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Decentralized Robust Tracking Control 
for Uncertain Robots 

Zongying Shi, Yisheng Zhong and Wenli Xu 
Tsinghua University 

P.R. China  

1. Introduction 

Theoretically, the motion of rigid robots can be described by a set of nonlinear differential 
equations or nonlinear differential algebraic equations. In practice, however, because of 
the model uncertainties such as parameter uncertainty (including unknown or varying 
payload), unmodelled joint friction, backlash and unknown external disturbances, it is 
almost impossible to obtain an exact mathematical model of a practical robot system. A lot 
of work has been done on the motion control of robots with uncertain dynamics (Sage, 
1999), and systematic analysis and design methods have been proposed, such as 
Lyapunov-based algorithms (Spong, 1987 & 1992; Kelly, 1994; Qu, 1994; Liu & Goldenberg, 
1996 & 1997) , passivity-based algorithms (Canudas et al., 1996) , robust adaptive 
algorithms (Slotine & Li, 1987), and so on. Most of these approaches, however, use the 
upper bound of perturbation to synthesize control laws, so may lead to conservative 
results. In addition, these approaches are based on a centralized control structure which 
requires complicated hardware configuration and tedious computation, therefore their 
practical application is limited. 
Decentralized control structure is adopted by the majority of modern robots in favor of its 
computation simplicity and low-cost hardware set-up (Liu, 1997). For robots, 
decentralized control means that each joint has its own independent controller which uses 
only local state feedback. Several decentralized robust tracking approaches have been 
proposed, such as PD control , PD control plus nonlinear compensation (Liu, 1997 & 1999; 
Kelly & Salgado, 1994; Tang & Guerrero, 1998) , robust adaptive control (Fu, 1992) and 
Riccati equation based control (Wang & Weng, 1999). PD controller is the most classical 
and simplest decentralized controller which results in local stability under sufficient large 
proportional and differential gains, and the additional nonlinear compensation may 
improve the performance of tracking errors from local convergence to global convergence. 
Riccati equation based approaches may lead to a simple controller, but the involvement of 
uncertain bound in control laws may lead to conservative results. These approaches 
consider the torque resulting from the couplings with robot links as exogenous 
disturbances, therefore the tuning of the controller parameters of multiple joint robot 
systems is a stiff problem. 
This chapter presents a design method of decentralized robust controllers for rigid 
robots. A feedforward control is first applied and the trajectory tracking problem is 
reformed into a stabilizing problem of a dynamic error system. Then the method, 
proposed to deal with robust control problem for single-input single-output (SISO) 

Source: Mobile Robots, Moving Intelligence, ISBN: 3-86611-284-X, Edited by Jonas Buchli,  pp. 576, ARS/plV, Germany, December 2006

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com



118 Mobile Robots, moving intelligence 

plants (Zhong, 1999 & 2002), is extended to the case of the nonlinear coupled error 
system which is a multi-input multi-output (MIMO) system. By this method, a robust 
controller for each joint error subsystem is designed in two steps: first, a nominal 
controller is designed for the nominal plant to get desired tracking, then, a robust 
compensator is added to restrain the influence of perturbation that is the difference of 
the real plant from the nominal plant. Analytical proofs and simulation results show 
that robust stability and robust tracking property can be achieved in the presence of 
parameter uncertainty and friction. A novel feature of the presented method is that the 
parameters of the designed controller can be tuned on-line mono-directionally (more 
precisely, in the way of increasing a parameter monotonously), and both the format and 
the bound of uncertainties are not needed to be known when we perform the parameter 
tuning. This feature greatly facilitates the application of the method to real cases where 
it is not easy to get the information on the format or the bound of uncertainties 
involved.  
This chapter is organized as follows. Section 1 gives the introduction. Section 2 gives the 
problem statements. The robust controller design method is shown in Section 3. The stability 
and robust tracking properties of the closed-loop system are proven in Section 4. Section 5 
gives simulation results on a 2 DOF (degrees of freedom) robot. Section 6 states the 
conclusions. 
Notations 

max ( )λ B , 
min ( )λ B : the maximum and minimum eigenvalues, respectively, of a symmetric 

positive definite matrix B .  
T=x x x , n∈ℜx . 

T

max ( )λ=A A A , n n×∈ℜA . 

2. Problem statements 

The dynamical model of a rigid robot with n  DOFs can be described by its Euler-Lagrange 

equation 
 ( ) ( , ) ( )+ + =M θ θ C θ θ θ g θ τ&& & &  (1) 

where n∈ℜθ  is the vector of angular joint displacements, n∈ℜτ  is the vector of applied joint 

torques, 
n

d ∈ℜτ  is the vector of disturbance torques, ( ) n n×∈ℜM θ  is the inertia matrix, 

( , ) n∈ℜC θ θ θ& &  is the vector of Coriolis and centripetal torques, and ( )g θ  is the vector of 

gravitational torques. 

In order to incorporate parameter uncertainties into the model (1), the matrices ( )M θ  and 

( , )C θ θ& , and the vector ( )g θ  are split up into a nominal part (indicated by the subscript zero) 

and an uncertain part 

 
0 0 0( ( ) ) ( ( , ) ) ( )∆ ∆ ∆+ + + + + =M θ M θ C θ θ C θ g θ g τ&& & &   (2) 

For the description (1) and (2), the following properties hold which can facilitate control 
system design and analysis. 
Property 1 (Liu, 1997) If all the joints under consideration are revolute, the inertia matrix 

( )M θ  and its inverse matrix 1( )−M θ  are positive definite, and 
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min max( ) ( ) ( )λ λ≤ ≤M I M θ M I  

Property 2 For any bounded 
dθ , 

dθ&  and bounded parameter perturbations, we have 

(1) 
0( ) ( )d d Mk− ≤M θ M θ  

(2) 
0( , ) ( , )d d d d Ck− ≤C θ θ C θ θ& &   

(3) 
0( ) ( )d d gk− ≤g θ g θ  

where Mk , Ck  and gk  are positive constants. 

Property 3 (Kelly, 1997) There exist positive constants 1Mk , 1Ck , 2Ck  and 1gk  such that for 

all , , , , n∈ℜx y z v w ，we have 

(1) 
1( ) ( ) Mk− ≤ −M x z M y z x y z  

(2) 
1 2( , ) ( , ) C Ck k− ≤ − + −C x z w C y v w z v w z x y w  

(3) 
1( ) Ck≤C x, y z y z  

(4) 
1( ) ( ) gk− ≤ −g x g y x y  

Now, we are in position to formulate the design problem of controller. Consider a control 
law which consists of a feedforward controller for the nominal system along the desired 
joint trajectory computed off-line and a robust controller for the real system, given by  
 

0 0 0( ) ( , ) ( )d d d d d d= + + +τ u M θ θ C θ θ θ g θ&& & &   (3) 

where subscript zero indicates the corresponding nominal values, 
dθ ,

dθ& and 
dθ&&  denote the 

desired joint trajectory and its first and second derivatives respectively, and u  is the output 

of robust controller to be designed. 
Substituting the control law (3) into (1) yields the following error dynamics equation 

 ( ) ( , ) ( ) ( )+ + =e H θ C θ θ e H θ ∆ H θ u&&& &   (4) 

where 

d= −e θ θ  
1( ) ( )−=H θ M θ  

 
0 0 0[ ( ) ( )] [ ( , ) ( , )] [ ( ) ( )]d d d d d d= − + − + −∆ M θ M θ θ C θ θ C θ θ θ g θ g θ&& & & &  (5) 

In a practical robot system, each joint is generally driven by an independent actuator, so 
each joint is treated as a subsystem, whose error dynamics equation can be obtained from (4) 
and (5) 

 
1 1 1 1

( ) ( , ) ( ) ( ) ( )
n n n n

i ik kj j ij j ij j
j k j j

e H C e H ∆ H u
= = = =

+ + =∑∑ ∑ ∑θ θ θ θ θ θ&&& &   (6) 

where ie&&  is the i th element of vector e&& , je& , ju  and j∆  are the j th elements of the 

vectors e& , u  and ∆  respectively. ( )ijH θ  and ( , )ijC θ θ&  are the ( , )i j  elements of the matrices 

( )H θ  and ( , )C θ θ&  respectively.  

The remaining part of this paper is to show the design method of a robust controller iu  for 

i th joint subsystem ( 1, ,i n= L ) so that the robot tracks the desired joint trajectory 
dθ  with a 

specified performance under the condition that 
dθ  is twice differentiable. 
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120 Mobile Robots, moving intelligence 

3. Robust controller design 

The robust controller for each joint error subsystem is designed by applying the signal-
compensation-based (SCB) robust control idea (Zhong, 1999 & 2002) in two steps: 
Firstly, an artificial nominal model is introduced and a corresponding nominal 
controller is designed to achieve desired tracking properties for the nominal closed-loop 
system. Then, the influence of the difference between the real robot system and its 
nominal model is regarded as an equivalent disturbance and a robust compensator is 
designed to restrain the influence of uncertainties and the nonlinear couplings with 
robot links. 

3.1 Nominal controller design 
An artificial nominal plant is introduced for the i th joint error subsystem 

 0i ie b u=&&   (7) 

where 
0b  is a positive constant such that 

0 max ( )b λ≥ H . Then the nominal plant can be 

described in frequency domain by 

 ( )i i ie G s u=   (8) 

where 

0( )
( )

i
pi

b
G s

D s
= ,  

2( )piD s s=  

Here we call the nominal plant (7) an artificial one because it might by no means be a model 
of the real plant for any possible practical situation. Note that the nominal plant (7) is 
different from that one obtained from (4) by setting ∆ =M 0 ,∆ =C 0 , and ∆ =g 0  respectively. 

Construct the nominal controller, which is a linear time-invariant output dynamical 
feedback controller, as 

 
0

( )

( )

yi
i i

ui

N s
u e

D s
=   (9) 

where ( )yiN s  and ( )uiD s  are polynomials of degree 1 determined by the following 

equation 

 0( ) ( ) ( ) ( ) ( )mi i pi ui yiD s L s D s D s b N s= −   (10)  

where ( )miD s  and ( )iL s  are Hurwitz monic polynomials of degrees 2 and 1 respectively. 

Then the closed-loop system consisting of the nominal plant (7) and the nominal controller 

(9) has a characteristic polynomial ( ) ( )mi iD s L s . The existence of the polynomials ( )yiN s  

and ( )uiD s  satisfying (10) is evident.  

Define 

1( )ui iD s s d= +  

www.intechopen.com
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0 1( )yi i iN s r s r= +
 

2

1 2( )mi i iD s s sβ β= + +  

1( )i iL s s α= +
 

where ( )miD s , dominating the performance of ( ) ( )mi iD s L s  under the condition 

1 1i iα β>> , is a characteristic polynomial of a 2 degree system which specifies the desired 

dynamic tracking performance for the i th joint, and 1id , 0ir  and 1ir  can be expressed as 

functions of 1iβ , 2iβ  and 1iα , respectively  

1 1 1

0 1 1 2 0

1 1 2 0

0

( ) 0

0

i i i

i i i i

i i i

d

r b

r b

α β
α β β
α β

= + >⎧
⎪ = − + <⎨
⎪ = − <⎩

 

3.2 Robust compensator design  

For the i th joint error subsystem, regarding the effect of the difference between the real 

robot system and the nominal one as that of an external disturbance, we have  

 0( )pi i i iD s e b u q= +   (11) 

where 
iq  is called the equivalent disturbance and given by 

 
0

1 1 1 1

( ) ( ) ( , ) ( )
n n n n

i ij j i ik kj j ij j
j j k j

q H u b u H C e H ∆
= = = =

= − − −∑ ∑∑ ∑θ θ θ θ θ& &   (12) 

Define the real control input to the i th joint as 

 0i i iu u v= +   (13) 

where iv  is the output of the robust compensator to be designed. 

To eliminate the influence of iq  on the close-loop control system, we set 

 0

0 0

1
( ) ( ) [ ( ) ]i

i i i pi i i

q
v F s F s D s e b u

b b
=− =− −  (14) 

where ( )
( 1)

i
i

i i

f
F s

s p s f
=

+ +
 is called robust filter with parameters 0, 0i ip f> > .  

Combining (10), (13), and (14) yields 

0

( ) ( )( )

1 ( )

mi i
i i

ui

D s L sF s
v e

F s b D
= − ⋅

−
 

and consequently 

 

2

0 1 1 2 1

1 0 1

( )( )

( 1)( )

i i i i i i
i i

i i i

r s r f s s s
u e

s d b s p s s d

β β α⎡ ⎤+ + + +
= −⎢ ⎥+ + +⎣ ⎦

  (15) 
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which is a linear time-invariant controller using only position feedback, which can avoid the 
noise problem caused by speed measurement. Fig. 1 shows the configuration of the whole 
control system with decentralized robust controllers. Each controller appears in a two-loop 
form: the nominal control loop and the robust control loop. Only when the perturbation 
from the nominal case appears, the robust control loop is turned on. This feature is very 
similar to that of an adaptive controller, but the complexity of this controller is almost 
equivalent to that of a PID controller, therefore its realization is much easier than that of an 
adaptive controller. 

 

Fig. 1. Decentralized robust control system of n DOF robot. 

4. Control performance analysis and parameter on-line tuning 

4.1 Control performance analysis 
Firstly we give the state equations of the closed-loop system, then construct a Lyapunov 
function to analyze the system stability and robust properties. 

Let 
iX [ ]0 0

T

i i i i ie e u v v= & % , where ie , ie& , 0iu , 0iv  and iv%  are the i th elements of 

vectors e , e& , 
0u , 

0v  and v~  respectively, and 
i i iv v f= −% . Combining (9), (11) and (14) results 

in the state equation of the i th joint error subsystem: 

   
i i i qi iq= +X A X B&   (16) 

0 0

1 0 1

1

2

0 1 0 0 0

0 0 0

0 0

0 0 0 0

0 0 0 1

i

i i i i

i

i i

b b f

r r d

p

λ
λ

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A
,   

0

0

1

0

0

qi

i

B

f b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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where 1iλ  and 2iλ  are the poles of the robust filter or the roots of the polynomial 

( 1)i is p s f+ + , that is, 
1 ,2 2

41 1 1

2

i
i i

i i i

f

p p p
λ

⎛ ⎞
= − ± −⎜ ⎟⎜ ⎟

⎝ ⎠

. 

The characteristic polynomial of matrix 
iA  is  

1
( ) ( ) ( ) ( ( 1) )i mi i i i

i

s D s L s s p s f
p

Λ = + +  

which is a Hurwitz polynomial. Therefore matrix 
iA  is stable and there exists a positive 

definite matrix 
iP  which is the solution of the following Lyapunov equation. 

 T
i i i i+ = −P A A P I   (17) 

Assumption 

A) 
1

1i
i

f
p
>> ≥ . 

B) ,i jf f i j= ≠ , 1diag{ , , }n i n nf f f ×= =f IL .  

C) ∆ε  is a positive constant such that 1 1

0 min ( )b∆ε λ− −≤ M . 

Remark 1 Under Assumption A), we have that 1 i ip f>> . Since ( )M θ  (hence 1( )−M θ ) is a 

positive definite matrix, the constant ∆ε  satisfying Assumption C) always exists. 

Lemma 1 Define i =ψ
i qiPB  and 1

i
i

f
p

µ= , where 1µ >> , then vector 
iψ  can be represented 

in the following form 

1 2 3 4 5

0

1
1

T

i i i i i
i

i i i i ib f f f f

γ γ γ γ γ
µ µ

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
ψ  

where ( 1, ,5)ji jγ = L  are bounded by constants independent of if . 

Proof: See the Appendix. 

Lemma 2 Define the equivalent disturbance iq  of i th joint error subsystem as (12), then the 

total equivalent disturbance q  of system (4) can be expressed as   

 1

0( )b−= + −q q M I v%   (18) 

where [ ]1

T

nq q=q L , 1 1 1

0 0( )b− − −= − − + −q M Ce M ∆ M I u% & , and there exist positive constants 

1 2 5, , ,q q qk k kL  such that 

  
2

1 2 3 4 5 0q q q q qk k k k k≤ + + + +q e e e u% & &   (19) 

Proof: See the Appendix. 

Lemma 3 Define 
n n×∈ℜA  for ( )σ =A A . Under Assumption C), we have  

1 1

0 0[ ( )] 1b b ∆σ ε− − − ≤ −M I  

www.intechopen.com
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Proof: See the Appendix. 

Lemma 4 Define 0µ  as  

 
3

1 1

0 max 4max 5max

1 00

[1 ( ) ]
q q

i
ii

k k

bb f
µ γ γ γ µ

=

= + + +∑   (20) 

Under assumption A), if 1i cf f≥ , where 
3

2

1 max
1

max( )c j
j

f γ
=

= , { }max
1

max 0,max( )
n

j ji
i

γ γ
=

= , 

1, ,5j = L  then we have 

0µ 1

0

5 qk

b
≤  

Proof: Omitted. 

Theorem 1 Suppose Assumptions A), B) and C) are met. For any given constant 0η > , 

there exists a bounded if  such that the closed-loop system has the following robust 

properties: 
(1) If both the closed-loop system and the reference model are of zero initial conditions, then 
the closed-loop system has robust transient property:  

2
X η< , 0t t∀ ≥  

 (2) If the initial conditions involved are non-zero but bounded, then the closed-loop 

system has robust asymptotical tracking property; that is, there exists a constant 0T t≥  

such that  

2
X η< , t T∀ ≥  

Proof: Consider the following Lyapunov function candidate 

 
1

n
T

i
i

V V
=

= =∑X PX   , T
i i i iV = X P X  (21) 

where 

1 2, , ,
TT T T

n⎡ ⎤= ⎣ ⎦X X X XL , 1

n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P

P

P

O
 

The derivative of V , along the solution of the controlled system (16), is given by 

1

n

i
i

V V
=

=∑& &
1

( 2 )
n

T T
i i i i qi i

i

q
=

= − +∑ X X X P B  

0 0 0 0 1 2

1 10 0

1 1
( ) 2

n n
T T T T T

i i i i i i
i ii i

e q e q
f b f b

γ γ
= =

⎧
≤ − + + + + + +⎨

⎩
∑ ∑e e e e u u v v v v& & % % &  

4 5
3 0 0

1 1 10 0 0

1 1
(1 )

n n n
i i

i i i i i i i
i i ii i i

u q v q v q
f b f b f b

γ γ
γ

µ µ= = =

⎫⎪+ + + + ⎬
⎪⎭

∑ ∑ ∑ %  
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 1 2
0 0 0 0

0 0

( ) 2 diag diagT T T T T T Ti i

i if b f b

γ γ⎡ ⎧ ⎫ ⎧ ⎫
= − + + + + + +⎢ ⎨ ⎬ ⎨ ⎬

⎢ ⎩ ⎭ ⎩ ⎭⎣
e e e e u u v v v v e e& & % % &  

 3 4 5
0 0

0 0 0

1
diag diag (1 ) diag

T T Ti i i

i i i
f b f b f b

γ γ γ
µ µ

⎤⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎪ ⎪ ⎪ ⎪+ + + + ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎥⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎦

u v v q%   (22) 

From Lemma 2 and the definition of maxjγ  in Lemma 4, (22) becomes 

2 2 2 2 2

0 0( )V ≤ − + + + +e e u v v& & %  

4 max 5max
1max 2max 3max 0 0

0 00

1 1
2 ( ) (1 )

i i
f b bf b

γ γ
γ γ γ

µ µ
⎧⎡ ⎤⎪+ + + + + + ⋅⎨⎢ ⎥
⎪⎣ ⎦⎩

e e u v v q& % %

1max 2max 3max 0

1
( )

if
γ γ γ

⎡
+ + +⎢
⎢⎣

e e u&  

 1 14max 5max
0 0 0(1 ) ( )v b b

γ γ
µ µ

− − ⎫⎤
+ + + ⋅ − ⋅ ⎬⎥

⎦ ⎭
v M I v% %   (23) 

In the view of Lemma 1 and Lemma 3, (23) becomes  

2 2 2 2 2

0 0( )V ≤ − + + + +e e u v v& & %  

4max
1max 2 max 3max 0 0

0 0

25max
1 2 3 4 5 0

0

1 1
2 [ ( ) (1 )

] [ ]

i i

q q q q q

f b f b

k k k k k
b

γ
γ γ γ

µ

γ
µ

⎧⎪+ + + + +⎨
⎪⎩

+ ⋅ + + + +

e e u v

v e e e u

&

% & &

1max 2max 3max

1
( )

if
γ γ γ+ + + 0e e u v& %  

 1 1 4max 5max
0 0 0( ( ))[(1 ) ]b b

γ γ
δ

µ µ
− − ⎫

+ − + + ⋅ ⎬
⎭

M I v v v% %   (24) 

Define 
1 2 3 5sum q q q qk k k k k= + + +  and 

2 3 5[ , , ]T
q q qk k k=k , and let 

ik  denote the i th element 

of the vector k . Then (24) is further expressed as 

 V& 2 2 2 2 2 0
1 2 3 0 4 0 5

if

µ
µ µ µ µ µ≤ − − − − − +e e u v v& %   (25) 

where 
0µ  is defined as (20),   
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1 1

0 0 4max

1 1

0 0 4max 5max

1 ( 1,3)

1 ( ) ( 2)

1 ( ( ))(1 ) ( 4)

1 ( ( ))[1 ( 2 ) ] ( 5)

i i

i i i
i

i i

i i

f i

f i

b b f i

b b f i

ρ

ρ ρ
µ

δ γ µ ρ

δ γ γ µ ρ

− −

− −

⎧ − =
⎪
− + =⎪

= ⎨
− − + − =⎪

⎪ − − + + − =⎩

M I

M I

%
  (26) 

 

3
4max 5max

max max max

1 00

4max

0

3
5max

max

1 0

1
[ ] [1 ] ( 1,2,3)

1
[1 ] ( 4)

( 5)

i
i sum i j i

ji

i sum

sum
j

j

k
k k i

bf b

k i
b

k
i

b

γ γ
γ γ γ

µ

γ
ρ

µ
γ

γ
µ

=

=

+⎧
+ + + + =⎪

⎪
⎪⎪= + =⎨
⎪
⎪

+ =⎪
⎪⎩

∑

∑

  (27) 

 1max 2 max 3max 4max 5max
2 0 0 4

2
[ (1 ) ] q

b i i i

k
f f f

γ γ γ γ γ
ρ

λ µ µ
= + + + + +e e u v v% & %   (28) 

Define 
0 0 1 2 3 4 5, , , , , , , ,

T T T T T T T T T T T T⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦Y e e u v v Y Y Y Y Y& % , then under Assumption A), we 

have 

 
5

2 1 1

1

5i
j

ρ φ φ
=

≤ ≤∑ Y Y%   (29) 

where 1

1 4 0 1max 2max 3max2 max { , , , 2}qk bφ γ γ γ−= , is a bounded constant independent of 
if . 

In the following, the conditions are analyzed that ensure 0iµ > , 1,2, ,5i = L .  

Let 
minπ  be a positive constant so that }1,min{min ∆< επ , and let 

iρ  denote the values of iρ  

when 1if =  and 
4max 5max2µ γ γ= + . Then under Assumption A) and the condition that 

max5max4 2γγµ +≥ , we have 
i iρ ρ≤ .  

If the following inequalities hold  

 
2i cf f≥ ,  

4max 5max2µ γ γ≥ +     (30) 

 
min 2

1

1
[(1 ) ]

5
iY fπ ρ

φ
≤ − −   (31) 

where  

 
2 2

2
1,3 4,5

min min

max max , max
1

i i
c

i i
f

∆

ρ ρ
π ε π= =

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  (32) 

www.intechopen.com



Decentralized Robust Tracking Control for Uncertain Robots 127 

then by (26) and from Lemma 3, we have 

 
miniµ π≥ , 1, 2, ,5i = L    (33) 

Note that (31) defines the attractive region.                   

If (33) holds and 1i cf f≥ , from Lemma 4, one sees that (25) can be rewritten as 

 
2 1

min

0

5 q

i

k
V

f b
π≤ − +Y&   (34) 

Since 

2 2

max max( ) ( )

T V

λ λ
= ≥ =

X PX
Y X

P P
 

we obtain 

 s sV Vζ ε≤ − +&   (35) 

and 

 0 0( ) ( )

0( ) ( ) (1 )s st t t ts

s

V t V t e eζ ζε
ζ

− − − −≤ + −   (36) 

where min

max ( )
s

πζ
λ

=
P

, 1

0

5 q
s

i

k

f b
ε = .  

Let  

1 1

0 1 0max{ ( ), 5 }q sV V t k b ζ− −=  

Then under Assumption A) and from (35) it is known that 0( ) ,V t V t t≤ ∀ ≥  and 
1lim ( ) s s

t
V t ε ζ −

→∞
≤ . Because 

 2 2

min min( ) ( )

T V

λ λ
= ≤ =

X PX
Y X

P P
  (37) 

( )tY  (and ( )tX ) starting from the attractive region given by (31) can keep staying inside that 

region, if 

 1

min 2 min

1

1
[(1 ) ] ( )

5
if Vπ ρ λ

φ
−− − ≥ P   (38) 

By Assumption A), (38) holds, if 

  3i cf f> , ( )2
1

3 1 min 22

min

1
5 ( )

(1 )
cf Vφ λ ρ

π
−= +

−
P    (39) 
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In addition, from (35) and (37) we know that the state Y  convergences to the set given 
by 

{ }2

min( ( ))s s sΩ ε ζ λ= ≤Y Y P  

at a rate not slower than exp( 2)stζ− . 

By (37), if 

min( ) ( )V t λ η≤ P  

then 

2 η≤X  

When both of the closed-loop system and the reference model are of zero initial conditions, 

0( ) 0V t = . In this case, from (37), we have 

0

2

t t

η
≥

<X , if 

 
min ( )s

s

ε
ηλ

ζ
≤ P  (40) 

In the case of non-zero initial states, 
0( ) 0V t ≠ . We can obtain 2

t T

η
≥

<X , if 

 )()( min

)(

0
0 Pηλ

ζ
εζ ≤+−−

s

sttsetV  (41) 

If 0
0

min

2 ( )1
ln( )

( )s

V t
T t

ζ ηλ
≥ +

P
, we have 

0( )

0 min

1
( ) ( )

2
s T tV t e ζ ηλ− − ≤ P  

Now to ensure (41) hold, it is required that 

 
min

1
( )

2

s

s

ε
ηλ

ζ
≤ P  (42) 

Incorporating (40) and (42) yields 

  
4i cf f≥ , 

2

1 max

4

0 min min

10 ( )

( )

q
c

k
f

b

λ
η π λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

P

P
  (43) 

From the previous analysis, we see that it is required  

4

1
maxi cj

j
f f

=
≥ , 

4max 5max2µ γ γ≥ +  
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where , 1, ,4cjf j = L  are bounded constants and 4max 5max2γ γ+  are bounded by a constant, 

all  independent of 
if . When the parameters 

if  and µ  are set such that the above 

conditions hold, then the robust transient property and robust tracking property can be 
achieved. So the conclusions of the theorem are proven.  

Remark 2 If the friction torque is bounded by 
2

1 2 3β β β+ + +θ θ& & , where
1β , 

2β , and
3β  are 

positive constants, then the upper bound of q%  also can be expressed as the form of (19), 

therefore the conclusions of Theorem 1 are still available. 

4.2 Parameter on-line tuning 

In practical applications, needing not the tedious analysis and estimation of the uncertainty 
as in the previous proof, the parameters of robust compensator can be determined by on-

line tuning as follows: 1) let 1µ >> , and 1/( )i ip fµ=  (From Lemma 4, Theorem 1, and their 

proofs, one sees that it is enough to set 
4max 5max2µ γ γ≥ + ); 2) construct the controller as (15) 

and close the control loop; 3) tune if  monotonously from some value greater than or equal 

to 1 until the satisfied tracking performance is achieved. 
Because there is only one parameter to be tuned and the tuning is monotonously increasing, 
the parameter on-line tuning can be performed even easier than that for a traditional PID 
controller. In addition, the controller tuning of each joint subsystem is independent of each 
other.  

In real cases, however, we should not apply a too large if  to avoid too large control input 

caused by nonzero initial conditions or measure noise. 
For a real system, it is difficult to exactly determine the range of uncertain parameters, 
so the feature of parameter on–line tuning of this controller possesses its unique 
superiority. 

5. Numerical example and simulation results 

We apply the method proposed in previous sections to a 2DOFs manipulator (Liu, 1999) to 
verify the monotonously tuning characteristic and effectiveness of the controller. The 
manipulator’s physical parameters and their real values are shown in Table 1. The entries of 

( )M θ , ( , )C θ θ&  and ( )g θ  are as follows respectively. 

11 11 22 22 cosM J J θ= + , 
12 21 21 22 2cosM M J J θ= = + , 

22 21M J=  

Let ( , ) ( , )=h θ θ C θ θ θ& & & , then we have 

2

1 22 1 2 2 2(2 )sinh J θ θ θ θ= − +& & & , 2

2 22 1 2sinh J θ θ= &  

1 12 1 2 2 1 2cos cos( )g J m grθ θ θ= + + , 
2 2 2 1 2cos( )g m gr θ θ= +  

where ijJ  are constant parameters given by 

2 2 2

11 1 1 2 1 2 1 2( )c cJ m l m l l I I= + + + +  

12 1 1 2 1( )cJ g m l m l= +  
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2

21 2 2 2cJ m l I= + , 22 2 1 2cJ m l l=  

The nominal values of robot’s physical parameters are 
1

ˆ 3.5m kg= , 
2

ˆ 1.7m kg= , 2

1
ˆ 0.9I kgm= , 

2

2
ˆ 0.7I kgm= , ˆ

i il l= , ˆ
ci cil l= , 1,2i = . Let the initial tracking error [0.2 0.2] ( )Te rad= −  and 

[ 0.25 0.2] ( / )Te rad s= −& . 

The reference trajectories are also specified as in (Liu, 1999) for comparison:    

1 0.2 2sin 2d tθ = +  ( )rad  

2 1.7 1.8cos2d tθ = − +  ( )rad  

The 2 degree reference model is set as follows: the rise-time 0.5rt s= , the damp coefficient 

1.1ξ = . Thus 2( ) 10.1 21.1miD s s s= + + . Set 10µ =  (
4max 5max2 5γ γ> + = ), and the 

Items symbol Link1 Link2 

Link length(m) il  0.5 0.25 

Distance from joint axis to COM of link(m) cil  0.25 0.15 

Link mass(kg) im  4.0 2.0 

Moment of inertia of link(kgm2) iI  1.0 0.8 

Table 1. Physical parameters of a 2DOFs manipulator. 

value of if  is tuned from 1.0 . The tracking errors of uncertain robot with parameter 

uncertainty corresponding to 10if = , 20if =  and 50if =  are shown in Fig. 2 and Fig. 3. The 

results indicate that, along with the gradual increment of if , tracking errors gradually 

decrease and tracking performance is improved, which validates the monotonously tuning 
characteristic of the controller.  
Fig. 4 ~ Fig. 7 show the tracking errors of three control schemes with almost equivalent 
proportional gain: signal-compensation-based (SCB) control law proposed in this paper, PD-
plus-nonlinear (PD+NL) control law (Liu, 1999) and PD-plus-nonlinear-plus-adaptive 
(PD+NL+AD) control law (Liu, 1999). It can be seen that the tracking performance of SCB 
control is superior to that of PD+NL control and not inferior to that of PD+NL+AD control. 
The input torque signals are shown in Fig. 8 and Fig. 9, which indicate that, after a very 
short initial phase, the input torque curves of SCB control is smoother than that of PD+NL 
control. 

Remark 4 To estimate the lower bound of if  for stable tracking control of the 2DOF 

manipulator, we calculate the value of 
2cf  which equals 4624 . By Theorem 1, only if 

4624if > , local convergence of the tracking errors may be ensured. But the simulation 

results show that the tracking errors are already convergent when
2i cf f<< . Theorem 1 only 

gives conservative sufficient conditions for convergence in quantity, however, its 

importance is that the existence of bounded if  ensuring the stability and robust properties 

of the controlled system is proved theoretically as shown in section 4.  
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Fig. 2. Position tracking errors of joint 1 

for different if ’s values. 

Fig. 3. Position tracking errors of joint 2 for 

different if ’s values. 

 
  

Fig. 4. Position tracking errors of joint 1. Fig. 5. Position tracking errors of joint 2. 

   

Fig. 6. Velocity tracking errors of joint 1. Fig. 7. Velocity tracking errors of joint 2. 
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Fig. 8. Input torques of joint 1. Fig. 9. Input torques of joint 2. 

6. Conclusions 

The controller designed by the method proposed in this chapter consists of a feedforward 
and a two-loop linear time-invariant robust controller. Because the robust compensation 
signal is generated based on the inner signals, there is no need to know the format of 
uncertainties. In addition, only using local joint position feedbacks, the noise problem 
possibly caused by velocity measurement is avoided. The most important is that the 
parameter tuning is monotonic which provides the unique superiority: tuning on-line is 
realizable, and the bound estimation of uncertainties is not needed. These characteristics 
enable the controller possess favorable adaptability and be prone to be realized easily.  
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Appendix: Proofs of Lemma 1 ~ Lemma 3  

Proof of Lemma 1: 
Solving (17), we can find that 

i =ψ
i qiP B  can be expressed in the form as stated in the lemma, 

and under the condition that 1/ 1ip f>> ≥ , jiγ  can be represented as  

2

2 1 0

2 1

1 1 1 1 2 1 2( ) ( ) ( )

i i i i i
ji

i i i i i i i i i i

a f a f a

f f f
γ

α β α β β α β −

+ +
=

+ + + + +
 , 1,2,3j =  

3 2

3 2 1 0

3 2

1 1 1 1 2 1 2( ) ( )

i i i i i i i
ji

i i i i i i i i i i

b f b f b f b

f f f
γ

α β α β β α β
+ + +

=
+ + + + +

,  4,5j =  

where ( 0,1,2)jia j =  and ( 0,1,2,3)kib k =  are constants independent of 
if . Since 

1 1 2, , 0i i iα β β > , 

obviously, the denominator of 
jiγ , denoted by den( )jiγ , is larger than zero, so 

jiγ  is 

continuous in 
if  and is bounded by constants which are independent of if .    □ 

Proof of Lemma 2: 

From (5), we have 

0( ) ( ) ( ) ( ) ( , ) ( , )d d d d d d d d d≤ − + − + −∆ M θ M θ θ M θ θ M θ θ C θ θ C θ θ θ&& && && & & &  

0 0( , ) ( , ) ( ) ( ) ( ) ( )d d d d d d d d d+ − + − + −C θ θ θ C θ θ θ g θ g θ g θ g θ& & & &  

Suppose the desired trajectory is bounded and satisfies 

1d c≤θ , 
2d c≤θ& , 

3d c≤θ&&  

where 21 cc， and 3c  are constants. In the view of Property 1~3 stated in Section2, there 

exist positive constants 
1 1 2, , , ,M M C C Ck k k k k , satisfying 

3 1 3 2 1 2M M C Ck c k c k c k c≤ + + +∆ e e& 2

2 2 1C g gk c k k+ + +e e  

From Property 1 and Property 3(3), there exist positive constants 
23 , MC kk such that 

21 1

0 0 3 4 2 0( ) C C Mb k k k− −− + − ≤ + +M Ce M I u e e u& & &  

So we have 
2 2

1 2 3 4 5 0q q q q qk k k k k≤ + + + +q e e e u% & &  

where 
1 2 5, , ,q q qk k kL  are bounded positive constants. □ 

Proof of Lemma 3: 

Since 1

0 min ( )b λ −≥ M  which implies that 1 1

0( ) 1bσ − − ≤M , so we have 

1 1 1 1

0 0 min[ ] 1 ( )b bδ λ− − − −− ≤ −M I M  

From Assumption C), it follows that 
1 1

0[ ] 1b ∆δ ε− − − ≤ −M I  

Therefore the conclusion holds. □ 
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