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1. Introduction 

With the increasing amount of information stored in various audio-data documents there is 
a growing need for the efficient and effective processing, archiving and accessing of this 
information. One of the largest sources of such information is spoken audio documents, 
including broadcast-news (BN) shows, voice mails, recorded meetings, telephone 
conversations, etc. In these documents the information is mainly relayed through speech, 
which needs to be appropriately processed and analysed by applying automatic speech and 
language technologies.  
Spoken audio documents are produced by a wide range of people in a variety of situations, 
and are derived from various multimedia applications. They are usually collected as 
continuous audio streams and consist of multiple audio sources. These audio sources may 
be different speakers, music segments, types of noise, etc. For example, a BN show typically 
consists of speech from different speakers as well as music segments, commercials and 
various types of noises that are present in the background of the reports. In order to 
efficiently process or extract the required information from such documents the appropriate 
audio data need to be selected and properly prepared for further processing.  In the case of 
speech-processing applications this means detecting just the speech parts in the audio data 
and delivering them as inputs in a suitable format for further speech processing. The 
detection of such speech segments in continuous audio streams and the segmentation of 
audio streams into either detected speech or non-speech data is known as the speech/non-
speech (SNS) segmentation problem. In this chapter we present an overview of the existing 
approaches to SNS segmentation in continuous audio streams and propose a new 
representation of audio signals that is more suitable for robust speech detection in SNS-
segmentation systems. Since speech detection is usually applied as a pre-processing step in 
various speech-processing applications we have also explored the impact of different SNS-
segmentation approaches on a speaker-diarisation task in BN data.  
This chapter is organized as follows: In Section 2 a new high-level representation of audio 
signals based on phoneme-recognition features is introduced.  First of all we give a short 
overview of the existing audio representations used for speech detection and provide the 
basic ideas and motivations for introducing a new representation of audio signals for SNS 
segmentation. In the remainder of the section we define four features based on consonant-
vowel pairs and the voiced-unvoiced regions of signals, which are automatically detected by 
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a generic phoneme recognizer. We also propose the fusion of different selected 
representations in order to improve the speech-detection results. Section 3 describes the two 
SNS-segmentation approaches used in our evaluations, one of which was specially designed 
for the proposed feature representation. In the evaluation section we present results from a 
wide range of experiments on a BN audio database using different speech-processing 
applications. We try to assess the performance of the proposed representation using a 
comparison with existing approaches for two different tasks. In the first task the 
performance of different representations of the audio signals is assessed directly by 
comparing the evaluation results of speech and non-speech detection on BN audio data. The 
second group of experiments tries to determine the impact of SNS segmentation on the 
subsequent processing of the audio data. We then measure the impact of different SNS-
segmentation systems when they are applied in a pre-processing step of an evaluated 
speaker-diarisation system that is used as a speaker-tracking tool for BN audio data.  

2. Phoneme-Recognition Features 

2.1 An Overview of Audio Representations for Speech Detection  

As briefly mentioned in the introduction, SNS segmentation is the task of partitioning audio 
streams into speech and non-speech segments. While speech segments can be easily defined 
as regions in audio signals where somebody is speaking, non-speech segments represent 
everything that is not speech, and as such consist of data from various acoustical sources, 
e.g., music, human noises, silences, machine noises, etc. 
Earlier work on the separation of audio data into speech and non-speech mainly addressed 
the problem of classifying known homogeneous segments as either speech or music, and not 
as non-speech in general. The research was focused more on developing and evaluating 
characteristic features for classification, and the systems were designed to work on already-
segmented data. 
Saunders (Saunders, 1996) designed one such system using features pointed out by 
(Greenberg, 1995) to successfully discriminate between speech and music in radio 
broadcasting. For this he used time-domain features, mostly derived from zero crossing 
rates. In (Samouelian et al., 1998) time-domain features, combined with two frequency 
measures, were also used. The features for speech/music discrimination that are closely 
related to the nature of human speech were investigated in (Scheirer & Slaney, 1997). The 
proposed measures, i.e., the spectral centroid, the spectral flux, the zero-crossing rate, the 4-
Hz modulation energy (related to the syllable rate of speech), and the percentage of low-
energy frames were explored in an attempt to discriminate between speech and various 
types of music. The most commonly used features for discriminating between speech, music 
and other sound sources are the cepstrum coefficients. The mel-frequency cepstral 
coefficients (MFCCs) (Picone, 1993) and the perceptual linear prediction (PLP) cepstral 
coefficients (Hermansky, 1990) are extensively used in speaker- and speech-recognition 
tasks. Although these signal representations were originally designed to model the short-
term spectral information of speech events, they were also successfully applied in SNS-
discrimination systems (Hain et al., 1998; Beyerlein et al., 2002; Ajmera, 2004; Barras et al., 
2006; Tranter & Reynolds, 2006) in combination with Gaussian mixture models (GMMs) or 
hidden Markov models (HMMs) for separating different audio sources and channel 
conditions (broadband speech, telephone speech, music, noise, silence, etc.). The use of these 
representations is a natural choice in speech-processing applications based on automatic 
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speech recognition since the same feature set can be used later on for the speech recognition. 
An interesting approach was proposed in (Parris et al., 1999), where a combination of 
different feature representations of audio signals in a GMM-based fusion system was made 
to discriminate between speech, music and noise. They investigated energy, cepstral and 
pitch features. 
These representations and approaches focused mainly on the acoustic properties of data that 
are manifested in either the time and frequency or the spectral (cepstral) domains. All the 
representations tend to characterize speech in comparison to other non-speech sources 
(mainly music). Another perspective on the speech produced and recognized by humans is 
to treat it as a sequence of recognizable units. Speech production can thus be considered as a 
state machine, where the states are phoneme classes (Ajmera et al., 2003). Since other non-
speech sources do not possess such properties, features based on these characteristics can be 
usefully applied in an SNS classification. The first attempt in this direction was made by 
Greenberg (Greenberg, 1995), who proposed features based on the spectral shapes 
associated with the expected syllable rate in speech. Karnebäck (Karnebäck, 2002) produced 
low-frequency modulation features in the same way and showed that in combination with 
the MFCC features they constitute a robust representation for speech/music discrimination 
tasks. A different approach based on this idea was presented in (Williams & Ellis, 1999). 
They built a phoneme speech recognizer and studied its behaviour with different speech 
and music signals. From the behaviour of the recognizer they proposed posterior-
probability-based features, i.e., entropy and dynamism, and used them for classifying the 
speech and music samples.  

2.2 Basic Concepts and Motivations 

The basic SNS-classification systems typically include statistical models representing speech 
data, music, silence, noise, etc. They are usually derived from training material, and then a 
partitioning method detects the speech and non-speech segments according to these models. 
The main problem with such systems is the non-speech data, which are produced by various 
acoustic sources and therefore possess different acoustic characteristics. Thus, for each type 
of such audio signals one needs to build a separate class (typically represented as a model) 
and include it in a system. This represents a serious drawback with SNS-segmentation 
systems, which need to be data independent and robust to different types of speech and 
non-speech audio sources. 
On the other hand, the SNS-segmentation systems are meant to detect speech in audio data 
and should discard non-speech parts, regardless of their different acoustic properties. Such 
systems can be interpreted as two-class classifiers, where the first class represents speech 
samples and the second class represents everything else. In this case the speech class defines 
the non-speech class. Following on from this basic concept one should find and use those 
characteristics or features of audio signals that better emphasize and characterize speech 
and exhibit the expected behaviour with all other non-speech audio data. 
While the most commonly used acoustic features (MFCCs, PLPs, etc.) perform well when 
discriminating between different speech and non-speech signals, (Logan, 2000), they still 
only operate on an acoustic level. Hence, the data produced by the various audio sources 
with different acoustic properties needs to be modelled by several different classes and 
represented in the training process of such systems. To avoid this, we decided to design an 
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audio representation that would better determine the speech and perform significantly 
differently on all other non-speech data. 
One possible way to achieve this is to see speech as a sequence of basic speech units that 
convey some meaning.  This rather broad definition of speech led us to examine the 
behaviour of a simple phoneme recognizer and analyze its performance on speech and non-
speech data. In that respect we followed the idea of Williams & Ellis, (Williams & Ellis, 
1999), but rather than examine the functioning of phoneme recognizers, as they did, we 
analyzed the output transcriptions of such recognizers in various speech and non-speech 
situations. 

2.3 Features Derivation 

Williams & Ellis, (Williams & Ellis, 1999), proposed a novel method for discriminating 
between speech and music. They proposed measuring the posterior probability of 
observations in the states of neural networks that were designed to recognise basic speech 
units. From the analysis of the posterior probabilities they extracted features such as the 
mean per-frame entropy, the average probability dynamism, the background-label ratio and 
the phone distribution match. The entropy and dynamism features were later successfully 
applied to the speech/music segmentation of audio data (Ajmera et al., 2003). In both cases 
they used these features for speech/music classification, but the idea could be easily 
extended to the detection of speech and non-speech signals, in general. The basic motivation 
in both cases was to obtain and use features that were more robust to different kinds of 
music data and at the same time perform well on speech data.  
In the same manner we decided to measure the performance of a speech recognizer by 
inspecting the output phoneme-recognition transcriptions, when recognizing speech and 
non-speech samples (Žibert et al., 2006a). In this way we also examined the behaviour of a 
phoneme recognizer, but the functioning of the recognizer was measured at the output of 
the recognizer rather than in the inner states of such a recognition engine.  
Typically, the input of a phoneme recognizer consists of feature vectors based on the 
acoustic parameterization of speech signals, and the corresponding output is the most likely 
sequence of pre-defined speech units and time boundaries, together with the probabilities or 
likelihoods of each unit in a sequence. Therefore, the output information from a recognizer 
can also be interpreted as a representation of a given signal. Since the phoneme recognizer is 
designed for recognizing speech signals it is to be expected that it will exhibit characteristic 
behaviour when speech signals are passed through it, and all other signals will result in 
uncharacteristic behaviour. This suggests that it should be possible to distinguish between 
speech and non-speech signals just by examining the outputs of phoneme recognizers. 
In general, the output from speech recognizers depends on the language and the models 
included in the recognizer.  To reduce these influences the output speech units should be 
chosen from among broader groups of phonemes that are typical for the majority of 
languages. Also, the corresponding speech representation should not be heavily dependent 
on the correct transcription produced by the recognizer. Because of these limitations and the 
fact that human speech can be described as concatenated syllables, we decided to examine 
the functioning of recognizers in terms of the consonant-vowel (CV) level (Žibert et al., 
2006a) and by inspecting the voiced and unvoiced regions (VU) of recognized audio signals 
(Miheli  & Žibert, 2006). 
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Figure 1. A block diagram showing the derivation of the phoneme-recognition features  

The procedure for extracting phoneme-recognition features is shown in Figure 1. First, the 
acoustic representation of a given signal is produced and passed through a simple phoneme 
recognizer. Then, the transcription output is translated to specified phoneme classes, in the 
first case to the consonant (C), vowel (V) and silence (S) classes, and in the second case to the 
voiced (V), unvoiced (U) and silence (S) regions. At this point the output transcription is 
analysed, and those features that resemble the discriminative properties of speech and non-
speech signals and are relatively independent of specific recognizer properties and errors 
are extracted. In our investigations we examined just those characteristics of the recognized 
outputs that are based on the duration and the changing rate of the basic units produced by 
the recognizer. 
After a careful analysis of the functioning of several different phoneme recognizers for 
different speech and non-speech data conditions, we decided to extract the following 
features (Žibert et al., 2006a): 

• Normalized CV (VU) duration rate of consonant-vowel (CV) or voiced-unvoiced (VU) 
pairs, defined in CV case as: 

CVS

S

CVS

VC

t

t

t

tt
⋅+

−
α , (1) 

where C
t  is the overall time duration of all the consonants recognized in a signal 

window of time duration CVS
t , and Vt  is the time duration of all the vowels in a window 

of duration CVS
t .  The second term denotes the proportion of silence units (term S

t )
represented in a recognized signal measured in time units. α  serves as a weighting 
factor to emphasize the number of silence regions in a signal and has to be 10 ≤≤ α . In 
the VU case the above formula stays the same, whereas unvoiced phonemes replace 
consonants, voiced substitute vowels and silences are the same. 
It is well known that speech is constructed from CV (VU) units in combination with S 
parts; however, we observed that speech signals exhibit relatively equal durations of C 
(U) and V (V) units and a rather small proportion of silences (S), which yielded small 
values (around 0.0) in Equation (1), measured on fixed-width speech segments. On the 
other hand, non-speech data were almost never recognized as a proper combination of 
CV or VU pairs, which is reflected in the different rates of C (U) and V (V) units, and 
hence the values of Equation (1) tend to be more like 1.0. In addition, when non-speech 
signals are recognized as silences, the values in the second term of Equation (1) follow 
the same trend as in the previous case. 
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Note that in Equation (1) we used the absolute difference between the durations, 

VC
tt − , rather than the duration ratios, 

V

C

t

t
 or 

C

V

t

t

. This was done to reduce the effect of 

labelling, and not to emphasize one unit over another. The latter would result in the 
poor performance of this feature when using different speech recognizers. 

• Normalized average CV (VU) duration rate, defined in the CV case as 

CV

VC

t

tt −
, (2) 

 where
C
t  and 

V
t  represent the average time durations of the C and V units in a given 

segment of a recognized signal, while CV
t  is the average duration of all the recognized 

(C,V) units in the same segment. In the same way the normalized, average VU duration 
rate can be defined. 

 This feature was constructed to measure the difference between the average duration of 
the consonants (unvoiced parts) and the average duration of the vowels (voiced parts). 
It is well known that in speech the vowels (voiced parts) are in general longer than the 
consonants (unvoiced parts), and as a result this should be reflected in recognized 
speech. On the other hand, it was observed that non-speech signals do not exhibit such 
properties. Therefore, we found this feature to be sufficiently discriminative to 
distinguish between speech and non-speech data. 

 This feature correlates with the normalized time-duration rate defined in Equation (1). 
Note that in both cases the differences were used, instead of the ratios between the C 
(U) and V (V) units. This is for the same reason as in the previous case. 

• Normalized CV (VU) speaking rate, defined in the CV case as 

CVS

VC

t

nn + , (3) 

where
C
n  and 

V
n  are the number of C and V units recognized in the signal for the time 

duration 
CVS
t . The normalized VU speaking rate can be defined in the same manner. In 

both cases the silence units are not taken into account. 
Since phoneme recognizers are trained on speech data they should detect changes when 
normal speech moves between phones every few tens of milliseconds. Of course, 
speaking rate in general depends heavily on the speaker and the speaking style. Actually, 
this feature is often used in systems for speaker recognition (Reynolds et al., 2003). To 
reduce the effect of speaking style, particularly spontaneous speech, we decided not to 
count the S units. 
Even though the CV (VU) speaking rate in Equation (3) changes with different speakers 
and speaking styles, it varies less than for non-speech data. In the analyzed signals 
speech tended to change (in terms of the phoneme recognizer) much less frequently, 
but the signals varied greatly among different non-speech data types. 
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• Normalized CVS (VUS) changes, defined in the CV case as 

CVS
t

SVCc ),,( , (4) 

where ),,( SVCc  counts how many times the C, V and S units exchange in the signal in 
the window of duration CVS

t . The same definition with V, U and S units can be 
produced in the VU case. 
This feature is related to the CV (VU) speaking rate, but with one significant difference. 
Here, just the changes between the units that emphasize the pairs and not just the single 
units are taken into account. As speech consists of such CV (VU) combinations one 
should expect higher values when speech signals are decoded and lower values in the 
case of non-speech data. 
This approach could be extended even further to observe higher-order combinations of 
the C, V, and S units to construct n-gram CVS (VUS) models (like in statistical language 
modelling), which could be additionally estimated from the speech and non-speech 
data.

As can be seen from the above definitions, all the proposed features measure the properties 
of recognized data on the pre-defined or automatically obtained segments of a processing 
signal. The segments should be large enough to provide reliable estimations of the proposed 
measurements. They depend on the size of the proportions of speech and non-speech data 
that were expected in the processing signals. We tested both possibilities of the segment 
sizes in our experiments. The typical segment sizes varied between 2.0 and 5.0 seconds in 
the fixed-segment size case. In the case of automatically derived segments the minimum 
duration of the segments was set to 1.5 seconds.  
Another issue was how to calculate the features to be time aligned. In order to make a 
decision as to which proportion of the signal belongs to one or other class the time stamps 
between the estimation of consecutive features should be as small as possible. The natural 
choice would be to compute the features on moving segments between successive 
recognized units, but in our experiments we decided to keep a fixed frame skip, since we 
also used them in combination with the cepstral features. 
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Figure 2. Estimation of the phoneme-recognition CVS features in a portion of a single 
broadcast news show in Slovene. The top four panes show the estimated CVS features from 
an audio signal that is shown in the fifth pane. The bottom pane displays the audio signal 
with the corresponding manual transcription. The top four panes consist of two lines. The 
black (darker) line represents the features obtained from a phoneme-based speech 
recognizer built to recognise Slovene speech, while the red (brighter) line displays the 
features obtained from the phoneme recognizer for English. All the data plots were 
produced using the wavesurfer tool, available at http://www.speech.kth.se/wavesurfer/. 

Figure 2 shows phoneme-recognition features in action. In this example the CVS features 
were produced by phoneme recognizers based on two languages. One was built for Slovene 
(darker line in Figure 2), the other was trained on the TIMIT database (Garofolo et al., 1993) 
(brighter line), and was therefore used for recognizing English speech data. This example 
was extracted from a Slovenian BN show. The data in Figure 2 consist of different portions 
of speech and non-speech. The speech segments are built from clean speech, produced by 
different speakers in a combination with music, while the non-speech is represented by 
music and silent parts. As can be seen from Figure 2, each of these features has a reasonable 
ability to discriminate between the speech and non-speech data, which was later confirmed 
by our experiments. Furthermore, the features computed from the English speech 
recognizer, and thus in this case used on a foreign language, exhibit nearly the same 
behaviour as the features produced by the Slovenian phoneme decoder. This is a very 
positive result in terms of our objective to design features that should be language and 
model independent.  



Novel Approaches to Speech Detection in the Processing of Continuous Audio Streams 31

3. Speech Detection in Continuous Audio Streams 

While there has been a lot of research done on producing appropriate representations of 
audio signals suitable for discriminating between speech and non-speech on already-
segmented audio data, there have not been so many experiments conducted for speech 
detection in continuous audio streams, where the speech and non-speech parts are 
interleaving randomly. Such kinds of data are to be expected in most practical applications 
of automatic speech processing. 
Most recent research in this field addresses this problem as part of large-vocabulary 
continuous-speech-recognition systems (LVCSRs),  like BN transcription systems 
(Woodland, 2002; Gauvain et al., 2002; Beyerlein et al., 2002) or speaker-diarisation and 
speaker-tracking systems in BN data (Zhu et al., 2005; Sinha et al., 2005; Žibert et al., 2005; 
Istrate et al., 2005; Moraru et al., 2005; Barras et al., 2006; Tranter & Reynolds, 2006). In most 
of these investigations, energy and/or cepstral coefficients (mainly MFCCs) are used for the 
segmenting, and GMMs or HMMs are used for classifying the segments into speech and 
different non-speech classes. An alternative approach was investigated in (Lu et al., 2002), 
where the audio classification and segmentation were made by using support-vector 
machines. Another approach was presented in (Ajmera et al., 2003), where speech/music 
segmentation was achieved by incorporating GMMs into the HMM classification 
framework. This approach is also followed in our work and together with MFCC features it 
serves as a baseline SNS segmentation-classification method in our experiments. 
In addition to our proposed representations, we also developed a method based on the 
acoustic segmentation of continuous audio streams obtained with the Bayesian information 
criterion (BIC) (Chen & Gopalakrishnan, 1998) and followed by the SNS classification.  
In the following sections both segmentation-classification frameworks are described and 
compared using different audio-data representations.   

3.1 Speech/Non-Speech-Segmentation Procedures 

Block diagrams of the evaluated SNS-segmentation systems are shown in Figure 3. 

(a)     (b)  
Figure 3. Block diagram of the two approaches used in the SNS segmentation. In (a) the 
segmentation and classification are performed simultaneously using HMM Viterbi 
decoding. In the second approach (b), firstly, the audio segmentation based on acoustic 
changes is performed by using the BIC segmentation procedure, followed by the GMM 
speech/non-speech classification.  

The basic building blocks of both systems are GMMs. These models were trained with the 
EM algorithm in a supervised way (Young et al., 2004). In the first case, see Figure 3 (a), we 
followed the approach presented in (Ajmera, 2004), which was primarily designed for 
speech/music segmentation. Here, the segmentation and classification were performed 
simultaneously, by integrating already-trained GMMs into the HMM classification 
framework. We built a fully connected network consisting of N HMMs, as shown in Figure 
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4, where N represents the number of GMMs used in the speech/non-speech classification. 
Each HMM was constructed by simply concatenating the internal states associated with the 
same probability density function represented by one GMM. The number of states was fixed 
(M states in Figure 4) and set in such a way as to impose a minimum duration on each 
HMM. All the transitions inside each model were set manually, while the transitions 
between different HMMs were additionally trained on the evaluation data. In the 
segmentation process Viterbi decoding was used to find the best possible state sequence 
corresponding to speech and non-speech classes that could have produced the input-
features sequence. 

Figure 4. Topology of the HMM classification network used in the first procedure of the SNS 
segmentation. 

In the second approach, see Figure 3 (b), the segmentation and classification were performed 
sequentially. The audio was segmented by applying the BIC measure to detect the acoustic-
change points in the audio signals (Chen & Gopalakrishnan ,1998; Tritschler & Gopinath, 
1999). Hence, in the first step of this procedure the segments based on acoustic changes were 
obtained, i.e., speaker, channel, background changes, different types of audio signals (music, 
speech), etc. In the next step these segments were classified as speech or non-speech. This 
classification was based on the same GMM set, which was also incorporated in the HMM 
classifier from the previous approach. In this way we could compare both methods using 
the same models. This approach is suited to the proposed CVS (VUS) features, which 
operate better on larger segments of signals than on smaller signal windows on a frame-by-
frame basis. 
In addition to both approaches, we also explored the fusion of different audio 
representations for SNS segmentation. The fusion of different representations was achieved 
at the score level in GMMs. We experimented with the fusion of the MFCC and the 
proposed CVS features, where each of the audio-signal representations form a separate 
feature stream.  For each stream, separate GMMs were trained using the EM method. For 
SNS-segmentation purposes a similar HMM classification network to that of the non-fusion 
cases was built, see Figure 3 (a) and Figure 4, where in each state the fusion was made by 
computing the product of the weighted observation likelihoods produced by the GMMs 
from each stream. The product-stream weights were set empirically to optimize the 
performance on the evaluation dataset. In this way a fusion of the MFCC and CVS feature 
representations was performed by using a state-synchronous two-stream HMM 
(Potamianos et al., 2004).  
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3.3 Evaluation of Speech/Non-Speech Segmentation 

We experimented with different approaches and representations of audio signals in order to 
find the best possible solution for the SNS discrimination in continuous audio streams.  
We tested three main groups of features: acoustic features, represented by MFCCs, and the 
proposed CVS and VUS phoneme recognition, defined in Section 2. In addition, we 
combined both types of representations in one fusion SNS-segmentation system. All the 
representations were compared by using two SNS-segmentation approaches, presented in 
Section 3.1.  
There were two evaluation databases: the development database, which was used to tune all 
the parameters of the audio representations and the SNS-segmentation systems, and the test 
dataset, which was composed of 12 hours of BN shows. The development dataset consisted 
of 6 hours of television entertainment and BN shows in different languages. A total of 4 
hours of audio data were used to train the GMMs for SNS classification, the rest were used 
for setting the open parameters of the SNS-segmentation procedures to optimize their 
performances. The test database was used to compare the different audio representations 
and approaches in the SNS-segmentation task. This database is part of the audio database of 
BN shows in Slovene, which is presented in (Žibert & Miheli , 2004). 

3.3.1 Evaluation measures 

The SNS-segmentation results were obtained in terms of the percentage of frame-level 
accuracy. We calculated three different statistics in each case: the percentage of true speech 
frames identified as speech, the percentage of true non-speech frames identified as non-
speech, and the overall percentage of speech and non-speech frames identified correctly (the 
overall accuracy). 
Note that in cases where one class dominates in the data (i.e., in the test-data case) the 
overall accuracy depends heavily on the accuracy of that class, and in such a case it cannot 
provide enough information on the performance of such a classification by itself. Therefore, 
in order to correctly assess classification methods one should provide all three statistics.  

3.3.2 Evaluated SNS-segmentation systems 

As a baseline system for the SNS classification we chose the MFCC features’ representation 
in combination with the HMM classifier. We decided to use 12 MFCC features together with 
the normalized energy and first-order derivatives as a base representation, since no 
improvement was gained by introducing second-order derivatives. In that case 128-mixture 
GMMs for the modelling of several different speech and non-speech classes were trained. 
This baseline audio representation together with the HMM-based SNS segmentation is 
referred to as the HMM-GMM: MFCC-E-D-26 system throughout the evaluation sections. 
The above-described system was compared with different SNS approaches where phoneme-
recognition features were used on their own and with the fusion system, where a 
combination of the MFCC and the CVS features were applied. The CVS and VUS features 
were obtained from two phoneme recognizers. One was built on Slovenian data, trained 
from three speech databases: GOPOLIS, VNTV and K211d, (Miheli  et al., 2003). It is 
referred as the SI-phones recognizer throughout the evaluation sections. The second was 
built from the TIMIT database, and thus was used for recognizing English speech. It is 
referred to as the EN-phones recognizer in all our experiments. Both phoneme recognizers 
were constructed from the HMMs of monophone units joined in a fully connected network. 
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Each HMM state was modelled by 32 diagonal-covariance Gaussian mixtures, built in a 
standard way, i.e., using 39 MFCCs, including the energy, and the first- and second-order 
derivatives, and setting all of the HMM parameters using the Baum-Welch re-estimation 
(Young et al., 2004). The phoneme sets of each language were different. In the SI-phones
recognizer, 38 monophone base units were used, while in the TIMIT case, the base units 
were reduced to 48 monophones, according to (Lee & Hon, 1989). In both recognizers we 
used bigram phoneme language models in the recognition process. The recognizers were 
also tested on parts of the training databases. The SI-phones recognizer achieved a phoneme-
recognition accuracy of about 70% on the GOPOLIS database, while the EN-phones
recognizer had a phoneme-recognition accuracy of around 61% in a test part of the TIMIT 
database. Since our CVS (VUS) features were based on transcriptions of these recognizers, 
we also tested both recognizers on CVS recognition tasks. The SI-phones recognizer reached 
a CVS recognition accuracy of 88% on the GOPOLIS database, while for the EN-phones
recognizer the CVS accuracy on the TIMIT database was around 75%. The same 
performance was achieved when recognizing the VUS units. 
The CVS (VUS) features were calculated from phoneme-recognition transcriptions on the 
evaluation databases produced by both the SI-phones and EN-phones recognizers using the 
formulas defined in Section 2. The CVS (VUS) representations of the audio signal obtained 
from the SI-phones recognizer are named SI-phones CVS (SI-phones VUS) In the same manner, 
the CVS and VUS representations obtained from the EN-phones recognizer are marked as
EN-phones CVS (EN-phones VUS).  The models used for classifying the speech and non-
speech data were 2-mixture GMMs.  
In the CVS (VUS) features case we tested both segmentation procedures, which were 
already described in Section 3.1. The segmentation performed by the HMM classifiers, based 
on trained speech/non-speech GMMs is referred to as the HMM-GMM and the 
segmentation based on the BIC measure, followed by the GMM classification, is referred to 
as the BICseg-GMM. In the HMM-GMM case the CVS (VUS) feature vectors were produced 
on a frame-by-frame basis. Hence, a fixed window length of 3.0 s with a frame rate of 100 ms 
was used in all the experiments. In Equation (1), α  was set to 0.5. In the second approach 
the BIC segmentation produced acoustic segments computed from 12 MFCC features, 
together with the energy. The BIC measure was applied by using full-covariance matrices 
and a lambda threshold set according to the development dataset. These segments were 
then classified as speech or non-speech, according to the maximum log-likelihood criteria 
applied to the GMMs modelled by the CVS (VUS) features. 
The fusion SNS-segmentation system was designed to join the MFCC and CVS feature 
representations into a two-stream HMMs classification framework. The GMMs from the 
MFCC-E-D-26 and SI-phones CVS representations were merged into HMMs, and such an 
SNS-segmentation system is called a HMM-GMM: fusion MFCC+CVS system. 
In the HMM-GMM-segmentation case the number of states used to impose the minimum 
duration constraint in the HMMs was fixed. This was done according to (Ajmera et al., 
2003). Since in our evaluation-data experiments speech or non-speech segments shorter than 
1.4 s were not found, we set the minimum duration constraint to 1.4 s, which corresponded 
to a different number of states with different types of representations. All the transition 
probabilities (including self-loop transitions) inside the HMMs were fixed to 0.5. 
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The HMM classification based on the Viterbi algorithm was made with the HTKToolkit 
(Young et al., 2004), while we provided our own tools for the BIC segmentation and the 
GMM classification and training. 

3.3.3 Development Data Evaluations 

The development dataset was primarily designed to serve for determining the models and 
for the tuning of other open parameters of the evaluated SNS-segmentation systems. Hence, 
this dataset was divided into the training part (4 hours) and the evaluation part (2 hours). In 
this subsection experiments on the evaluation data are outlined.  
The evaluation data were intended mainly for tuning the threshold probability weights to 
favour the speech and non-speech models in the classification systems in order to optimize 
the overall performance of the SNS-segmentation procedures. Such optimal models were 
then used in the SNS-segmentation systems on the test data.  
When plotting the overall accuracy of the SNS segmentation of the evaluation data against 
different choices of threshold probability weights, we were able to examine the 
performances of the evaluated approaches in optimal and non-optimal cases. In this way the 
constant overall accuracy of an SNS segmentation under different choices of probability 
weights could indicate the more stable performance of such an SNS-segmentation system in 
adverse acoustic or other audio conditions. The results of such experiments are shown in 
Figures 5 and 6. 

Figure 5. Determining the optimal threshold probability weights of the speech and non-
speech models to maximize the overall accuracy of the CVS and VUS feature representations 
with different SNS-segmentation procedures. 
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Figure 5 shows a comparison of the different types of phoneme-recognition features with 
different SNS-segmentation procedures. As can be seen from Figure 5, all the segmentation 
methods based on both types of phoneme-recognition features are stable across the whole 
range of operating points of the threshold probability weights. The overall accuracy ranges 
between 92% and 95%. No important differences in the performance among the approaches 
based on the HMM classification and the BIC segmentation can be observed, even though 
the BICseg-GMM systems operated, on average, slightly better than their HMM-based 
counterparts. The same can be concluded when comparing CVS and VUS features 
computed from different phoneme recognizers. There is no significant difference in the 
performances when using SI-phones and EN-phones recognizers, even though the audio data 
in this development set are in Slovene. This proves that the phoneme-recognition features 
performed equally well, regardless of the spoken language that appeared in the audio data. 
When comparing the CVS and VUS feature types, no single conclusion can be made: the 
VUS features performed better than the CVS features when the SI-phones recognizers were 
used, but the opposite was the case when the CVS and VUS features derived from the EN-
phones recognizers were applied. 
In summary, the CVS and VUS features were stable and performed equally well across the 
whole range of threshold probability weights. They are also language independent and 
perform slightly better when they are derived from larger segments of data, like in the case 
of the BICseg-GMM-segmentation procedures. Therefore, we decided to use just the SI-
phones CVS features in all the following evaluation experiments. 

Figure 6. Determining the optimal threshold probability weights of the speech and non-
speech models to maximize the overall accuracy of the different audio representations and 
SNS-segmentation procedures. 
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Figure 6 shows a comparison of the phoneme-recognition and acoustic features. The MFCC 
representation achieved the maximum accuracy, slightly above 95%, at the operating point 
(0.8,1.2). Around this point it performed better than the CVS-based segmentations, but in 
general the segmentation with just the MFCC features is more sensitive to the different 
operating points of the probability weights. The best overall performance was achieved by 
the fusion of both representations. The accuracy was increased to 96% (maximum values) 
around those operating points where the corresponding base representations achieved their 
own maximum performances. The fusion representation is also stable across the whole 
range of threshold probability weights due to the base CVS representation.  
In general, it can be concluded that the CVS and VUS phoneme-recognition features were 
more stable than the acoustic MFCC features across the whole range of optimal and non-
optimal cases. Therefore, it can be expected that they would also perform better in situations 
when the training and working conditions are not the same. In addition, a fusion of the 
phoneme and acoustic feature representations yielded the results with the highest overall 
accuracy. 

3.3.4 Test Data Evaluations 

In order to properly assess the proposed methods we performed an evaluation of the SNS-
segmentation systems on 12 hours of audio data from BN shows. The results are shown in 
Table 1. 

Classification & Features Type 
Speech

Recognition
(%)

Non-Speech 
Recognition

(%)

Overall
Accuracy

(%)

HMM-GMM:
MFCC

97.9 58.8 95.4 

HMM-GMM:
SI-phones recognition, CVS units 

98.2 91.3 97.8 

BICseg-GMM:
EN-phones recognition, CVS units 

98.3 90.9 97.9 

HMM-GMM:
Fusion: MFCC + CVS 

99.3 86.4 98.5 

Table 1. Speech- and non-speech-segmentation results on 12 hours of audio data from BN 
shows.

The results in Table 1 were obtained when the optimum set of parameters was applied in all 
the evaluated SNS-segmentation procedures. The results on the test data reveal the same 
performance for the different methods as was the case in the development experiments. The 
results on the test set show that the proposed CVS representations of the audio signals 
performed better than just the acoustic MFCC representations. The advantage of using the 
proposed phoneme-recognition features becomes even more evident when they are 
compared in terms of speech and non-speech accuracies. In general, there exists a huge 
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difference between the CVS and the MFCC representations in correctly identifying non-
speech data with a relatively small loss of accuracy when correctly identifying speech data. 
One of the reasons for this is the stability issue discussed in the previous subsection. In all 
cases of the CVS features (regardless of the segmentation method) this resulted in an 
increased overall accuracy in comparison to the MFCC features.  
When comparing the results of just the CVS representations no substantial differences in the 
classifications can be found. The results from the SI-phones and the EN-phones recognizers 
confirm that the proposed features really are independent of the phoneme recognizers 
trained on speech from different languages. They also suggest that there are almost no 
differences when using different segmentation methods, even though in the case of the BIC 
segmentation and the GMM classification we got slightly better results. 
In the case of fusing the MFCC and CVS features we obtained the highest scores in terms of 
overall accuracy, and the fusion of both representations performed better than their stand-
alone counterparts. 
In general, the results in Table 1 and in Figures 5 and 6 speak in favour of the proposed 
phoneme-recognition features.  This can be explained by the fact that our features were 
designed to discriminate between speech and non-speech, while the MFCC features were, in 
general, developed for speech-processing applications. Another issue concerns stability, and 
thus the robustness of the evaluated approaches. For the MFCC features the performance of 
the segmentation depends heavily on the training data and the training conditions, while 
the classification with the CVS features in combination with the GMMs performed reliably 
on the development and test datasets. Our experiments with fusion models also showed 
that probably the most appropriate representation for the SNS classification is a combination 
of acoustic- and recognition-based features. 
In next section the impact of the evaluated speech-detection approaches on speech-
processing applications is discussed.  

4. The Impact of Speech Detection on Speech-Processing Applications 

In the introduction we explained that a good segmentation of continuous audio streams into 
speech and non-speech has many practical applications. Such a segmentation is usually 
applied as a pre-processing step in real-world systems for automatic speech processing: in 
automatic speech recognition (Shafran & Rose, 2003), like a broadcast-news transcription 
(Gauvain et al., 2002; Woodland, 2002; Beyerlein et al., 2002), in automatic audio indexing 
and summarization (Makhoul et al., 2000; Magrin-Chagnolleau & Parlangeau-Valles, 2002), 
in audio and speaker diarisation (Tranter & Reynolds, 2006; Barras et al., 2006; Sinha et al., 
2005; Istrate et al., 2005; Moraru et al., 2005), in speaker identification and tracking (Martin et 
al., 2000), and in all other applications where efficient speech detection helps to greatly 
reduce the computational complexity and generate more understandable and accurate 
outputs. Accordingly, an SNS segmentation has to be easily integrated into such systems 
and should not increase the overall computational load. 
Therefore, we additionally explored our SNS-segmentation procedures in a speaker-
diarisation application of broadcast-news audio data. We focused mainly on the impact of 
different SNS-segmentation approaches to the final speech (speaker) processing results.  The 
importance of accurate speech detection in each task of the speaker diarisation is evaluated 
and discussed in the following section. 
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4.1 Evaluation of the Impact of Speech Detection in a Speaker-Diarisation System 

4.1.1 Speaker Diarisation-System Framework 

Speaker diarisation is the process of partitioning input audio data into homogeneous 
segments according to the speaker’s identity. The aim of speaker diarisation is to improve 
the readability of an automatic transcription by structuring the audio stream into speaker 
turns, and in cases when used together with speaker-identification systems by providing the 
speaker’s true identity. Such information is of interest to several speech- and audio-
processing applications. For example, in automatic speech-recognition systems the 
information can be used for unsupervised speaker adaptation (Anastasakos et al., 1996, 
Matsoukas et al., 1997), which can significantly improve the performance of speech 
recognition in LVCSR systems (Gauvain et al., 2002; Woodland, 2002; Beyerlein et al., 2002). 
This information can also be applied for the indexing of multimedia documents, where 
homogeneous speaker or acoustic segments usually represent the basic units for indexing 
and searching in large archives of spoken audio documents, (Makhoul et al., 2000). The 
outputs of a speaker diarisation system could also be used in speaker-identification or 
speaker-tracking systems, (Delacourt et al., 2000; Nedic et al., 1999).  

Figure 6. The main building blocks of a typical speaker-diarisation system. Most systems 
have components to perform speech detection, speaker or acoustic segmentation and 
speaker clustering, which may include components for gender detection and speaker 
identification. 
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Most speaker-diarisation systems have a similar general architecture to that shown in Figure 
6. First, the audio data, which are usually derived from continuous audio streams, are 
segmented into speech and non-speech data. The non-speech segments are discarded and 
not used in further processing. The speech data are then chopped into homogeneous 
segments. The segment boundaries are located by finding acoustic changes in the signal, 
and each segment is expected to contain speech from only one speaker. The resulting 
segments are then clustered so that each cluster corresponds to just one speaker. At this 
stage, each cluster is labelled with relative speaker-identification names. Additionally, 
speaker identification or gender detection can be performed. In the first case, each of the 
speaker clusters can be given a true speaker name, or it is left unlabelled if the speech data 
in the cluster do not correspond to any of the target speakers. In the case of gender 
detection, each cluster gets an additional label to indicate to which gender it belongs. As 
such a speaker diarisation of continuous audio streams is a multistage process made up of 
four main components: speech detection, speaker audio segmentation, speaker clustering, 
and speaker identification. The latest overview of the approaches used in speaker-
diarisation tasks can be found in (Tranter & Reynolds , 2006).  
Our speaker-diarisation system, which was used for the current evaluation of speech-
detection procedures, serves for speaker tracking in BN shows (Žibert, 2006b). All the 
components of the system were designed in such a way as to include the standard 
approaches from similar state-of-the-art systems. While the component for speech detection 
was derived from one of the SNS-segmentation procedures in each evaluation experiment, 
the audio segmentation, the speaker clustering and the speaker-identification procedures 
were the same in all experiments. The segmentation of the audio data was made using the 
acoustic-change detection procedure based on the Bayesian information criterion (BIC), 
which was proposed in (Chen & Gopalakrishnan, 1999) and improved by (Tritchler & 
Gopinath 1999). The applied procedure processed the audio data in a single pass, with the 
change-detection points found by comparing the probability models estimated from two 
neighbouring segments with the BIC. If the estimated BIC score was under the given 
threshold, a change point was detected. The threshold, which was implicitly included in the 
penalty term of the BIC, has to be given in advance and was in our case estimated from the 
training data. This procedure is widely used in most of the current audio-segmentation 
systems (Tranter & Reynolds, 2006; Fiscus et al., 2004; Reynolds & Torres-Carrasquillo, 2004; 
Zhou & Hansen, 2000; Istrate et al., 2005; Žibert et al., 2005).  While the aim of an acoustic-
change detection procedure is to provide the proper segmentation of the audio-data 
streams, the purpose of speaker clustering is to join or connect together segments that 
belong to the same speakers. In our system we realized this by applying a standard 
procedure using a bottom-up agglomerative clustering principle with the BIC as a merging 
criterion (Tranter & Reynolds, 2006). A speaker-identification component was adopted from 
a speaker-verification system, which was originally designed for the detection of speakers in 
conversational telephone speech (Martin et al., 2000). The speaker-verification system was 
based on a state-of-the-art Gaussian Mixture Model – Universal Background model (GMM-
UBM) approach (Reynolds et al., 2000). The system made use of 26-dimensional feature 
vectors, composed of 12 MFCCs together with a log energy and their delta coefficients, 
computed every 10 ms and subjected to feature warping using a 3-s-long sliding window 
(Pelecanos & Sridharan, 2001). The log-likelihood scores produced by the system were 
normalized using the ZT-norm normalization technique (Auckenthaler et al., 2000). 
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All the open parameters and all the models used in each task of our speaker-diarisation 
system were estimated from the training data in such a way as to maximise the overall 
performance of the system. 

4.1.2 Evaluation of the Impact 

Since our speaker-diarisation system was constructed from four basic building blocks, we 
performed the evaluation of our speech-detection procedures after each processing block. 
Hence, the impact of the speech-detection procedures was measured, when using them as a 
pre-processing step of an audio-segmentation task, when using them together with an audio 
segmentation for speaker clustering, and in the final step, when measuring the overall 
speaker-tracking performance. The BN audio data used in the evaluation were the same as 
in the case of the evaluation of speech-detection procedures only, in Section 3.3.4. The audio-
segmentation results, when using different speech-detection procedures, are shown in Table 
2 and the final speaker-clustering and speaker-tracking results are shown in Figures 7 and 8, 
respectively.

Segmentation: baseline BIC method
SNS segmentation:

Recall
(%)

Precision
(%)

F-measure 
(%)

Manual SNS segmentation 78.1 78.2 78.1 

HMM-GMM:
MFCC

60.0 80.7 68.8 

HMM-GMM:
SI-phones recognition, CVS 

72.2 77.0 74.5 

BICseg-GMM:
EN-phones recognition, CVS 

75.2 76.1 75.6 

HMM-GMM:
Fusion: MFCC + CVS 

75.7 76.8 76.3 

Table 2. Audio-segmentation results on BN audio data, when using different SNS-
segmentation procedures.

The audio-segmentation performance in Table 2 was measured using three standard 
measures (Kemp et al., 2000): recall, precision and the F-measure. The recall is defined as the 
rate of correctly detected boundaries divided by the total number of boundaries, while the 
precision corresponds to the rate of correctly detected boundaries divided by the total 
number of hypothesized boundaries. Both measures are closely related to the well-known 
false-acceptance and false-rejection rates. The F-measure joins the recall and the precision in a 
single overall measure.  
The overall segmentation results in Table 2 speak in favour of the proposed phoneme-
recognition features (CVS), when using them as a representation of audio signals in speech-
detection procedures. As has already been shown in the evaluation of speech-detection 
procedures alone (see Table 1), a baseline approach HMM-GMM: MFCC performed poorly 
in the detection of non-speech data. The non-speech segments were not detected, and 
consequently too many non-speech boundaries were not found. Therefore, the recall was too 
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low, and regardless of the relatively high precision the overall audio-segmentation results 
were not as good as in the other cases. We achieved relatively good results with both CVS 
representations in comparison to the manual SNS segmentation (in the first row of Table 2).  
The best overall results were achieved with the fusion representation of the MFCC and CVS 
features. The corresponding audio-segmentation results are just approximately 2% worse 
(measured by all three measures) than in the manual SNS-segmentation case. This proves 
that proper speech detection is an important part of an audio-segmentation system and that 
a good SNS segmentation can greatly improve the overall audio-segmentation results. This 
fact becomes even more obvious when different speech-detection procedures were 
compared in a speaker-clustering task, shown in Figure 7.  

Figure 7. Speaker-clustering results when using different SNS-segmentation procedures. The 
lower DER values correspond to better performance.  

Figure 7 shows a comparison of the four speech-detection procedures when using them 
together with the audio segmentation in the speaker-clustering task. The speaker clustering 
was evaluated by measuring the speaker-diarisation performance in terms of the diarisation 
error rate (DER), (Fiscus et al., 2004).  The comparison was made when no stopping criteria 
were used in the speaker-clustering procedure. Hence, the impact of different speech-
detection approaches was compared across the whole range of possible numbers of speaker 
clusters.  
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In Figure 7, the overall performance of the speaker clustering when using different SNS-
segmentation procedures varies between 13.5% and 18.5%, measured using the DER. The 
speaker-clustering system, where the manual SNS segmentation was applied, was the best 
performing of all the evaluated procedures.  In second place was the SNS segmentation with 
the fusion of the CVS and MFCC features. The DER results show on average an 
approximately 1% loss of performance with such speaker clustering. Speaker-clustering 
approaches show comparable performance, where just CVS representations of the audio 
signals were used in combination with different SNS-segmentation systems. A baseline 
speaker-clustering approach with MFCC features performed, on average, 3% worse (in 
absolute figures) than the best-evaluated approaches.  These results also indicate the 
importance of speech detection in speaker-clustering procedures.  

Figure 8. Overall speaker-tracking results plotted with DET curves. Lower DET values 
correspond to better performance. 

The overall performance of the evaluated speaker-diarisation (SD) system is depicted in 
Figure 8, where the overall speaker-tracking results are shown. The results are presented in 
terms of the false-acceptance (FA) and false-rejection (FR) rates, measured at different 
operating points in the form of detection-error trade-off (DET) curves (Martin et al., 2000). In 
our case, the evaluated speaker-tracking system was capable of detecting 41 target speakers 
from the audio data, which included 551 different speakers. The target speakers were 
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enrolled in the system beforehand from the training part of the evaluation BN database. The 
performances of the evaluated speaker-tracking systems were therefore assessed by 
including all 41 target speakers, with the addition of the non-speech segments, and the 
results were produced from the FA and FR rates measured at the time (frame) level.  
Figure 8 presents the evaluation results from four tested speaker-tracking systems. In all the 
evaluated systems the components for the audio segmentation, the speaker clustering and 
the speaker identification were the same, while the speech-detection procedures were 
different. The overall speaker-tracking results from Figure 8 reveal the same performance 
for the evaluated systems as for the speaker-clustering case. The best performance was 
achieved when using manual SNS segmentation, while the speaker-tracking system with the 
baseline SNS segmentation (HMM-GMM:MFCC) performed worse than all the other tested 
systems. Our proposed SNS-segmentation approaches with CVS features produce nearly the 
same overall evaluation results, which are in general 3% worse (in absolute figures) than the 
speaker-tracking results obtained using manual SNS segmentation. Note that the fusion of 
the MFCC and CVS features did not improve the evaluation results in comparison to the 
systems when just the CVS features were used, as was the case in previous evaluations.  
We can conclude that, in general, the impact of SNS segmentation on speaker-diarisation 
and speaker-tracking systems is direct and indirect. As shown in the evaluation of an audio 
segmentation, good speech detection in continuous audio streams is a necessary pre-
processing step if we want to achieve good segmentation results. And since audio 
segmentation serves as a front-end processing component for speaker clustering and 
speaker tracking, an erroneous audio segmentation influences the speaker-clustering 
performance. Speech detection alone has a direct impact on the performance of the speaker-
diarisation performance. Since speaker-clustering performance (measured using the DER) 
and speaker-tracking performance (measured using the DET) are expressed in terms of a 
miss (speaker in reference but not in hypothesis), a false alarm (speaker in hypothesis but 
not in reference) and speaker error (mapped reference speaker is not the same reference as 
the hypothesized speaker), the errors in the speech detection produce a miss, a false alarm 
and false rejection errors in the overall speaker-diarisation results assessed by both 
evaluation measures. All types of errors are consequently integrated in the DER and DET 
plots in Figures 7 and 8.   

5. Conclusion 

This chapter addresses the problem of speech detection in continuous audio streams and 
explores the impact of speech/non-speech segmentation on speech-processing applications. 
We proposed a novel approach for deriving speech-detection features based on phoneme 
transcriptions from generic speech-recognition systems. The proposed phoneme-recognition 
features were designed to be recognizer and language independent and could be applied in 
different speech/non-speech segmentation-classification frameworks. In our evaluation 
experiments two segmentation-classification frameworks were tested, one based on the 
Viterbi decoding of hidden Markov models, where speech/non-speech segmentation and 
detection were performed simultaneously, and the other framework, where segments were 
initially produced on the basis of acoustic information by using the Bayesian information 
criterion and then speech/non-speech classification was performed by applying Gaussian 
mixture models.  
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All the proposed feature representations and segmentation methods were tested and 
compared in the different tasks of a speaker-diarisation system, which served for speaker 
tracking in audio broadcast-news shows. The impact of the speech detection was measured 
in four different tasks of a speaker-diarisation system. The evaluation results of the audio 
segmentation, the speaker clustering and the speaker tracking demonstrate the importance 
of a good speech-detection procedure in such systems. In all tasks, our proposed phoneme-
recognition features proved to be a suitable and robust representation of audio data for 
speech detection and were capable of reducing the error rates of the evaluated speaker-
diarisation systems. At the same time the evaluation experiments showed that the 
speech/non-speech segmentation with the fusion of the acoustic and the phoneme features 
performed the best among all the systems, and was even comparable to the manual 
speech/non-speech segmentation systems.  This confirmed our expectations that probably 
the most suitable representation of audio signals for the speech/non-speech segmentation of 
continuous audio streams is a combination of acoustic- and recognition-based features. 
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