constructed from the basic slabs. Some superellipsoid shapes produced by the choice of
different values for parameters s1 and s2 are shown in Fig. 7 when rx=ry=rz.
From (Barr, 1981; Berger, 1986), we know that most kinds of robots can be simulated by the
broad family of easily defined superellipsoid primitives. In addition to the superspherical
shapes that can be generated using various values for parameters s1 and s2, other
superquadratic shapes can also be combined to create more complex structures. More
details about them can be found in (Barr, 1981; Berger, 1986; Wang & Lane, 1997).

(48) and (49) describe a 3D robot in the standard orientation with θ1=θ2=θ3=0. It’s necessary
to give a general representation of its spatial orientation. The concepts of Euler angle and
Euler angle conversion are introduced in the following.

448 Mobile Robots, Perception & Navigation

The Euler angles comprise three arbitrary rotations in 3D space to describe the spatial
orientation of an object. How the Euler angle is defined and how the rotation matrix R is
obtained are briefly described, with the assumption that we start in frame S with Cartesian
axes, xold, yold, and zold. A positive (anti-clockwise) rotation of magnitude about the z axis of
S is first carried out and the resulting frame is called S'. Then it is followed by a positive
rotation of magnitude about the y' axis of frame S' and the resulting frame is called S''.
Finally, a positive rotation of magnitude about the z'' axis of S'' is made and the resulting
frame is called S'''. Fig. 8 illustrates the combined effect of these steps.
The combined result of these three rotations is mathematically expressed by the following
rotation matrix:

Fig. 8. Euler angle conversion.

⋅=

old

old

old

new

new

new

z

y

x

R

z

y

x
 (50)

where R is the rotation matrix:

cos cos cos sin sin sin cos cos cos sin sin cos

cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos

α β γ α γ α β γ α γ β γ

α β γ α γ α β γ α γ β γ

α β α β β

− + −

− − −

(50) is equivalent to (51) as follows:

(cos cos cos sin sin)

(sin cos cos cos sin)

(sin cos);

(cos cos sin sin cos)

(sin cos sin cos cos)

(sin sin);

(cos sin) (sin sin)

new old

old

old

new old

old

old

new old old

old

x x

y

z

y x

y

z

z x y

z

α β γ α γ

α β γ α γ

β γ

α β γ α γ

α β γ α γ

β γ

α β α β

= ⋅ −

+ ⋅ +

− ⋅

= ⋅ − −

+ ⋅ −

+ ⋅

= ⋅ + ⋅

+ cos ;β⋅

 (51)

where vector (xold, yold, zold) represents the point in the first coordinate system and (xnew, ynew ,
znew) represent the point in the new coordinate system. The ranges for , , are

 0 2 , 0 , 0 2 (52)

The combination of rotation transformation (52) with (49) results in the parametric form for

a superellipsoid robot in a general position O(xo, yo, zo) and orientation (θ1, θ2, θ3):

A Generalized Robot Path Planning Approach Without The Cspace Calculation 449

 x=(rx 1cos
s (t1) 2cos

s (t2))l1+(ry 1cos
s (t1) 2sin

s (t2))l2+(rz 1sin
s (t1))l3+ xo ;

 y=(rx 1cos
s (t1) 2cos

s (t2))m1+(ry 1cos
s (t1) 2sin

s (t2))m2+(rz 1sin
s (t1))m3+ yo ; (53)

 z=(rx 1cos
s (t1) 2cos

s (t2))n1+(ry 1cos
s (t1) 2sin

s (t2))n2+(rz 1sin
s (t1))n3+zo .

where

where the oriental angles θ1, θ2, θ3 are specified by three Euler angles. For more details about
Euler angle conversion, see (Rose, 1957).

4. Converting the Robot Path Planning Problem into the Semi-infinite
Optimization Problem

 l1=cos(θ1)cos(θ2)cos(θ3)-sin(θ1)sin(θ3)

 m1=-sin(θ1)cos(θ3)-cos(θ1)cos(θ2)sin(θ3)

 n1=cos(θ1)sin(θ2)

 l2=-cos(θ1)sin(θ3)+cos(θ2)sin(θ2)sin(θ3)

 m2=-cos(θ1)cos(θ3)+sin(θ1)cos(θ2)sin(θ3 (54)

 n2=sin(θ2)sin(θ3)

3=cos(θ1)sin(θ2)

3=sin(θ1)sin(θ2)

 3=cos(θ2)

/2 t1 /2

t2 2

4.1 Collision-free Condition for the Obstacle Avoidance

According to Proposition 1 and the representations of the two classes of obstacles, we can
get the condition for a point to be collision-free from an obstacle:
Proposition 2: The necessary and sufficient condition for a point x to be collision-free from a first-

group obstacle A ={ x h(x) <0 } is that x∈ A , that is, h(x) ≥ 0.
Proposition 3: The necessary and sufficient condition for a point x to be collision-free from a second-

group obstacle A ={ x h1(x)<0 ∧ h2(x)<0 ∧ … ∧ hm(x)<0 } is that x∈ A , that is, h1(x)≥ 0 ∨ h2(x)≥ 0

∨ …∨ hm(x)≥ 0.

Let vi(x)=(
2

ih (x)+t2)1/2+hi(x), (i=1, 2, …, m), and ∆v be a small positive value, then according

to Theorem 1 and Proposition 3, we can get a realistically necessary and sufficient condition

for a point to be collision-free from a second-group obstacle:

1

() 0
m

i

i

v v x
=

∆ − ≤ . In fact, with

respect to the realistic requirement of robot path planning, we can represent the free space
of the second-group obstacle as:

 = { x |

1

() 0
m

i

i

v v x
=

∆ − ≤ } (55)

Now let’s consider the collision-free condition in the presence of multiple obstacles. In the
presence of multiple obstacles, the condition for a point to be collision-free from all obstacles

450 Mobile Robots, Perception & Navigation

in the workspace is obviously that the point must fall into the intersection of free spaces of
all the obstacles. We get:
Theorem 2: In the presence of multiple obstacles Ai, i=1, 2,…, j; (j>1), the necessary and sufficient

condition for a point x to be collision-free from all the obstacles is that x∈
1 2 ... jA A A∩ ∩ ∩ .

Suppose in a workspace there are totally s first-group obstacles and m second-group
obstacles, and they are respectively defined as:

i={ x gi(x)<0 }, i=1, 2,…, s (56)

j={ x hj,1(x)<0 ∧ hj,2(x)<0 ∧ … ∧ , jj kh (x)<0 }, j=1, 2, …, m.

We note Gi(x) = - gi(x), i=1, 2,…, s, and consequently the representation of the free space of Ai

changes into:

 ={ x Gi(x) ≤ 0 }, i=1, 2,…, s. (57)

Let vj,r (x)=(
2

,j rh (x)+t2)1/2+hj,r (x), (j=1, 2, …, m; r=1, 2,…, kj), and ∆vj (j=1, 2, …, m) be small

positive values. And further let Hj(x)=
,

1

()
jk

j j r

r

v v x
=

∆ − , then free space of Bj can be

consequently represented as:

jB
={ x Hj(x) 0 }, j=1, 2, …, m. (58)

Thus, the condition for a point x to be collision-free from all the obstacles is that:

∈ S =
1 2 1 2... ...s mA A A B B B∩ ∩ ∩ ∩ ∩ ∩ ∩

 { x G1(x) ≤ 0 }∩{ x G2(x) ≤ 0 }∩…∩{ x Gs(x) ≤ 0 }

 { x H1(x) 0 }∩{ x H2(x) 0 }∩…∩{ x Hm(x) 0 }

 { x G1(x) ≤ 0 ∧ G2(x) ≤ 0∧…∧ Gs(x) ≤ 0 ∧H1(x) 0 ∧ H2(x) 0 ∧… ∧ Hm(x) 0 } (59)

that is,

 G1(x) ≤ 0 ∧ G2(x) ≤ 0∧…∧ Gs(x) ≤ 0 ∧ H1(x) 0 ∧ H2(x) 0 ∧… ∧ Hm(x) 0 (60)

4.2 Constraints of Path Planning Problem

An obvious necessary and sufficient condition for a robot to be collision-free from multiple
obstacles is that: all the points inside or on the boundary of the robot fall into the intersection of
free spaces of all the obstacles. A little weaker, but sufficient in almost all realistic cases, condition
is that: all the points on the boundary of the robot fall into intersection of all the free spaces.
Suppose in the workspace there are totally s first-group obstacles and m second-group
obstacles, just as defined in (56), and also a static superellipsoid-shaped robot with
squareness parameters s1, s2, geometric extent rx, ry, rz, center position O(xo, yo, zo) and

orientation (θ1, θ2, θ3). According to (53), the set of the robot boundary points is:

 T = { (x, y, z) |

 x=(rx
1coss (t1) 2coss (t2))l1+(ry

1coss (t1) 2sin s (t2))l2+(rz
1sin s (t1))l3+ xo

 y=(rx
1coss (t1) 2coss (t2))m1+(ry

1coss (t1) 2sin s (t2))m2+(rz
1sin s (t1))m3+ yo

 z=(rx
1cos
s

(t1) 2cos
s

(t2))n1+(ry
1cos
s

(t1) 2sin
s

(t2))n2+(rz
1sin
s

(t1))n3+zo - /2 t1 /2; 0 t2 2 . (61)

A Generalized Robot Path Planning Approach Without The Cspace Calculation 451

li, mi, ni, (i=1,2,3) are defined same as in (54). Let (x, y, z) = (X(xo, yo, zo, θ1, θ2, θ3, t1, t2), Y(xo, yo,

zo, θ1, θ2, θ3, t1, t2), Z(xo, yo, zo, θ1, θ2, θ3, t1, t2)), and the space configuration vector u= (xo, yo, zo,

θ1, θ2, θ3), then the collision-free condition, according to (60), can be represented as:
For all v = (t1, t2) that - /2 t1 /2, 0 t2 2 , the following expression hold:

 G1(X(u, v), Y(u, v), Z(u, v)) 0 ∧

 G2(X(u, v), Y(u, v), Z(u, v)) 0∧…∧

 Gs(X(u, v), Y(u, v), Z(u, v)) 0 ∧

 H1(X(u, v), Y(u, v), Z(u, v)) 0 ∧

 H2(X(u, v), Y(u, v), Z(u, v)) 0∧…∧

 Hm(X(u, v), Y(u, v), Z(u, v)) 0 (62)

Let Pi (u, v) = Gi(X(u, v), Y(u, v), Z(u, v)) i=1,2,…,s; Qj (u, v) =Hj (X(u, v), Y(u, v), Z(u, v)) j =
1,2,…, m, then (62) changes into the following:

 P1(u, v) 0 ∧P2(u, v) 0∧…∧Ps(u, v) 0 ∧

 Q1(u, v) 0 ∧Q2(u, v) 0∧…∧Qm(u, v) 0 (63)

In path planning the configuration variables also have certain range limits. This requirement
can be described as:

 xL ≤ xo ≤ xU, yL ≤ yo ≤ yU, zL ≤ zo ≤ zU , 1≤ θ1 ≤ 1 , 2≤ θ2 ≤ 2, 3≤ θ3 ≤ 3 (64)

that is,

 uL≤ u≤ uU (65)

where uL=(xL, yL, zL, 1, 2, 3), uU=(xU, yU, zU, 1, 2, 3).
(63) and (65) form the inequality constraints required in the formulation of the SICO
problem for path planning.

4.3 Design of the Objective Function

There are many ways to design the objective function. In a nonlinear programming problem,
this function must represent some meaning of the practical problem, for example, minimum
time, minimum distance, minimum energy, or minimum cost. From a mathematical
viewpoint, this function must have a minimum lower bound. For the path planning
problem, the goal configuration must be designed as the unique global minimum of the
configuration variables. We use a quadratic function of the form (66) as the objective
function, with the goal configuration point (xg, yg, zg) and goal configuration angles (1, 2,

3) being its unique global minimum point and satisfying the condition that min f(xo, yo, zo,

θ1, θ2, θ3) = f(xg, yg , zg , 1, 2, 3) = 0.

 f(xo, yo, zo, θ1, θ2, θ3)=

 w((xo-xg)2+(yo-yg)2+(zo-zg)2)+(1-w)((θ1- 1)2+(θ2- 2)2+(θ3- 3)2) (66)

where w is a non-negative weighted factor that satisfies: 0 w 1.
In (66), w is used to adjust the relative effects of the spatial position (xo-xg)2+(yo-yg)2+(zo-zg)2

and the spatial orientation (θ1- 1)2+(θ2- 2)2+(θ3- 3)2. When w=1, only the effect of the spatial
position factor is considered. w can be adaptively adjusted and be revised during the
searching process. (66), (63), and (65) together form a semi-infinite constrained optimization

452 Mobile Robots, Perception & Navigation

problem. If we use the initial configuration variables (xs, ys, zs, 1, 2, 3) as the initial estimate

of the optimization problem, the optimum search for (xo*, yo*, zo*,θ1*, θ2*, θ3*) is equivalent to
searching the goal configuration variables. If the algorithm is convergent and the problem

has a solution, then we will find that xo* = xg, yo* = yg, zo*=zg, θ1*= 1, θ2*= 2, θ3*= 3.

In summary, the fundamental idea for this approach is to represent the free space determined by
the robot and obstacles as inequality constraints for a semi-infinite constrained optimization
problem in 3D space. The goal configuration is designed as the unique global minimum point of
the objective function. The initial configuration is treated as the first search point for the
optimization problem. Then the numerical algorithm developed for solving the semi-infinite
constrained optimization problem can be applied to solve the robot motion planning problem.
Every point generated using the semi-infinite constrained optimization method is guaranteed to
be in free space and therefore is collision free.

5. Implementation Considerations and Simulation Results

When implementation is carried out, we only consider the motion of the robot in 3D space.
The vehicle is modeled as a superellipsoid with different shapes and the obstacles are
modeled by circle, ellipsoid, cylinder, tetrahedron, cuboids, and various other shapes of
superellipsoid, which belong to either the first group or the second group.

5.1 Algorithm Implementation Consideration

The implementation of the semi-infinite optimization is based on the constrained optimization
toolbox (The Math Works Inc., 1993), but some modifications have been made. The first is the
control of the output. In (The Math Works Inc., 1993), only the final result of the vector x= (xo*, yo*,

zo*, θ1*, θ2*, θ3*) is provided. However, the important thing for the robot path planning problem is

to generate a smooth path. Therefore, a new function which outputs the current (xo, yo, zo, θ1, θ2,

θ3) at every iteration has been added. The second is the control of the change of Euler Angles in
the line search algorithm for every iteration. Recall that the principle of developing an algorithm
in nonlinear programming is to minimize the number of function evaluations, which represents
the most efficient way for finding the optimum x*. Thus, the changing step is automatically
chosen as large as possible to minimize the objective function in the line search direction. The
disadvantage of this strategy when applied to path planning is that it sometimes leads to a non-
smooth path, so a modification has been made. For more details on the implementation of the
semi-infinite optimization algorithms, see the reference (The Math Works Inc., 1993).
In the following the results obtained for 3D path planning will be given. In all the
experiments the algorithm adopted is the Sequential Quadratic Programming (SQP) (The
Math Works Inc., 1993). The limits of the workspace are: Ol=(-20, -20, -20) and Ou=(60, 60,
60), thus the workspace is surrounded by a cube with length 80(-20, 60), width 80(-20, 60),

and height 80(-20,60). The inequality Ol≤O≤Ou will guarantee that the generated path must
be in the workspace. Let Os=(xs, ys, zs) and s=(1, 2, 3) denote the initial configuration
and Og=(xg, yg, zg), g=(1, 2, 3) denote the goal configuration. The robot’s start and
goal configurations are chosen as (xs, ys, zs, 1, 2, 3)=(-20, -20, -20, 0, 0, 0) and (xg, yg , zg ,

1, 2, 3)=(50, 50, 50, 0, 0, 0) respectively . The objective function is defined as:

 f = w((xo-50)2+(yo-50)2+(zo-50)2)+(1-w)(θ12+θ22+θ32) (67)

where w is chosen as 0 w 1.

A Generalized Robot Path Planning Approach Without The Cspace Calculation 453

5.2 Simulation Results with the First Kind of Objects

(a) (b)
Fig. 10. Workspace with nine cylinders and the generated path. (a) 3D view. (b) 2D view.

In order to demonstrate the convergence of the problem formulation to the goal

configuration, the workspace considered in example 1 contains seven obstacles as

shown in Figs. 9(a) and 9(b). The obstacles are represented as spheres with the

following boundary expressions: (x-20)2 + (y-20)2+ (z-20)2 = 225 x2 + (y-20)2+ (z-20)2 =

25 (x-40)2 + (y-20)2+ (z-20)2 = 25 (x-20)2 + y2+ (z-20)2 = 25 (x-20)2 + (y-40)2+ (z-20)2 =

25 (x-20)2 + (y-20)2+ z2 = 25 (x-20)2 + (y-20)2+ (z-40)2 = 25.The robot is represented by

a superellipsoid with rx=5, ry=4, rz=3, s1=s2=1, which is an ellipsoid. Figs. 9(a) and 9(b)

show the same generated path, the same obstacles and the same robot, but from

different view angles. It can be observed that the optimization algorithm does converge

to the goal and a smooth path has been generated.

In order to illustrate the suitability of the approach for different obstacle shapes, we have

shown another distributed-obstacle situation as shown in Figs. 10(a) and 10(b). The results

simulate a real world path planning task encountered in offshore industry. The designed

workspace contains a set of cylinders which could be easily recognized as pipelines or a

base of an offshore structure. In this example, we have 9 cylinders to represent obstacles

with the following boundary equations: x2 + y2 = 16, x2 + (y-20)2= 16, x2 + (y-40)2 =16, (x-

20)2 + y2 =16, (x-20)2 + (y-20)2 = 16, (x-20)2 + (y-40)2 = 16, (x-40)2 + y2 = 16, (x-40)2 + (y-20)2 =

16, (x-40)2 + (y-40)2 = 16 where -20 ≤ z≤ 60. The robot is represented by a superellipsoid

with rx=5, ry=4, rz=3, s1=s2=1.5, which is a superellipsoid. Fig. 10(a) is a 3D view and Fig.

10(b) is a 2D view. In this example the 2D view clearly shows the collision avoidance of

the robot from the obstacles. From Figs. 10(a) and 10(b), we can also observe that the

generated path passes behind the cylinder without touching it, and the plotted path

avoids all the obstacles and converges to the goal in a smooth way.

In addition to the simulation results shown in Figs. 9 and 10, we have carried out another

test with mixed superellipsoids and cylinders as shown in Figs. 11(a) and 11(b). In this test,

five obstacles are included and the robot is represented by a superellipsoid with rx=8, ry=8,

rz=6, s1=s2=0.8. The boundary expressions for the obstacles are: 2 cylinders (x-40)2 + y2 =

144, 30 ≤ z≤ 50, (x-30)2 +(y-30)2=100, -5≤ z ≤ 30, 3 superellipoids: ((x-15)/12) + ((y+10)/8) + ((z-

12)/12) =1, ((x- 15)/20)2/3 + ((y- 40)/18)2/3 + ((z+10)/12)2/3 =1, (x-10)2 + (y-10)2+ (z-10)2 = 100. Fig.

11(b) is an enlarged view of Fig. 11(a). The experimental results show that the robot can

adjust its orientation angles autonomously to reach the goal point.

454 Mobile Robots, Perception & Navigation

Fig. 11. Simulation result with mixed superellipsoids and cylinders. (a) 3D view. (b) another
3D view.

5.3 Simulation Results with Both the First and Second Kinds of Objects

Figs. 12(a), 12(b), and 12(c) show the experimental results with the environment including a
triangular pyramid and a cube which belong to the second group and a cylinder-like
obstacle belonging to the first group. The triangular pyramid’s four vertexes are: V0=(-5,-10,-

15), V1=(20,15,-15), V2=(5,-15,10), V3=(5,20,10) and its outside is represented by {(h1≥-x-y-0.6z-

14) ∪ (h2≥-x+0.4z+1) ∪ (h3≥x+0.6z-11) ∪ (h4≥-x+y-0.8z-7)}.The cube is represented by 10 ≤ x≤
25, 25≤ y≤ 45, 25≤ z≤ 40, while the cylinder is descried as (x-35)2 + (y-20) ≤ 64, -10 ≤ z≤ 50. The
robot is represented by a superellipsoid with rx=8, ry=6, rz=4, s1=s2=1.It is obvious that the
path generated clearly avoids the obstacle and converges to the goal.

(a) (b)

(c)
Fig. 12. Simulation result with both the first and the second kinds of objects. (a) 3D view. (b)
another 3D view. (c) 2D view.

A Generalized Robot Path Planning Approach Without The Cspace Calculation 455

Figs. 13(a) and 13(b) show the results simulating another typical real world path planning
task encountered in offshore industry. The designed workspace contains a cylinder and
several cubes which may be models for pipelines or a base of an offshore structure. The

cylinder is described as follows: (x-20)2 + (y-20) 2 ≤ 49, -10 ≤ z≤ 50. The four cubes are

represented as: {0 ≤ x≤ 10, 5 ≤ y≤ 10, -15 ≤ z≤ 55}, {30 ≤ x≤ 40, 30 ≤ y≤ 35, -15 ≤ z≤ 55},{5 ≤ x≤
10, 30 ≤ y≤ 40, -15 ≤ z≤ 55},{30 ≤ x≤ 35, 0 ≤ y≤ 10, -15 ≤ z≤ 55}. The robot is represented by a
superellipsoid with rx=6, ry=4, rz=3, s1=s2=1.2. Figs. 13(a) and 13(b) show the clear avoidance
of the obstacles by the robot and the convergence to the goal.

(a) (b)
Fig. 13. Simulation result with four cubes and one cylinder. (a) 2D view. (b) 3D view.

5.4 Discussion about Efficiency of the Approach

A criterion for efficiency analysis used by many previous path planning algorithms is the

worst case computational complexity when the robot path planning problem is formulated

as a discrete mathematics problem (Kreyszig, 1993; Rosen, 1991), based on the assumption

that objects are represented by polygons or polyhedrons and a discrete search algorithm is

used. However in constrained optimization there is no such a criterion corresponding to that

used in discrete mathematics for measuring the worst case computational complexity,

because the time used depends on both the size of the problem (i.e. the number of the

equalities) and the form of the objective function and the constraints.

As shown in our simulation experiments, the time for the robot to take a step varies, because at

some places it must adjust its pose or step size, and at other places it doesn’t have to. In the

simulation experiment shown in Figs. 10 (a) and 10(b), the average time for one step is about 0.8s

with Intel Pentium 4 CPU running the algorithm realized in Matlab. Besides improving the

performance of the implementation and the algorithm itself, there is still big room for efficiency

improvement. For example, in our experiments the value of the distance that robot is permitted to

be close to obstacles is so small (close to 0) that sample points of the surface of the robot

(represented as a superellipsoid) and the obstacles must be very dense, otherwise collisions are

likely to occur. Density of sample points is one of the main sources of the computational

complexity, but in real applications, the distance is usually bigger and the sample points may be

sparse, and consequently the time needed for computation may be much less.

To precisely analyze the computational complexity of our method is an important, necessary,

but difficult job. It must include determining proper complexity description model,

456 Mobile Robots, Perception & Navigation

analyzing performance of the implementation of SCO algorithm which is applied in our

method, etc. We hope to address it in further papers.

6. Conclusions

In this chapter, inequality transformation and semi-infinite constrained optimization techniques
have been presented for the development of a realistic Robot Path Planning approach. We have
shown the principle of converting the path planning problem into the standard Semi-infinite
Constrained Optimization problem. This direct path planning approach considers the robot’s 3D
shape and is totally different from the traditional approaches in the way that the calculation of
the Cspace obstacles is no longer needed. From the viewpoint of robot path planning, this paper
presents a new way of using a classical engineering approach. The generality of representing the

free space of all the objects using the inequalities gi(x)≤0 makes this optimization-based approach
suitable for different object shapes, and it has significantly simplified the construction of the
objects by sensors and computer vision systems. The iterative nature of the search for the
optimization point makes it particularly suitable for on-line sensor-based path planning. Once a
new object is detected, a new inequality can be added before running the next iteration. When an
old obstacle is passed, its corresponding inequality may also be deleted. Every time when an
inequality is added or deleted, a new optimization problem is formed. The current variable is
always treated as the initial point of the optimization problem and search starts again. This
mechanism indicates this approach is efficient and particularly suitable for on-line path planning.
Other advantages of the approaches include that mature techniques developed in nonlinear
programming theory with guarantee of convergence, efficiency, and numerical robustness
can be directly applied to the robot path planning problem. The semi-infinite constrained
optimization approach with an adaptive objective function has the following advantages:

1) The robot does not need to be shrunk to a point, the obstacles do not need to be
expended to Cspace, and the entire course of path planning can be carried out in
real 3D space.

2) The goal point is guaranteed to be the only global minimum of the objective function.
3) The standard search techniques which have been developed for more than thirty

years in the nonlinear programming field can be used.
4) The approach is suitable for on-line task planning.

The investigation carried out in this chapter has also indicated that robot path planning can
be formulated in different ways. It’s important to seek more efficient and realistic methods
for problem formalization. Computational complexity analysis must be developed based on
a proper problem formulation which considers enough constraints. Although the
fundamentals for the nonlinear programming theory have existed for many years, they have
not attracted enough attention for such applications. The context presented in this chapter
covers a wide range of subjects such as robot kinematics, CAD, CAM, computer graphics
and nonlinear programming theory, and a basic framework has been developed. Our
treatment is consistent. The study presented in this chapter has shown its great potential as
an on-line motion planner. The future work includes the extension of the principle
developed here to the obstacle avoidance problem for manipulator without the calculation
of Cspace obstacles, and the adoption of the interpolation techniques to deal with the local
minima problem (Wang et al., 2000).
The constraints added by the kinematics and the shape of a manipulator are more complex
than the subsea vehicle we have done in this chapter. In addition, for a car_like moving

A Generalized Robot Path Planning Approach Without The Cspace Calculation 457

robot, the nonholonomic constraints must be taken into account. Path planning without the
Cspace computation and with the consideration of those practical issues is still the challenge
we are facing.

7. Acknowledgement

The authors gratefully acknowledge the financial support from Chinese Academy of
Sciences, P. R. China and Royal Society of United Kingdom for the joint research project
under grant No. 20030389, 2003-2006, the National High-Tech Development 863 Program of
China under Grant No. 2003AA1Z2220, the National Natural Science Fouondation of China
under Grant No. 60373053, and the financial support from Chinese Academy of Sciences and
Chinese State Development Planning Commission for Bai Ren Ji Hua (BRJH), 2002-2005.

8. References

Barr, A. (1981). Superquadrics and angle-preserving transformations. IEEE Computer

Graphics and Applications, 1, 1, (January 1981), 11-23, ISSN: 0272-1716.

Berger, M. (1986). Computer Graphics with Pascal. Benjamin-Cummings Publishing Co., Inc.,

ISBN: 0805307915, California.

Blackmore, D.; Leu, M. & Wang, L. (1997). The sweep-envelope differential equation

algorithm and its application to NC machining verification. Computer Aided Design,

29, 9, (September 1997), 629-637, ISSN: 0010-4485.

Blechschmidt, J. & Nagasuru, D. (1990). The use of algebraic functions as a solid modelling

alternative: an investigation. Proceedings of the 16th ASME Design Automation

Conference, pp. 33-41. Chicago, September 1990, ASME, New York.

Brooks, R. & Lozano-Perez, T. (1985). A subdivision algorithm in configuration space for

findpath with rotation. IEEE Trans. on Systems, Man and Cybernetics, 1985, 15, 2,

(March 1985), 224-233, ISSN: 1083-4427.

Chang, J. & Lu, H. (2001). Backing up a simulated truck via grey relational analysis. Journal

of the Chinese Institute of Engineers, 24, 6, (November 2001), 745-752, ISSN: 0253-3839.

Chiyokura, H. (1988). Solid Modelling with Designbase: Theory and Implementation. Addison-

Wesley Publishing Limited, ISBN: 0-201-19245-4, New York.

Comba, P. (1968). A procedure for detecting intersections of three-dimensional objects.

JACM, 15, 3, (July 1968), 354-366, ISSN: 0004-5411.

Conn, R. & Kam, M. (1997). On the moving-obstacle path planning algorithm of Shih, Lee,

and Gruver. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics, 27, 1,

(February 1997), 136-138, ISSN: 1083-4419.

Connolly, I. (1997). Harmonic function and collision probabilities. Int. J. Robotics Research, 16,

4, (August 1997), 497-507, ISSN: 0278-3649.

Fletcher, R. (1987). Practical Methods of Optimization. John Wiley & Sons, Inc., ISBN: 0-471-

91547-5, New York.

Franklin, W. & Barr, A. (1981). Faster calculation of superquadric shapes. IEEE Computer

Graphics & Application, 1, 3, (July 1981), 41-47, ISSN: 0272-1716.

Gill, P.; Murray, W. & Wright, M. (1981). Practical Optimization. Academic Press, ISBN: 0-12-

283952-8, London.

458 Mobile Robots, Perception & Navigation

Hall, M. & Warren, J. (1990). Adaptive polygonalization of implicitly defined surfaces. IEEE

Computer Graphics & Applications, 10, 6, (November 1990): 33-42, ISSN: 0272-1716.

Haug, E.; Adkins, F. & Cororian, D. (1998). Domains of mobility for planar body moving

among obstacles. Trans. the ASME, Journal of Mechanical Design, 120, 3, (September

1998), 462-467, ISSN: 1050-0472.

Hu, T.; Kahng, A. & Robins, G. (1993). Optimal robust path planning in general

environment. IEEE Trans. Robotics and Automation, 9, 6, (December 1993), 755-774,

ISSN: 1042-296X.

Huang, H. & Lee, P. (1992). A real-time algorithm for obstacle avoidance of autonomous

mobile robots. Robotica, 10, 3, (May 1992), 217-227, ISSN: 0263-5747.

Hwang, Y. & Ahuja, N. (1992). A potential field approach to path planning. IEEE Trans. on

Robotics and Automation, 8, 1, (February 1992), 23-32, ISSN: 1042-296X.

Khatib, O. (1986). Real-time obstacle avoidance for manipulator and mobile robots. Int. J.

Robotics Research, 5, 1, (February 1986): 90-98, ISSN: 0278-3649.

Kreyszig, E. (1993). Advanced Engineering Mathematics. John Wiley & Sons, Inc., ISBN:

0471728977, New York.

Latombe, J. (1991). Robot Motion Planning. Kluwer Academic Publishers, ISBN: 0-7923-9206-X,

Boston.

Lozano-Perez, T. (1983). Spatial planning: A configuration space approach. IEEE Trans. on

Computers, 32, 2, (February 1983), 108-120, ISSN: 0018-9340.

Lu, H. & Yeh, M. (2002). Robot path planning based on modified grey relational analysis.

Cybernetics and Systems, 33, 2, (March 2002), 129-159, ISSN: 0196-9722.

Luenberger, D. (1984). Linear and Nonlinear Programming. Addison-Wesley Publishing

Company, ISBN: 0-201-15794-2, London.

Lumelsky, V. (1991). A comparative study on path length performance of maze-searching

and robot motion planning. IEEE Trans. Robotics and Automation, 7, 1, (February

1991), 57-66, ISSN: 1042-296X.

Oriolo, G.; Ulivi, G. & Vendittelli, M. (1998). Real-time map building and Navigation for

autonomous robots in unknown environments. IEEE Trans. Systems, Man and

Cybernetics, PartB: Cybernetics, 28, 3, (June 1998), 316-333, ISSN: 1083-4419.

Park, T.; Ahn, J. & Han, C. (2002). A path generation algorithm of an automatic guided

vehicle using sensor scanning method. KSME International Journal, 16, 2, (February

2002), 137-146, ISSN:1226-4865.

Petillot, Y.; Ruiz, I. & Lane, D. (2001). Underwater vehicle obstacle avoidance and path

planning using a multi-beam forward looking sonar. IEEE Journal of Oceanic

Engineering, 26, 2, (April 2001), 240-251, ISSN: 0364-9059.

Petillot, Y.; Ruiz, T.; Lane, D.; Wang, Y.; Trucco, E. & Pican, N. (1998). Underwater vehicle

path planning using a multi-beam forward looking sonar. IEEE Oceanic Engineering

Society, OCEANS'98, pp. 1194-1199, ISBN: 0-7803-5045-6, Nice, France, September

1998, IEEE Inc., Piscataway.

Polak, E. & Mayne, D. (1984). Control system design via semi-infinite optimization: a

review. Proceeding of the IEEE, 72, 12, (December 1984): 1777-1793, ISSN: 0018-9219.

Rao, S. (1984). Optimization, theory and applications. John Wiley & Sons, Inc., ISBN: 0-470-

27483-2, New York.

A Generalized Robot Path Planning Approach Without The Cspace Calculation 459

Ricci, A. (1973). A constructive geometry for computer graphics. The Computer Journal, 16, 2,

(April 1973), 157-160, ISSN: 0010-4620.
Rose, E. (1957). Elementary Theory of Angular Momentum. John Wiley & Sons, Inc., ISBN:

0471735248, New York.

Rosen, K. (1991). Discrete mathematics and Its Applications. McGraw-Hill, Inc., ISBN: 0-07-
053744-5, New York.

Ruiz, T.; Lane, D. & Chantler, M. (1999). A comparison of inter-frame feature measures for

robust object classification in sector scan sonar image sequences. IEEE Journal of

Oceanic Engineering, 24, 4, (October 1999), 458-469, ISSN: 0364-9059.
Shih, C. & Jeng, J. (1999). Stabilization of non-holonomic chained systems by gain

scheduling. International Journal of Systems Science, 30, 4, (April 1999), 441-449, ISSN:
0020-7721.

Sundar, S. & Shiller, S. (1997). Optimal obstacle avoidance based on the Hamilton-Jacobi-

Bellman equation. IEEE Trans. Robotics and Automation, 13, 2, (April 1997), 305 -310,
ISSN: 1042-296X.

Tanak, Y.; Fukushima, M. & Ibaraki, T. (1988). A comparative study of several semi-infinite
nonlinear programming algorithms. European Journal of Operational Research, 36, 1,
(July 1988), 92-100, ISSN: 0377-2217.

The Math Works Inc. (1993). MATLAB Optimization Toolbox User's Guide.

Trucco, E.; Petillot, Y.; Ruiz, I.; Plakas, K. & Lane, D. (2000). Feature tracking in video and
sonar subsea sequences with applications. Computer Vision and Image Understanding,
79, 1, (July 2000), 92-122, ISSN: 1077-3142.

Wang, W. & Wang, K. (1986). Geometric Modeling for swept volume of moving solids. IEEE

Computer Graphics & Applications, 6, 12, (December 1986), 8-17, ISSN: 0272-1716.
Wang, Y. (1995). Kinematics, motion analysis and path planning for four kinds of wheeled mobile

robots [Dissertation]. Dept. Mechanical Engineering, Edinburgh University.
Wang, Y. (1997). A note on solving the find-path problem by good representation of free

space. IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics, 27, 1, (February
1997), 723-724, ISSN: 1083-4419.

Wang, Y. & Cartmell, M. (1998a). Autonomous vehicle parallel parking design using

function fitting approaches. Robotica, 16, 2, (March 1998), 159-170, ISSN: 0263-5747.
Wang, Y. & Cartmell, M. (1998b). Trajectory generation for four-wheel steering tractor-trailer

system: a two step method. Robotica, 16, 4, (July 1998), 381-386, ISSN: 0263-5747.
Wang, Y. & Cartmell, M. (1998c). New Model for Passing Sight Distance on Two-Lane

Highways. ASCE J. of Transportation Engineering, 124, 6, (November 1998), 536-545,
ISSN: 0733-947X.

Wang, Y.; Cartmell, M.; Tao, Q. & Liu, H. (2005). A generalized real-time obstacle avoidance
method without the Cspace calculation. J. Computer Science & Technology, 20, 6,
(November 2005), 774-787, ISSN: 1000-9000.

Wang, Y. & Lane, D. (1997). Subsea vehicle path planning using nonlinear programming
and constructive solid geometry. IEE Proc., Part D, Control theory and applications,
144, 2, (March 1997), 143-152, ISSN: 1350-2379.

Wang, Y. & Lane, D. (2000). Solving a generalized constrained optimization problem with
both logic AND and OR relationships by a mathematical transformation and its
application to robot path planning. IEEE Trans. Systems, Man and Cybernetics, Part C:

Application and Reviews, 30, 4, (November 2000), 525-536, ISSN: 1094-6977.

460 Mobile Robots, Perception & Navigation

Wang, Y.; Lane, D. & Falconer, G. (2000). Two novel approaches for unmanned underwater
vehicle path planning: constrained optimization and semi-infinite constrained
optimization. Robotica, 18, 2, (March 2000), 123-142, ISSN: 0263-5747.

Wang, Y. & Linnett, J. (1995). Vehicle kinematics and its application to highway design.
ASCE J. of Transportation Engineering, 121, 1, (January 1995), 63-74, ISSN: 0733-947X.

Wang, Y.; Linnett, J. & Roberts, J. (1994a). Motion feasibility of a wheeled vehicle with a
steering angle limit. Robotica, 12, 3, (May 1994), 217-226, ISSN: 0263-5747.

Wang, Y.; Linnett, J. & Roberts, J. (1994b). Kinematics, kinematic constraints and path
planning for wheeled mobile robots. Robotica, 12, 5, (September 1994), 391-400,
ISSN: 0263-5747.

Wang, Y.; Liu, H.; Li, M.; Wang, Q.; Zhou, J. & Cartmell, M. (2004). A real-time path
planning approach without the computation of Cspace obstacles. Robotica, 22, 2
(March 2004), 173-187, ISSN: 0263-5747.

Xu, W. & Ma, B. (1999). Polynomial motion of non-holonomic mechanical systems of
chained form. Mathematical Methods in the Applied Sciences, 22, 13, (September 1999),
1153-1173, ISSN: 0170-4214.

Zhang, Y. & Valavanis, K. (1997). A 3-D potential panel method for robot motion planning.
Robotica, 15, 4, (July 1997), 421-434, ISSN: 0263-5747.

Mobile Robots: Perception & Navigation

Edited by Sascha Kolski

ISBN 3-86611-283-1

Hard cover, 704 pages

Publisher Pro Literatur Verlag, Germany / ARS, Austria

Published online 01, February, 2007

Published in print edition February, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Today robots navigate autonomously in office environments as well as outdoors. They show their ability to

beside mechanical and electronic barriers in building mobile platforms, perceiving the environment and

deciding on how to act in a given situation are crucial problems. In this book we focused on these two areas of

mobile robotics, Perception and Navigation. This book gives a wide overview over different navigation

techniques describing both navigation techniques dealing with local and control aspects of navigation as well

es those handling global navigation aspects of a single robot and even for a group of robots.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yongji Wang, Matthew Cartmell, QingWang and Qiuming Tao (2007). A Generalized Robot Path Planning

Approach Without The Cspace Calculation, Mobile Robots: Perception & Navigation, Sascha Kolski (Ed.),

ISBN: 3-86611-283-1, InTech, Available from:

http://www.intechopen.com/books/mobile_robots_perception_navigation/a_generalized_robot_path_planning_

approach_without_the_cspace_calculation

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

