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1. Introduction 

One of the ultimate goals of robotics is to create autonomous robots. Such robots could accept 

high level instructions and carry out tasks without further human supervision or intervention. 

High level input commands would specify a desired task and the autonomous robot would 

compute how to complete the task itself. Progress towards autonomous robots is of great 

research and practical interest, with possible applications in any environment hostile to 

humans. Examples are underwater work, space exploration, waste management and bomb 

disposal among many others. One of the key technical issues towards such an autonomous 

robot is the Path Planning Problem (PPP): How can a robot decide what paths to follow to 

achieve its task. The PPP can be described as follows: given a robot with an initial configuration, 

a goal configuration, its shape and a set of obstacles located in the workspace, find a collision-

free path from the initial configuration to the goal configuration for it. 

PPP has been an active field during the past thirty years. Although seemingly trivial, it has 

proved notoriously difficult to find techniques which work efficiently, especially in the 

presence of multiple obstacles. A significant and varied effort has been made on this 

complicated problem (Wang et al., 2005; Wang et al., 2004; Wang & Lane, 2000; Wang & 

Lane, 1997; Wang, 1995; Wang, 1997; Wang et al., 2000; Wang & Cartmell, 1998c; Wang & 

Cartmell, 1998a; Wang & Cartmell, 1998b; Wang & Linnett, 1995; Wang et al., 1994a; Wang 

et al., 1994b; Petillot et al., 1998; Petillot et al., 2001; Park et al., 2002; Ruiz et al., 1999; Trucco 

et al., 2000; Brooks & Lozano-Perez, 1985; Conn & Kam, 1997; Connolly, 1997; Hu et al., 1993; 

Huang & Lee, 1992; Hwang & Ahuja, 1992; Khatib, 1986; Latombe, 1991; Lozano-Perez, 1983; 

Lu & Yeh, 2002; Lumelsky, 1991; Oriolo et al., 1998; Xu & Ma, 1999; Zhang & Valavanis, 

1997). Various methods for dealing with the basic find-path problem and its extensions, 

such as Vgraph, Voronoi diagram, exact cell decomposition, approximate cell 

decomposition, potential field approach, and optimization-based approach have been 

developed. A systematic discussion on these old methods can be found in references ( Wang 

et al., 2005; Wang, 1995; Latombe, 1991).  

In any robot path planning method, robot and obstacle representation is the first thing to be 

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany
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considered. PPP essentially deals with how to find a collision_free path for a 3 Dimensional 

(3D) object (robot) moving among another set of 3D objects (obstacles), satisfying various 

constraints (Wang et al., 2005; Wang et al., 2004; Wang & Lane, 2000; Wang & Lane, 1997; 

Wang, 1995; Wang, 1997; Wang et al., 2000). There are many reasons for having so many 

different approaches developed. For example, assumptions made on both the shapes of the 

robot and obstacles and the constraints imposed by the mechanical structure of the robot 

contribute to them (Wang, 1997). The important thing for judging the reality of an approach 

is whether the realistic constraints have been considered.  
An important concept proposed in the early stage of robot path planning field is the 
shrinking of the robot to a point and meanwhile the expanding of the obstacles in the 
workspace as a set of new obstacles. The resulting grown obstacles are called the 
Configuration Space (Cspace) obstacles. The find-path problem is then transformed into 
that of finding a collision-free path for a point robot among the Cspace obstacles. This 
idea was first popularized by Lozano-Perez (Lozano-Perez, 1983) in the Artificial 
Intelligence Laboratory, MIT as a basis of the spatial planning approach for the find-path 
and find-place problems, and then extended by Latombe (Latombe, 1991) as a basis for all 
motion planning approaches suitable for a point robot. However, the research experiences 
obtained so far have shown that the calculation of Cspace obstacles is very hard in 2D 
when the following situations occur. 1. Both the robot and obstacles are not polygons; and 
2. The robot is allowed to rotate. The situation gets even worse when the robot and 
obstacles are 3D objects with various shapes (Ricci, 1973; Blechschmidt  & Nagasuru, 1990; 
Barr, 1981; Chiyokura, 1988). For this reason, direct path planning approaches without the 
Cspace calculation is quite useful and expected.  
The objective of this chapter is to present a new approach to the PPP without the Cspace 
calculation. The chapter is based on our previous work (Wang et al., 2005; Wang et al., 2004; 
Wang & Lane, 2000; Wang & Lane, 1997), and in the following we will present the 
background of the new method to show its principle.  

Historically the Constrained Optimization and Constructive Solid Geometry (COCSG) 

method is first proposed in (Wang & Lane, 1997), and two assumptions made in it are that: 

1. The Cspace obstacles in the workspace can be approximately represented by inequalities; 

and 2. The robot can be treated as a point. The mathematical foundations for the 

Constructive Solid Geometry (CSG), the Boolean operations, and the approximation 

techniques are developed to represent the free space of the robot as a set of inequalities 

(Ricci, 1973; Wang & Lane, 1997). The fundamental ideas used include: 1. The free Cspace of 

the robot is represented as a set of inequality constraints using configuration variables; 2. 

The goal configuration is designed as the unique global minimum point of the objective 

function, and the initial configuration is treated as the start point for the spatial search; and 

3. The numerical algorithm developed for solving nonlinear programming problem is 

applied to solve the robot motion planning problem and every immediate point generated 

in this way guarantees that it is in the free space, and therefore is collision free. The 

contribution of the above paper is that for the first time, the idea of inequality is introduced 

to represent objects and the optimization technique is used for the efficient search. 

However, we can still observe that two issues arise from the above problem formulation. 

One is how to exactly rather than approximately deal with the shapes of both the robot and 

the obstacles, and the other is how to calculate the Cspace obstacles. In reference (Wang & 
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Lane, 2000), we further investigate the effect of obstacle shapes on the problem formulation, 

and introduce the new concept of the first and second kinds of obstacles. When the second 

kind of obstacles is considered, the PPP leads to a generalized constrained optimization 

problem (GCOP) with both logic AND and OR relationships, which is totally different from 

the traditional standard constrained optimization problem with only logic AND relationship 

among the constraints. A mathematical transformation technique is developed to solve the 

GCOP. The original contributions of this paper include threefold: First, from the viewpoint 

of optimization theory, it is the first one to propose such a GCOP; Second, a method is 

developed to solve such a GCOP; Third, from the viewpoint of PPP, this paper inherits the 

advantage of the previous method in (Wang & Lane, 1997) and further generalizes its ability 

to deal with various shapes of obstacles.   

The issue that has not been addressed by the above two papers is the calculation of the 

Cspace obstacles. We deal with the PPP with the first kind of obstacles in (Wang et al., 2004) 

and the second kind of obstacles in (Wang et al., 2005) respectively, without the need to 

calculate the Cspace obstacles. A sufficient and necessary condition for a collision free path 

for the robot and the obstacles is then derived in the form of a set of inequalities that lead to 

the use of efficient search algorithms. The principle is that the points outside the obstacles in 

the 3D workspace are represented by implicit inequalities, the points on the boundary of a 

3D robot are expressed in the form of a parametric function, and the PPP is formulated as a 

semi-infinite constrained optimization problem with the help of the mathematical 

transformation. To show its merits, simulation results with different shapes of robot and 

obstacles in 3D space are presented. 

In this chapter we will present a comprehensive introduction to the principle of the PPP 

without the Cspace calculation, including the mathematical background, robot and obstacle 

representation, sufficient and necessary condition for collision-free path, algorithm 

efficiency, and the simulation results. Particularly, we will also discuss the constraints that 

must be considered in the future work and explain mathematically the reason why these 

constraints can lead to more difficulties in this area.  

The rest of the chapter is organized as follows. Section 2 gives a brief description of 

inequality constraints and the formulations for optimization theory. In particular, a 

previously-developed, generalized constrained optimization and the mathematical 

translation needed for its solution are also presented in this section. In Section 3, obstacle 

and robot presentation method is presented. The implicit function inequalities for 

representing the outside of the obstacles and the parametric function equalities for 

representing the surface points of 3D robot are developed. In Section 4, we investigate 

how to convert the robot path planning problem into a semi-infinite constrained 

optimization problem. Simulation results are presented in Section 5. Finally conclusions 

are given in Section 6. 

2. Mathematical Background

In this section we will give a brief introduction to various optimization problems, i.e. the 
standard constrained optimization problem (SCO), generalized constrained optimization 
problem (GCO), and semi-infinite constrained problem (SICO). The essential part of the 
mathematical transformation which can transfer a set of inequalities with logic OR 
operations into one inequality is also introduced in subsection 2.4. Details of the nonlinear 
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programming theory can be found in (Fletcher, 1987; Gill et al., 1981; Luenberger, 1984; 
Polak & Mayne, 1984; Rao, 1984; Tanak et al., 1988). 

2.1 Optimization Problems 

Standard optimization theory (SOT) concerns the minimization or maximization of a 
function subject to different types of constraints (equality or inequality) (Fletcher, 1987; Gill 
et al., 1981). There are mainly four different types of optimization problem: Linear 
Programming, Unconstrained Problems, Constrained Problems and Semi-infinite Constrained 
Problems, as listed in Table 1. The last three parts together comprise the subject of Non-linear 
Programming.

TYPE NOTATION

Unconstrained scalar min f(x)

Unconstrained min f(x)

Constrained min f(x) such that g(x) ≤ 0 

Goal min γ such that f(x)-xγ ≤ Goal

Minmax min{max f(x)} such that g(x) ≤ 0 

Nonlinear least squares min { f(x)*f(x)}

Nonlinear equations f(x)=0

Semi-infinite constrained min f(x) such that g(x) ≤ 0 & Φ(x,w) ≤ 0 for all w∈ ℜ 2

Table 1. Types of nonlinear minimization problems. 

2.2 Standard Constrained Optimization (SCO) 

The standard constrained optimization problem can be described as follows: find an optimal 
point x* which minimizes the function: 

 f(x)     (1) 
subject to: 
 gi(x) = 0, i = 1, 2,…, t

 gj(x) ≤ 0, j = t+1, t+2,…, s 

 xL ≤ x ≤ xU (2)

where t and s are positive integers and s  t, x is an n-dimensional vector of the unknowns x
= (x1 , x2,…, xn), and f, gi ( i = 1, 2,…, t) and gj ( j = t+1, t+2,…, s) are real-valued functions of 
the variables (x1 , x2,…, xn). xL = (L1, L2 ,…, Ln) and xU =(U1 ,U2, …, Un) are the lower and 
upper bounds of x, respectively. The function f is the objective function, and the equations 
and inequalities of (2) are constraints.  
It is important to note that although not explicitly stated in the literature available, the logic 
relationship among the constraints (equalities and inequalities) in (2) are logic AND 

(denoted by “∧”). That is, constraints in (2) can be presented explicitly as:  

 g1(x)=0 ∧ g2(x)=0 ∧ … ∧ gt(x)=0

∧ gt+1(x)≤0 ∧ gt+2(x)≤0 ∧ … ∧ gs(x)≤0                  (3) 

∧ L1≤x1≤U1 ∧ L2≤x2≤U2 ∧ … ∧ Ln≤xn≤Un.

Problem described by (1) and (2) is named as the standard constrained optimization 
problem (SCOP). 
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2.3 Generalized Constrained Optimization (GCO) 

The work reported in (Wang & Lane, 2000) has shown that some realistic problem can be 
cast as a generalized constrained optimization problem of the following form: 
Find an optimal point x* which minimizes the function   

 f(x)                  (4) 
subject to: 

 g1(x)=0 ∧ g2(x)=0 ∧ … ∧ gt(x)=0

∧ gt+1(x)≤0 ∧ gt+2(x)≤0 … ∧ gs(x)≤0

∧ ( h1,1(x)≤0 ∨ h1,2(x)≤0 ∨ …∨
11,kh  (x)≤0 )

∧ ( h2,1(x)≤0 ∨ h2,2(x)≤0 ∨ …∨
22,kh  (x)≤0 )

∧ …

∧ ( hm,1(x)≤0 ∨ hm,2(x)≤0 ∨ …∨ , mm kh  (x)≤0 )

∧ L1≤x1≤U1 ∧ L2≤x2≤U2 ∧ … ∧ Ln≤xn≤Un   (5) 

where, the symbol “∨” denotes the logic OR relationship, t, s, m, k1, k2, ..., km are all positive 
integers, and hi,j(x), (i=1,2,…m; j=1,2,…ki), are real-valued functions of the variables x. The 
problem described by (4) and (5) is named as the generalized constrained optimization 
problem (GCOP) because the constraints have both logic AND and logic OR relationships.  
The development of an algorithm for the solution to GCOP is important. There are two 
ways to deal with the difficulty. The first is to develop some new algorithms which can 
directly deal with the GCOP rather than adopting the algorithms available for the SCOP. 
The second way is based on the idea of devising a mathematical transformation which is 

able to convert each constraint: hi,1(x)≤0 ∨ hi,2(x)≤0 ∨ … ∨
, ii k
h  (x)≤0 (i=1, 2, …, m) into one

new inequality Hi(x)≤ 0, i=1, 2, …, m, for any point x. As a result, the algorithms developed 
for the SCOP can be directly applied to the GCOP. 

2.4 A Mathematical Solution to Converting a Set of Inequalities with Logic OR Relation 
into One Inequality 

Here, we present a mathematical transformation which is able to realize the second idea in 
subsection 2.3. Suppose there are m inequalities hi(x)<0, i=1,2,...,m, with Logic AND defined 
as set A in (6). From a mathematical viewpoint, set A represents the point set of the inside 

for a generalized n dimensional object, and its complement A represents the point set of the 
outside and boundary of the object. In a 3D space, set definition (6) may be explained as 
representing the set of all the inside points for an object whose surface is mathematically
represented by m continuous equations hi(x)=0 (i=1, 2,..., m).

 A = { x | h1(x)<0 ∧ ....... ∧ hm(x)<0 }                                               (6)

A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 }                               (7) 

For each function hi(x), (i=1, 2, …, m), a new function of the following form is constructed (x
is omitted for simplicity): 

 vi=(
2

ih +t2)1/2+hi         i=1, 2, …, m                                                 (8) 
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where t is a small, positive real number and satisfies t<<1. Note that vi is the function of a 

point x and t. For the whole object, a function V of the following form is also constructed: 

1 2

1

...
m

m i

i

V v v v v
=

= + + + =        (9) 

Now let us examine the properties of the two transformations from hi to vi and from vi to V.

First, function vi is always positive for any point x and any constant t, i.e., vi>0 always holds, 

and second, it is an increasing function of hi, which suggests that the value of vi at the 

points where hi>0 is much larger than the value at the points where hi<0. If t<<1, vi can be 

approximately represented as 

2

2

2 ( ) 0, 0;

, 0;

( ), 0.

i i

i i

i

h O t t h

v t h

O t h

+ >> > >

= ≈ =

≈ <

     i=1, 2,…, m     (10)

where O(t2) represents a very small positive number with the order of t2 for t<<1. (10) 

indicates that except for the points located at the vicinity of the surface hi=0, vi is large 

compared with t when hi>0, and small compared with t when hi<0.

From Fig. 1 we can see that for the points located inside the object and in the vicinity of hi=0,

the value of all other functions hj (j=1,2,...,m and j≠i) is less than zero. This leads to vi in the 

order of O(t2). Substituting (10) into (9) gives 

                  

1 2

2

1 2 3

2 1 3

1 2 1

2

1 2

, ( 0) ( 0) ... ( 0);

( ), ( 0 0 0 ... 0)

( 0 0 0 ... 0)

... ( 0 0 0 ... 0);

( ), ( 0) ( 0) ... ( 0).

m

m

m

m m

m

t for h h h

t O t for h h h h

h h h hV

h h h h

O t for h h h

−

>> > ∨ > ∨ ∨ >

≈ + = ∧ ≤ ∧ ≤ ∧ ∧ ≤ ∨

= ∧ ≤ ∧ ≤ ∧ ∧ ≤ ∨=

∨ = ∧ ≤ ∧ ≤ ∧ ∧ ≤

≈ < ∧ < ∧ ∧ <

                     (11) 

Consequently, from (11), (6), and (7) we can observe that:  function V is small, ≈O(t2),

compared with t, when all the hi are sufficiently negative, i.e. at those points which are 

inside the object; V>>t+O(t2) at the set of outside points of the object where at least one of 

the hi is greater than t; and V≈t in the vicinity of the boundaries of the object. Fig. 1 

illustrates this situation. 

Now let us consider the situation when t→0 to have a better understanding why 

construction functions (8) and (9) are used as the mathematical transformation. As t→0, vi

tends to be 

Fig. 1. Illustration of V as a function of point x in n-dimensional space. 
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0, 0;

0, 0.

i

i

i

h
v

h

> >

= ≤
          i=1, 2,…, m  (12) 

It is well-known that the sum of two positive values is positive, the sum of a positive value 
and a zero is positive, and the sum of two zeroes is zero. Thus the addition operation of vi in
(9) corresponds to the Logic OR if we treat a positive value as a logic value “1” and a zero as 
a logic value “0”. Thus we have 

0, 0, {1,2,..., };

0, 0, {1,2,..., }.

i

i

h for some i m
V

h for all i m

> > ∈

= ≤ ∈
                                 (13) 

This property indicates that when t=0 the sufficient and necessary condition for a point x
which falls into the outside of the object is that  

1

0
m

i

i

V v
=

= >  (14) 

Note that the standard form for constraints in optimization problem (1) and (2) is less than 
or equal to zero. Note that although (14) may change to the form (15), it does not allow the 
condition “equal to zero”. 

1

0
m

i

i

V v
=

− = − <   (15) 

In fact, the “equal to zero” case means the point lies on the boundary of the object.  
However, it is not desirable for robot path planning to have the path too close to the 

obstacles. Thus a small positive value ∆v can be introduced to control the distance of the 
feasible path to the obstacle. If the following inequality is satisfied by a point x

1

m

i

i

V v v
=

= ≥ ∆     or    

1

0
m

i

i

v v
=

∆ − ≤                              (16) 

then this point must be outside the obstacle determined by (6). If ∆v→0, the boundary 

determined by 

1

0
m

i

i

v v
=

∆ − ≤  tends to be the surface of the obstacle.  

In summary, we have the following result. 

Theorem 1: If the outside and the surface of an object is determined by (h1≥0 ∨ h2≥0 ∨ ... ∨ hm≥0),

then its outside and surface can also be determined by the inequality 

1

0
m

i

i

v v
=

∆ − ≤  as the small 

positive value ∆v→0. In other words, the satisfaction of the inequality 

1

0
m

i

i

v v
=

∆ − ≤ for a point x

guarantees that this point falls outside the object. 
A direct conclusion drawn from Theorem 1 is that a GCO problem can be converted into an 
SCO problem by the transformations (8) and (9).  

2.5 Semi-Infinite Constrained Optimization (SICO) 

The semi-infinite constrained optimization problem is to find the minimum of a semi-
infinitely constrained scalar function of several variables x starting at an initial estimate xs.
This problem is mathematically stated as: 
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Minimize

 f(x), x ∈ ℜ n,      (17) 
subject to: 
 gi(x) = 0, i = 1, 2, …, t 

 gj(x) ≤ 0, j= t+1, t+2,…, s 

Φk(x, v) ≤ 0, k= 1, 2, …, r 

 xL ≤ x ≤ xU, for all v∈ ℜ 2                   (18) 

where Φk(x, v) is a continuous function of both x and an additional set of variables v. The 
variables v are vectors of at most length two. The aim is to minimize f(x) so that the 

constraints hold for all possible values of Φk(x, v). Since it is impossible to calculate all 

possible values of Φk(x, v), a region, over which to calculate an appropriately sampled set of 
values, must be chosen for v. x is referred to as the unknown variable and v as the 
independent variables.  
The procedure for solving such an SICO with nonlinear constraints is as follows: 
(a) Assign an initial point for x and a region for v;
(b) Apply a search algorithm to find the optimum solution x* and the corresponding 
minimum objective function f(x*).
In the subsequent sections we will gradually illustrate that the 3D path planning problem 
without the calculation of Cspace obstacles can be converted into a standard semi-infinite 
constrained optimization problem. 

3. Obstacle and Robot Representations 

For robot path planning, the first thing is to give each of the objects a mathematical 
representation, including obstacles and robot in the workspace. Modeling and manipulation 
of objects is the research task of Computer Aided Design (CAD), Computer Aided 
Manufacturing (CAM), and Computer Graphics (CG) (Ricci, 1973; Blechschmidt  & 
Nagasuru, 1990; Barr, 1981; Chiyokura, 1988; Hall & Warren, 1990; Berger, 1986; Comba, 
1968; Franklin & Barr, 1981). A solid model should contain an informationally complete 
description of the geometry and topology of a 3D object (Blechschmidt  & Nagasuru, 1990). 
A successful modeling system, in addition to many other features, must be capable of 
representing the object’s surface and be able to unambiguously determine whether a point is 
in the “inside” or “outside” of the object. In CAD, CAM, and CG, there are three traditional 
categories of solid modeling systems, namely boundary representation (B-rep), spatial 
decomposition, and constructive solid geometry (CSG) (Chiyokura, 1988). In our method, 
two different categories of obstacles are distinguished, and CSG together with an 
approximation approach are used to represent the various objects in real world in form of 
inequality constraints. 

3.1 General Representation of Obstacle and Classification 

A 3D object S divides the 3D Euclidean space E 3 into three parts: the inside of the object 
(denoted by I), the outside of the object (denoted by T), and the boundary (denoted by B), with 

 I ∪ B ∪ T = E 3                                                  (19) 

 I ∩ B = B ∩ T = I ∩ T =       (20) 



A Generalized Robot Path Planning Approach Without The Cspace Calculation 441 

Let x=(x, y, z) ∈ E 3 denote a point in 3D space. An obstacle can be described as a set of all 
those points that fall into the inside of the obstacle, that is, an obstacle A can be described as: 

 A = { x | x falls into the inside of A }                                           (21) 

Based on this set-formed representation, we can define an important concept “free space of 
an obstacle” and get a basic condition for a collision-free point. 
Definition 1: Free space of an obstacle: The set of points on or outside of the surface of a 3D 
obstacle is defined as its free space. That is, the free space of an obstacle A (set-formed 

representation) is just A , i.e., the complement of set A.
Proposition 1: The necessary and sufficient condition for a point x to be collision-free from an 

obstacle A is that the point x must fall into the free space of A, that is, x∈ A .
The inside of a 3D object can be mathematically represented by one or several united 
implicit function inequalities. According to the number of the inequalities, we categorize 3D 
obstacles into two groups. 
Definition 2: First group of obstacles: If the inside of a obstacle can be represented by only 
one implicit function inequality, the obstacle is said to be in the first group. That is, if an 
obstacle A can be represented as:  

 A={ x  h(x) <0 }                     (22) 

where h(x) is an implicit function of  x, then A belongs to the first group of obstacles. 
Obviously the free space of A can be represented as the following: 

A = { x  h(x) ≥ 0 }                                 (23) 

Examples of the obstacles in the first group include spheres, ellipsoids, torus, 
superellipsoids and so on (Ricci, 1973; Blechschmidt  & Nagasuru, 1990; Barr, 1981; Berger, 
1986; Franklin & Barr, 1981; Wang & Lane, 1997). A simple example of the first-group 
obstacles is illustrated in Fig. 2. 

Fig. 2. First group of obstacles: inside and outside of an obstacle. 

Definition 3: Second group of obstacles: If the inside of an obstacle must be represented by 
more than one united implicit function inequalities, the obstacle is said to be in the second 
group. That is, if an obstacle A can be represented as: 

 A ={ x  h1(x)<0 ∧ h2(x)<0 ∧ … ∧ hm(x)<0 }                                  (24) 

where hi(x), i=1, 2, …, m, are all implicit functions of x and m is more than one, then A
belongs to the second group of obstacles. 
For the second-group obstacle A, the free space can be represented as the following: 
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A ={ x h1(x)≥ 0 ∨ h2(x)≥ 0 ∨ …∨ hm(x)≥ 0 }                                 (25)

For example, in Fig. 3, the 2-demensioned obstacle is a rectangle whose inside is surrounded 
by four lines h1= x-a =0, h2= -x-a =0, h3= y-b =0, and h4= -y-b =0, where a and b are positive 
values. The inside of the obstacle (denoted as A) is the intersection of regions Ai, i=1, 2, 3, 4,

where each Ai is defined as Ai={ (x, y)  hi <0 }, that is: 

 A = A1 ∩ A2 ∩ A3 ∩ A4

 = { (x, y)  h1 <0 } ∩ { (x, y)  h2 <0 } ∩ { (x, y)  h3 <0 } ∩ { (x, y)  h4 <0 }   

 = { (x, y)  h1 <0 ∧ h2 <0 ∧ h3 <0 ∧ h4 <0 }       (26)

Fig. 3. Second group of obstacles: inside and outside of an obstacle described by more than 
one implicit function inequalities. 

where “∩”denotes intersection operation of a set and “∧” denotes logic AND. The free space 
of the obstacle (just the union of region I, region II, …, region VIII, and the boundary of the 
rectangle), can be represented as: 

A =
43214321 )( AAAAAAAA ∪∪∪=∩∩∩

 = { (x, y)  h1 ≥ 0 } ∪ { (x, y)  h2 ≥ 0 } ∪ { (x, y)  h3 ≥ 0 } ∪ { (x, y)  h4 ≥ 0 }

 = { (x, y)  h1 ≥ 0 ∨ h2 ≥ 0 ∨ h3 ≥ 0 ∨ h4 ≥ 0 }     (27)

where “∪” denotes union operation of a set and “∨” denotes logic OR.

3.2 Construction of Object’s Defining Inequality 

According to section 3.1 we know the inequality “h (x) <0” is a general form to define a 
representation of an object. We name it as defining inequality. How to construct defining 
inequality for specific objects in real world? Here we present an approximated method. 
To represent an object, another form equivalent to “h (x) <0” is “f(x) <1”. The latter form can 
be easily transformed into “h (x) <0”, and is more applicable and convenient for constructing 
defining inequalities of complex objects from those of the simple objects.  In “f(x) <1”, the 
function f(x) is named as defining function.
Definition 4: Defining Function: For an object S with its inside I, outside T, and boundary 
B, a continuous and positive function f(x) is called the defining function of S if for any x =(x, 

y, z)∈E 3, the following hold: 

` f(x) = 1      ⇔   x ∈ B
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 0< f(x) < 1  ⇔   x ∈ I                                       (28)

 f(x) > 1        ⇔   x ∈ T.

For example, a defining function for a sphere with radius R and its centre at the origin of the 
coordinate system is  
 f(x) = (x/R)2 +(y/R)2+(z/R)2,       (29) 
and equality  (x/R)2 +(y/R)2+(z/R)2 = 1  defines the surface of the sphere. 
There are many categories of basic defining functions for object representation (called 
“primitive solids”) such as Quadrics, Superquadrics, and Blobby functions (Berger, 1986).  
a. Quadrics. A frequently used class of objects are the quadric surfaces, which are described 
with second-degree equations (quadratics). They include spheres, ellipsoids, tori, 
paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellipsoids, are 
common elements of CAD and Graphics, and are often available in CAD and graphics 
packages as primitives from which more complex objects can be constructed.  
Sphere: In Cartesian coordinates, a spherical surface with radius r centered on the 
coordinate origin is defined as the points (x, y, z) that satisfy the equation 

                             x2+y2+z2 = r2              (30) 

Ellipsoid: An ellipsoidal surface can be described as an extension of a spherical surface, 
where the radii in the three mutually perpendicular directions can have different 
values. The Cartesian representation for points over the surface of an ellipsoid 
centered on the origin is

  (x/rx)2 + (y/ry)2 + (z/rz)2 = 1    (31) 

Slabs, i.e. region bounded by two parallel planes with the expression of (x/a)2 = 1, (y/b)2 = 1, 
(z/c)2 = 1 and circular or elliptical cylinder with the expression of (x/a)2 + (y/h)2 = 1 are 
special cases of this general ellipsoid, here a, b, c are positive real numbers. 
Torus: A torus is a doughnut-shaped object. It can be generated by rotating a circle or other 
conic about a specified axis. The Cartesian representation for points over the surface of a 
torus can be written in the form 

   2 2 2 2[ ( / ) ( / ) ] ( / ) 1x y zr x r y r z r− + + =                 (32) 

where r is any given offset value. 
b. Superquadrics. This class of objects is a generalization of the quadric representations and 
provides more flexibility to describe objects (Franklin & Barr, 1981). Superquadrics are 
formed by incorporating additional parameters into the quadric equations to provide 
increased flexibility for adjusting object shapes. The number of additional parameters used 
is equal to the dimension of the object: one parameter for curves and two parameters for 
surfaces. The most useful one for CSG is superellipsoid. 
Superellipsoid.  A Cartesian representation for points over the surface of a superellipsoid is 
obtained from the equation for an ellipsoid by incorporating two exponent parameters: 

2

2 2 1 1

2 2 2

[( ) ( ) ] ( ) 1

s

s s s so o o

x y z

x x y y z z

r r r

− − −
+ + =                 (33) 

where parameters s1 and s2 can be assigned any positive real value. For s1=s2=1, we get an 
ordinary ellipsoid. Super-ellipsoid is also used to represent the robot in 3D space. We will 
describe this in more detail in the next section. 
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c. Blobby functions. Blobby function has been used in computer graphics for representing 
molecular structure, water droplets and other liquid effects, melting objects, and muscle 
shapes in the human body. In robotics, it is also useful for describing obstacles. Several 
models have been developed for representing blobby objects as distribution functions over a 
region of space. One way to do this is to model objects as combinations of Gaussion density 
functions, or “bumps”. A surface function is then defined as 

2
k ka r

k

k

b e T
− =             (34) 

where 2 2 2 2

k k k kr x y z= + + , parameter T is a specified threshold, and parameters ak and bk are 

used to adjust the amount of blobbiness of the individual objects. Negative values for 
parameter bk can be used to produce dents instead of bumps. 
The defining functions (30) to (34) describe the solids in standard positions and orientations. 
It is usually necessary to translate and rotate the objects to the desired configurations. The 
rigid body transformations are invertible. Thus, the original inside-outside function can be 
used after a function inversion. For example, substituting the translation x=(x’-a) into the 
defining function (x/a)2 = 1 leads to a new defining function [(x’-a)/a]2=1, which  describes 
the surface of an infinite slab centered at x’=a  and with the same thickness of 2a. More 

generally, let M∈R3×3 denote the desired rotation matrix and B=[b1,b2,b3] denote the 
translation vector. Then the translated and rotated solid S is given by:  

 x’ = Mx +B       (35) 

and the new inside-outside defining function is calculated by inverting the translation and 
substituting into the old inside-outside function; i.e. 

                         f ’(x’, y’, z’) = f(x, y, z)             (36) 

where

1

1

2

3

'

'

'

x x b

y M y b

z z b

−

−

= −

−

                                                         (37) 

M-1 is the inverse of the rotation matrix. Because the rotation matrix is always orthogonal, its 
inverse is the same as its transpose, i.e. M-1=MT.
It’s easy to give out defining functions for basic object such as sphere and ellipsoids, directly 
using primitive solids. But objects in real world are usually complex and cannot be directly 
represented by primitive solids. A natural method to overcome this difficulty is constructing 
complex objects from simple objects via set operations (union, intersection, and difference). 
Given n defining functions f1(x), f2(x), and fn(x) for n objects, respectively, the defining 
function for the intersection of the n objects is given by 

        f I(x)  = max(f1(x), f2(x), …, fn(x))              (38) 

and the surface equation of the intersection of the n objects is given by  

        max(f1(x), f2(x), …, fn(x)) = 1              (39) 

Similarly, the defining function for the union of the n objects is given by 

f U(x)  = min(f1(x), f2(x), …, fn(x)).        (40) 

and the surface equation of the union of the n objects is given by  

                                          min(f1(x), f2(x), …, fn(x)) = 1         (41) 
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For example, the intersection of the three infinite slabs with defining functions: f1(x)= (x/r)2,
f2(x)= (y/r)2, and f3(x)= (z/r)2 has the following surface equation max((x/r)2, (y/r)2, (z/r)2) =1, 
which represent the surface of a cube. 
Although equations (39) and (41) represent the exact surfaces of the intersection and union of the 
n objects, they are not readily manipulated and computed. To realize a smooth blending of the n
objects into a final one, equations (39) and (41) must be approximated by means of suitable 
functions. A certain degree of smoothing has been obtained in a particular technique for the 
detection of intersections of 3D objects (Wang & Cartmell, 1998a), but this method does not apply 
to non-convex objects. A currently wide-used method is the one reported in (Ricci, 1973). We use 
that method here. The intersection and union can be smoothly approximated as: 

 f I(x)  = (f1m (x) + f2 m (x) +  fn m (x))1/ m                (42) 

 f U(x)  = (f1-m (x) + f2 -m (x) + fn- m (x)) -1/ m               (43) 

The resulting approximations of the surfaces for the intersection and union of the n objects 
are respectively represented as: 

 (f1m (x) + f2 m (x) +  fn m (x))1/ m  =  1        (44) 

 (f1-m (x) + f2 -m (x) +  fn- m (x)) -1/ m  = 1     (45) 

where m is a positive real number. m is used to control the accuracy of the smoothing 
approximation and thus is called the control parameter. A larger m produces blending surfaces 
that cling more closely to the primitive objects. Ricci (Ricci, 1973) proved that when m , the 
approximations (42) and (43) give the exact description of the intersection and union respectively.  
These approximations have the following advantages: 
(i) Blending effects are primarily noticeable near surface intersections.  
(ii) f I(x) and f U(x) are differentiable which may avoid the possible difficulties in 
computation due to the differentiability of the max and min functions. 
One problem that has been investigated in the previous literature (Wang & Lane, 1997) is 
the choice of the control parameter m in Equations (44) and (45). Although Ricci (Ricci, 1973) 
suggested that any positive real number may be chosen as the candidate, our experience has 
shown that when using slabs as the basic primitives, some care must be taken. In this case, m
must be an integer, which leads to 2m as an even number. Some examples are given below. 

(a) m = 1, 2, 4, 8, and 16 from inside to outside; (b) m = 3/2, 9/2, and 33/2 from inside to
 outside. 

Fig. 4. Illustration of intersection f1∩f2. f1 = x2, f2 = y2, ((x2)m + (y2)m)1/m = 1. 
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Figures 4(a) and 4(b) show two examples, using two slabs f1 (x)= x2, f2 (x)= y2 as basic primitives to 
construct a rounded square with different orders (control parameters). In Figure 4(a), m has been 
chosen to be an integer. When using m=1 to approximate the intersection of f1 (x) and f2 (x), the 
result is a circle. As m increases the approximation to the intersection of f1 (x) and f2 (x), a square 
with length and width being 1, get better. It can be seen that when m = 8 or 16, the approximation 
is very close to the square. In Figure 4(b), the values of m are fractions rather than integers so that 
2m is an odd number. The resulting approximate implicit function is not, as could be expected, a 
closed curve. Closed curve here means that the number of real circuits is limited to one and that 
the circuit does not extend to infinity. Only in the first quadrant it is a good approximation of the 
intersection of f1 (x) and f2 (x). Furthermore, if m is chosen as a decimal so that 2m is not an integer, 
then the resulting approximate implicit function is of real value only in the first quadrant: see the 
figures given in (Franklin & Barr, 1981). The above discussion also applies to the union operation. 
If, on the other hand, a circle or an ellipse is used as the primitive to construct a new object, 
any positive number m able to keep the closeness of the intersection and union operation. 
Figures 5 and 6 give two examples. Similarly as m increases, the approximation gets better. 

Fig. 5. Illustration of intersection f1∩f2. f1 =x2+y2, f2 =(x-1)2+y2. m = 0.6, 0.8, 1, 2, 5, and 25 from 
inside to outside. 

Fig. 6. Illustration of union f1∪f2. f1 =[(x+4)2+y2]/32, f2 =[x2+(y+4)2]/32. m= 8, 4, 2, 1, 0.8, and 0.5 
from inside to outside. 
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3.3 Robot Representation 

Since robot is a movable and rotatable object in the workspace, to clearly model and 
dynamically manipulate a robot in 3D space, we must be capable of representing not only its 
shape and size, but also its spatial location and orientation. Robot representation means the 
expression of a point, denoted by x=(x, y, z), on the boundary of the robot as the function of 
its spatial position and orientation variables. Normally there are two mathematical ways to 
describe the boundary of a robot. The first is the implicit function which takes the form of 
g(x, y, z) = 0 for its boundary expression. The second is the parametric form, in which the x,
y, and z are expressed as functions of two auxiliary parameters v=(t1, t2), so that x=x(v)=x(t1,
t2), y=y(v)=y(t1, t2), and z=z(v)=z(t1, t2). In the following context, we will use both the 
implicit and the parametric forms to formulate a robot. 
Let the geometric centre point O of the robot, denoted by O(xo, yo, zo), be chosen as the 

position parameters and let a set of three orientation angles, denoted by (θ1, θ2, θ3), be 
chosen as the orientation parameters. Then a robot can be represented as: 

 { (x, y, z) |  g(x, y, z, xo, yo, zo , θ1, θ2, θ3 ) = 0 }                                    (46)

and its equivalent parametric form can be expressed as: 

 { (x, y, z) | x=x(xo, yo, zo, θ1, θ2, θ3, v),  

 y=y(xo, yo, zo, θ1, θ2, θ3, v),

 z=z(xo, yo, zo, θ1, θ2, θ3, v) (47)

xo, yo , zo together with θ1, θ2, θ3 are responsible for determining the position and orientation 

of a robot. We call (xo, yo, zo, θ1, θ2, θ3) as the robot’s space configuration variables.
The implicit function we use to describe the robot here is the superellipsoid proposed in 
references (Barr, 1981; Berger, 1986), which is a Constructive Solid Geometry (CSG) 
primitive for a broad family of robot and obstacles. The superellipsoid is defined as: 
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Its parametric form is: 

 bx= rx 1cos
s (t1) 2cos

s (t2)+ xo ;

 y= ry 1cos
s  (t1) 2sin

s (t2)+ yo;      - /2 t1 /2;  0 t2 2        (49)

 z= rz 1sin
s (t1)+ zo.

where rx , ry , rz define the geometric extent, s1 and s2 specify the shape properties (s1 is the 
squareness parameter in the north-south direction; s2 is the squareness parameter in the 
east-west direction), and xo, yo, zo describe the spatial location. The superellipsoid can be 
constructed from the basic slabs. Some superellipsoid shapes produced by the choice of 
different values for parameters s1 and s2 are shown in Fig. 7 when rx=ry=rz. 
From (Barr, 1981; Berger, 1986), we know that most kinds of robots can be simulated by the 
broad family of easily defined superellipsoid primitives. In addition to the superspherical 
shapes that can be generated using various values for parameters s1 and s2, other 
superquadratic shapes can also be combined to create more complex structures. More 
details about them can be found in (Barr, 1981; Berger, 1986; Wang & Lane, 1997).  

(48) and (49) describe a 3D robot in the standard orientation with θ1=θ2=θ3=0. It’s necessary 
to give a general representation of its spatial orientation. The concepts of Euler angle and 
Euler angle conversion are introduced in the following. 
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The Euler angles comprise three arbitrary rotations in 3D space to describe the spatial 
orientation of an object. How the Euler angle is defined and how the rotation matrix R is 
obtained are briefly described, with the assumption that we start in frame S with Cartesian 
axes, xold, yold, and zold. A positive (anti-clockwise) rotation of magnitude  about the z axis of 
S is first carried out and the resulting frame is called S'. Then it is followed by a positive 
rotation of magnitude about the y' axis of frame S' and the resulting frame is called S''. 
Finally, a positive rotation of magnitude about the z'' axis of S'' is made and the resulting 
frame is called S'''. Fig. 8 illustrates the combined effect of these steps. 
The combined result of these three rotations is mathematically expressed by the following 
rotation matrix: 

Fig. 8. Euler angle conversion. 
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where R is the rotation matrix:  
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(50) is equivalent to (51) as follows: 
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where vector (xold, yold, zold) represents the point in the first coordinate system and (xnew, ynew ,
znew) represent the point in the new coordinate system. The ranges for , , are

 0 2 , 0 , 0 2       (52)

The combination of rotation transformation (52) with (49) results in the parametric form for 

a superellipsoid robot in a general position O(xo, yo, zo) and orientation (θ1, θ2, θ3):
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 x=(rx 1cos
s (t1) 2cos

s (t2))l1+(ry 1cos
s (t1) 2sin

s (t2))l2+(rz 1sin
s (t1))l3+ xo ;

 y=(rx 1cos
s (t1) 2cos

s (t2))m1+(ry 1cos
s (t1) 2sin

s (t2))m2+(rz 1sin
s (t1))m3+ yo ;           (53)

 z=(rx 1cos
s (t1) 2cos

s (t2))n1+(ry 1cos
s (t1) 2sin

s (t2))n2+(rz 1sin
s (t1))n3+zo .

where

where the oriental angles θ1, θ2, θ3 are specified by three Euler angles. For more details about 
Euler angle conversion, see (Rose, 1957). 

4. Converting the Robot Path Planning Problem into the Semi-infinite 
Optimization Problem 

 l1=cos(θ1)cos(θ2)cos(θ3)-sin(θ1)sin(θ3)

 m1=-sin(θ1)cos(θ3)-cos(θ1)cos(θ2)sin(θ3)

 n1=cos(θ1)sin(θ2)

 l2=-cos(θ1)sin(θ3)+cos(θ2)sin(θ2)sin(θ3)

 m2=-cos(θ1)cos(θ3)+sin(θ1)cos(θ2)sin(θ3  (54) 

 n2=sin(θ2)sin(θ3)

3=cos(θ1)sin(θ2)

3=sin(θ1)sin(θ2)

 3=cos(θ2)

/2 t1 /2

t2 2

4.1 Collision-free Condition for the Obstacle Avoidance 

According to Proposition 1 and the representations of the two classes of obstacles, we can 
get the condition for a point to be collision-free from an obstacle: 
Proposition 2: The necessary and sufficient condition for a point x to be collision-free from a first-

group obstacle A ={ x  h(x) <0 } is that x∈ A , that is, h(x) ≥ 0.
Proposition 3: The necessary and sufficient condition for a point x to be collision-free from a second-

group obstacle A ={ x  h1(x)<0 ∧ h2(x)<0 ∧ … ∧ hm(x)<0 } is that x∈ A , that is, h1(x)≥ 0 ∨ h2(x)≥ 0 

∨ …∨ hm(x)≥ 0.

Let vi(x)=(
2

ih (x)+t2)1/2+hi(x), (i=1, 2, …, m), and ∆v be a small positive value, then according 

to Theorem 1 and Proposition 3, we can get a realistically necessary and sufficient condition 

for a point to be collision-free from a second-group obstacle:
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respect to the realistic requirement of robot path planning, we can represent the free space 
of the second-group obstacle as: 

 = { x | 

1

( ) 0
m

i

i

v v x
=

∆ − ≤  }   (55) 

Now let’s consider the collision-free condition in the presence of multiple obstacles. In the 
presence of multiple obstacles, the condition for a point to be collision-free from all obstacles 
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in the workspace is obviously that the point must fall into the intersection of free spaces of 
all the obstacles. We get: 
Theorem 2: In the presence of multiple obstacles Ai, i=1, 2,…, j; (j>1), the necessary and sufficient 

condition for a point x to be collision-free from all the obstacles is that x∈
1 2 ... jA A A∩ ∩ ∩ .

Suppose in a workspace there are totally s first-group obstacles and m second-group 
obstacles, and they are respectively defined as: 

i={ x gi(x)<0 }, i=1, 2,…, s (56)

j={ x  hj,1(x)<0 ∧ hj,2(x)<0 ∧ … ∧ , jj kh (x)<0 }, j=1, 2, …, m.

We note Gi(x) = - gi(x), i=1, 2,…, s, and consequently the representation of the free space of Ai

changes into: 

 ={ x Gi(x) ≤  0 },       i=1, 2,…, s.    (57) 

Let vj,r (x)=(
2

,j rh (x)+t2)1/2+hj,r (x), (j=1, 2, …, m; r=1, 2,…, kj), and ∆vj (j=1, 2, …, m) be small 

positive values. And further let Hj(x)=
,

1
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jk

j j r
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v v x
=

∆ − , then free space of Bj can be 

consequently represented as: 

         
jB
={ x Hj(x)  0 },       j=1, 2, …, m.      (58)

Thus, the condition for a point x to be collision-free from all the obstacles is that: 

∈ S =  
1 2 1 2... ...s mA A A B B B∩ ∩ ∩ ∩ ∩ ∩ ∩

   { x G1(x) ≤ 0 }∩{ x G2(x) ≤ 0 }∩…∩{ x Gs(x) ≤ 0 }

 { x  H1(x)  0 }∩{ x  H2(x)  0 }∩…∩{ x  Hm(x)  0 }

   { x G1(x) ≤ 0 ∧ G2(x) ≤ 0∧…∧ Gs(x) ≤ 0 ∧H1(x)  0 ∧ H2(x)  0 ∧… ∧ Hm(x)  0 } (59)

that is,  

 G1(x) ≤ 0 ∧ G2(x) ≤ 0∧…∧ Gs(x) ≤ 0 ∧ H1(x)  0 ∧ H2(x)  0 ∧… ∧ Hm(x)  0      (60) 

4.2 Constraints of Path Planning Problem 

An obvious necessary and sufficient condition for a robot to be collision-free from multiple 
obstacles is that: all the points inside or on the boundary of the robot fall into the intersection of 
free spaces of all the obstacles. A little weaker, but sufficient in almost all realistic cases, condition 
is that: all the points on the boundary of the robot fall into intersection of all the free spaces.
Suppose in the workspace there are totally s first-group obstacles and m second-group 
obstacles, just as defined in (56), and also a static superellipsoid-shaped robot with 
squareness parameters s1, s2, geometric extent rx, ry, rz, center position O(xo, yo, zo) and 

orientation (θ1, θ2, θ3). According to (53), the set of the robot boundary points is: 

 T = { (x, y, z) |  

 x=(rx
1coss (t1) 2coss (t2))l1+(ry

1coss (t1) 2sin s (t2))l2+(rz
1sin s (t1))l3+ xo

 y=(rx
1coss (t1) 2coss (t2))m1+(ry

1coss (t1) 2sin s (t2))m2+(rz
1sin s (t1))m3+ yo

 z=(rx
1cos
s

(t1) 2cos
s

(t2))n1+(ry
1cos
s

(t1) 2sin
s

(t2))n2+(rz
1sin
s

(t1))n3+zo - /2 t1 /2; 0 t2 2 . (61)
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li, mi, ni, (i=1,2,3) are defined same as in (54). Let (x, y, z) = (X(xo, yo, zo, θ1, θ2, θ3, t1, t2), Y(xo, yo,

zo, θ1, θ2, θ3, t1, t2), Z(xo, yo, zo, θ1, θ2, θ3, t1, t2)), and the space configuration vector u= (xo, yo, zo,

θ1, θ2, θ3), then the collision-free condition, according to (60), can be represented as: 
For all v = (t1, t2) that - /2 t1 /2, 0 t2 2 , the following expression hold: 

 G1(X(u, v), Y(u, v), Z(u, v))  0 ∧

 G2(X(u, v), Y(u, v), Z(u, v))  0∧…∧

 Gs(X(u, v), Y(u, v), Z(u, v))  0 ∧

 H1(X(u, v), Y(u, v), Z(u, v))  0 ∧

 H2(X(u, v), Y(u, v), Z(u, v))  0∧…∧

 Hm(X(u, v), Y(u, v), Z(u, v))  0           (62) 

Let Pi (u, v) = Gi(X(u, v), Y(u, v), Z(u, v)) i=1,2,…,s; Qj (u, v) =Hj (X(u, v), Y(u, v), Z(u, v)) j = 
1,2,…, m, then (62) changes into the following: 

 P1(u, v)  0 ∧P2(u, v)  0∧…∧Ps(u, v)  0 ∧

 Q1(u, v)  0 ∧Q2(u, v)  0∧…∧Qm(u, v)  0        (63) 

In path planning the configuration variables also have certain range limits. This requirement 
can be described as: 

 xL ≤ xo ≤ xU, yL ≤ yo ≤ yU, zL ≤ zo ≤ zU , 1≤ θ1 ≤ 1 , 2≤ θ2 ≤ 2, 3≤ θ3 ≤ 3      (64)

that is,  

 uL≤ u≤ uU                                          (65) 

where uL=( xL, yL, zL, 1, 2, 3), uU=( xU, yU, zU, 1, 2, 3).
(63) and (65) form the inequality constraints required in the formulation of the SICO 
problem for path planning. 

4.3 Design of the Objective Function 

There are many ways to design the objective function. In a nonlinear programming problem, 
this function must represent some meaning of the practical problem, for example, minimum 
time, minimum distance, minimum energy, or minimum cost. From a mathematical 
viewpoint, this function must have a minimum lower bound. For the path planning 
problem, the goal configuration must be designed as the unique global minimum of the 
configuration variables. We use a quadratic function of the form (66) as the objective 
function, with the goal configuration point (xg, yg, zg) and goal configuration angles ( 1, 2,

3 ) being its unique global minimum point and satisfying the condition that min f(xo, yo, zo,

θ1, θ2, θ3) = f(xg, yg , zg , 1, 2, 3) = 0.  

 f(xo, yo, zo, θ1, θ2, θ3 )=

 w((xo-xg)2+(yo-yg)2+(zo-zg)2)+(1-w)((θ1- 1)2+(θ2- 2)2+(θ3- 3)2)               (66) 

where w is a non-negative weighted factor that satisfies: 0  w  1. 
In (66), w is used to adjust the relative effects of the spatial position (xo-xg)2+(yo-yg)2+(zo-zg)2

and the spatial orientation (θ1- 1)2+(θ2- 2)2+(θ3- 3)2. When w=1, only the effect of the spatial 
position factor is considered. w can be adaptively adjusted and be revised during the 
searching process. (66), (63), and (65) together form a semi-infinite constrained optimization 
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problem. If we use the initial configuration variables (xs, ys, zs, 1, 2, 3) as the initial estimate 

of the optimization problem, the optimum search for (xo*, yo*, zo*,θ1*, θ2*, θ3*) is equivalent to 
searching the goal configuration variables. If the algorithm is convergent and the problem 

has a solution, then we will find that xo* = xg, yo* = yg, zo*=zg, θ1*= 1, θ2*= 2, θ3*= 3.

In summary, the fundamental idea for this approach is to represent the free space determined by 
the robot and obstacles as inequality constraints for a semi-infinite constrained optimization 
problem in 3D space. The goal configuration is designed as the unique global minimum point of 
the objective function. The initial configuration is treated as the first search point for the 
optimization problem. Then the numerical algorithm developed for solving the semi-infinite 
constrained optimization problem can be applied to solve the robot motion planning problem. 
Every point generated using the semi-infinite constrained optimization method is guaranteed to 
be in free space and therefore is collision free. 

5. Implementation Considerations and Simulation Results 

When implementation is carried out, we only consider the motion of the robot in 3D space. 
The vehicle is modeled as a superellipsoid with different shapes and the obstacles are 
modeled by circle, ellipsoid, cylinder, tetrahedron, cuboids, and various other shapes of 
superellipsoid, which belong to either the first group or the second group. 

5.1 Algorithm Implementation Consideration 

The implementation of the semi-infinite optimization is based on the constrained optimization 
toolbox (The Math Works Inc., 1993), but some modifications have been made. The first is the 
control of the output. In (The Math Works Inc., 1993), only the final result of the vector x= (xo*, yo*, 

zo*, θ1*, θ2*, θ3*) is provided. However, the important thing for the robot path planning problem is 

to generate a smooth path. Therefore, a new function which outputs the current (xo, yo, zo, θ1, θ2,

θ3) at every iteration has been added. The second is the control of the change of Euler Angles in 
the line search algorithm for every iteration. Recall that the principle of developing an algorithm 
in nonlinear programming is to minimize the number of function evaluations, which represents 
the most efficient way for finding the optimum x*. Thus, the changing step is automatically 
chosen as large as possible to minimize the objective function in the line search direction. The 
disadvantage of this strategy when applied to path planning is that it sometimes leads to a non-
smooth path, so a modification has been made. For more details on the implementation of the 
semi-infinite optimization algorithms, see the reference (The Math Works Inc., 1993).  
In the following the results obtained for 3D path planning will be given. In all the 
experiments the algorithm adopted is the Sequential Quadratic Programming (SQP) (The 
Math Works Inc., 1993). The limits of the workspace are: Ol=(-20, -20, -20) and Ou=(60, 60, 
60), thus the workspace is surrounded by a cube with length 80(-20, 60), width 80(-20, 60), 

and height 80(-20,60). The inequality Ol≤O≤Ou will guarantee that the generated path must 
be in the workspace. Let Os=(xs, ys, zs) and s=( 1, 2, 3) denote the initial configuration 
and Og=(xg, yg, zg), g=( 1, 2, 3) denote the goal configuration. The robot’s start and 
goal configurations are chosen as (xs, ys, zs, 1, 2, 3)=(-20, -20, -20, 0, 0, 0) and (xg, yg , zg , 

1, 2, 3 )=(50, 50, 50, 0, 0, 0) respectively . The objective function is defined as: 

 f = w((xo-50)2+(yo-50)2+(zo-50)2)+(1-w)(θ12+θ22+θ32)      (67) 

where w is chosen as 0  w  1.
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5.2 Simulation Results with the First Kind of Objects 

(a) (b) 
Fig. 10. Workspace with nine cylinders and the generated path. (a) 3D view. (b) 2D view. 

In order to demonstrate the convergence of the problem formulation to the goal 

configuration, the workspace considered in example 1 contains seven obstacles as 

shown in Figs. 9(a) and 9(b). The obstacles are represented as spheres with the 

following boundary expressions: (x-20)2 + (y-20)2+ (z-20)2 = 225 x2 + (y-20)2+ (z-20)2 = 

25 (x-40)2 + (y-20)2+ (z-20)2 = 25 (x-20)2 + y2+ (z-20)2 = 25 (x-20)2 + (y-40)2+ (z-20)2 = 

25 (x-20)2 + (y-20)2+ z2 = 25 (x-20)2 + (y-20)2+ (z-40)2 = 25.The robot is represented by 

a superellipsoid with rx=5, ry=4, rz=3, s1=s2=1, which is an ellipsoid. Figs. 9(a) and 9(b) 

show the same generated path, the same obstacles and the same robot, but from 

different view angles. It can be observed that the optimization algorithm does converge 

to the goal and a smooth path has been generated. 

In order to illustrate the suitability of the approach for different obstacle shapes, we have 

shown another distributed-obstacle situation as shown in Figs. 10(a) and 10(b). The results 

simulate a real world path planning task encountered in offshore industry. The designed 

workspace contains a set of cylinders which could be easily recognized as pipelines or a 

base of an offshore structure. In this example, we have 9 cylinders to represent obstacles 

with the following boundary equations: x2 + y2 = 16, x2 + (y-20)2= 16, x2 + (y-40)2 =16, (x-

20)2 + y2 =16, (x-20)2 + (y-20)2 = 16, (x-20)2 + (y-40)2 = 16, (x-40)2 + y2 = 16, (x-40)2 + (y-20)2 = 

16, (x-40)2 + (y-40)2 = 16 where -20 ≤ z≤ 60. The robot is represented by a superellipsoid 

with rx=5, ry=4, rz=3, s1=s2=1.5, which is a superellipsoid. Fig. 10(a) is a 3D view and Fig. 

10(b) is a 2D view. In this example the 2D view clearly shows the collision avoidance of 

the robot from the obstacles. From Figs. 10(a) and 10(b), we can also observe that the 

generated path passes behind the cylinder without touching it, and the plotted path 

avoids all the obstacles and converges to the goal in a smooth way.  

In addition to the simulation results shown in Figs. 9 and 10, we have carried out another 

test with mixed superellipsoids and cylinders as shown in Figs. 11(a) and 11(b). In this test, 

five obstacles are included and the robot is represented by a superellipsoid with rx=8, ry=8,

rz=6, s1=s2=0.8. The boundary expressions for the obstacles are: 2 cylinders (x-40)2 + y2 = 

144, 30 ≤ z≤ 50, (x-30)2 +( y-30)2=100, -5≤ z ≤ 30, 3 superellipoids: ((x-15)/12) + ((y+10)/8) + ((z-

12)/12) =1, ((x- 15)/20)2/3 + ((y- 40)/18)2/3 + ((z+10)/12)2/3 =1, (x-10)2 + (y-10)2+ (z-10)2 = 100. Fig. 

11(b) is an enlarged view of Fig. 11(a). The experimental results show that the robot can 

adjust its orientation angles autonomously to reach the goal point. 
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Fig. 11. Simulation result with mixed superellipsoids and cylinders. (a) 3D view. (b) another 
3D view. 

5.3 Simulation Results with Both the First and Second Kinds of Objects 

Figs. 12(a), 12(b), and 12(c) show the experimental results with the environment including a 
triangular pyramid and a cube which belong to the second group and a cylinder-like 
obstacle belonging to the first group. The triangular pyramid’s four vertexes are: V0=(-5,-10,-

15), V1=(20,15,-15), V2=(5,-15,10), V3=(5,20,10) and its outside is represented by {(h1≥-x-y-0.6z-

14) ∪ (h2≥-x+0.4z+1) ∪ (h3≥x+0.6z-11) ∪ (h4≥-x+y-0.8z-7)}.The cube is represented by 10 ≤ x≤
25, 25≤ y≤ 45, 25≤ z≤ 40, while the cylinder is descried as (x-35)2 + (y-20) ≤ 64, -10 ≤ z≤ 50. The 
robot is represented by a superellipsoid with rx=8, ry=6, rz=4, s1=s2=1.It is obvious that the 
path generated clearly avoids the obstacle and converges to the goal.  

(a) (b) 

(c)
Fig. 12. Simulation result with both the first and the second kinds of objects. (a)  3D view. (b) 
another 3D view. (c) 2D view. 
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Figs. 13(a) and 13(b) show the results simulating another typical real world path planning 
task encountered in offshore industry. The designed workspace contains a cylinder and 
several cubes which may be models for pipelines or a base of an offshore structure. The 

cylinder is described as follows: (x-20)2 + (y-20) 2 ≤ 49, -10 ≤ z≤ 50. The four cubes are 

represented as: {0 ≤ x≤ 10, 5 ≤ y≤ 10, -15 ≤ z≤ 55}, {30 ≤ x≤ 40, 30 ≤ y≤ 35, -15 ≤ z≤ 55},{5 ≤ x≤
10, 30 ≤ y≤ 40, -15 ≤ z≤ 55},{30 ≤ x≤ 35, 0 ≤ y≤ 10, -15 ≤ z≤ 55}. The robot is represented by a 
superellipsoid with rx=6, ry=4, rz=3, s1=s2=1.2. Figs. 13(a) and 13(b) show the clear avoidance 
of the obstacles by the robot and the convergence to the goal. 

(a) (b) 
Fig. 13. Simulation result with four cubes and one cylinder. (a)  2D view. (b) 3D view. 

5.4 Discussion about Efficiency of the Approach 

A criterion for efficiency analysis used by many previous path planning algorithms is the 

worst case computational complexity when the robot path planning problem is formulated 

as a discrete mathematics problem (Kreyszig, 1993; Rosen, 1991), based on the assumption 

that objects are represented by polygons or polyhedrons and a discrete search algorithm is 

used. However in constrained optimization there is no such a criterion corresponding to that 

used in discrete mathematics for measuring the worst case computational complexity, 

because the time used depends on both the size of the problem (i.e. the number of the 

equalities) and the form of the objective function and the constraints. 

As shown in our simulation experiments, the time for the robot to take a step varies, because at 

some places it must adjust its pose or step size, and at other places it doesn’t have to. In the 

simulation experiment shown in Figs. 10 (a) and 10(b), the average time for one step is about 0.8s 

with Intel Pentium 4 CPU running the algorithm realized in Matlab. Besides improving the 

performance of the implementation and the algorithm itself, there is still big room for efficiency 

improvement. For example, in our experiments the value of the distance that robot is permitted to 

be close to obstacles is so small (close to 0) that sample points of the surface of the robot 

(represented as a superellipsoid) and the obstacles must be very dense, otherwise collisions are 

likely to occur. Density of sample points is one of the main sources of the computational 

complexity, but in real applications, the distance is usually bigger and the sample points may be 

sparse, and consequently the time needed for computation may be much less. 

To precisely analyze the computational complexity of our method is an important, necessary, 

but difficult job. It must include determining proper complexity description model, 
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analyzing performance of the implementation of SCO algorithm which is applied in our 

method, etc. We hope to address it in further papers. 

6. Conclusions 

In this chapter, inequality transformation and semi-infinite constrained optimization techniques 
have been presented for the development of a realistic Robot Path Planning approach. We have 
shown the principle of converting the path planning problem into the standard Semi-infinite 
Constrained Optimization problem. This direct path planning approach considers the robot’s 3D 
shape and is totally different from the traditional approaches in the way that the calculation of 
the Cspace obstacles is no longer needed. From the viewpoint of robot path planning, this paper 
presents a new way of using a classical engineering approach. The generality of representing the 

free space of all the objects using the inequalities gi(x)≤0 makes this optimization-based approach 
suitable for different object shapes, and it has significantly simplified the construction of the 
objects by sensors and computer vision systems. The iterative nature of the search for the 
optimization point makes it particularly suitable for on-line sensor-based path planning.  Once a 
new object is detected, a new inequality can be added before running the next iteration. When an 
old obstacle is passed, its corresponding inequality may also be deleted. Every time when an 
inequality is added or deleted, a new optimization problem is formed. The current variable is 
always treated as the initial point of the optimization problem and search starts again. This 
mechanism indicates this approach is efficient and particularly suitable for on-line path planning. 
Other advantages of the approaches include that mature techniques developed in nonlinear 
programming theory with guarantee of convergence, efficiency, and numerical robustness 
can be directly applied to the robot path planning problem. The semi-infinite constrained 
optimization approach with an adaptive objective function has the following advantages: 

1) The robot does not need to be shrunk to a point, the obstacles do not need to be 
expended to Cspace, and the entire course of path planning can be carried out in 
real 3D space. 

2) The goal point is guaranteed to be the only global minimum of the objective function.  
3) The standard search techniques which have been developed for more than thirty 

years in the nonlinear programming field can be used.  
4) The approach is suitable for on-line task planning.  

The investigation carried out in this chapter has also indicated that robot path planning can 
be formulated in different ways.  It’s important to seek more efficient and realistic methods 
for problem formalization. Computational complexity analysis must be developed based on 
a proper problem formulation which considers enough constraints. Although the 
fundamentals for the nonlinear programming theory have existed for many years, they have 
not attracted enough attention for such applications. The context presented in this chapter 
covers a wide range of subjects such as robot kinematics, CAD, CAM, computer graphics 
and nonlinear programming theory, and a basic framework has been developed. Our 
treatment is consistent. The study presented in this chapter has shown its great potential as 
an on-line motion planner. The future work includes the extension of the principle 
developed here to the obstacle avoidance problem for manipulator without the calculation 
of Cspace obstacles, and the adoption of the interpolation techniques to deal with the local 
minima problem (Wang et al., 2000).
The constraints added by the kinematics and the shape of a manipulator are more complex 
than the subsea vehicle we have done in this chapter.  In addition, for a car_like moving 
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robot, the nonholonomic constraints must be taken into account. Path planning without the 
Cspace computation and with the consideration of those practical issues is still the challenge 
we are facing. 
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