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1. Introduction 

The chapter describes our current work in developing cognitive robotics architectures in the 
context of robot soccer coaching using spoken language. The work exploits recent developments 
in cognitive science, particularly notions of grammatical constructions as form-meaning mappings 
in language, and notions of shared intentions as distributed plans for interaction and collaboration. 
We exploit social interaction by structuring communication around shared intentions that guide 
the interactions between human and robot. We demonstrate this approach in robot soccer 
coaching distinguishing among three levels of human-robot interaction. The first level is that of 
commanding or directing the behavior of the robot. The second level is that of interrogating or 
requesting a behavior explanation from the robot. The third and most advanced level is that of 
teaching the robot a new form of behavior. The chapter is organized as follows: (i) we explore 
language communication aspects between humans and robots; (ii) we analyze RoboCup soccer, in 
particular the four-legged league, as cognitive platform; (iii) we describe current experiments and 
results in human-robot coaching in the four-legged league; and, (iv) we provide a discussion on 
current and future directions for this work. 
Ideally, research in Human-Robot Interaction will allow natural, ergonomic, and optimal 
communication and cooperation between humans and robotic systems.  In order to make progress 
in this direction, we have identified two major requirements:  First, we must work in real robotics 
environments in which technologists and researchers have already developed an extensive 
experience and set of needs with respect to HRI.  Second, we must develop a domain independent 
language processing system that can be applied to arbitrary domains and that has psychological 
validity based on knowledge from social cognitive science. In response to the first requirement 
regarding the robotic context, we have studied two distinct robotic platforms.  The first, the Event 
Perceiver is a system that can perceive human events acted out with objects, and can thus generate 
descriptions of these actions. The second is the Sony AIBO robot having local visual processing 
capabilities in addition to autonomous mobility. In the latter, we explore human-robot interaction 
in the context of four-legged RoboCup soccer league. From the psychologically valid language 
context, we base the interactions on a model of language and meaning correspondence developed 
by Dominey et al. (2003) having described both neurological and behavioral aspects of human 
language, and having been deployed in robotic contexts, and second, on the notion of shared 
intentions or plans by Tomasello (2003) and Tomasello et al. (2006) that will be used to guide the 

Source: Mobile Robots Towards New Applications, ISBN 3-86611-314-5, Edited by Aleksandar Lazinica,  pp. 784, ARS/plV, Germany, December 2006
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collaborative interaction between human and robot.  In section 2 we describe our spoken language 
approach to cognitive robotics; in section 3 we overview the RoboCup four-legged soccer league; 
in section 4 we describe current experimental results with the Sony AIBO platform in human-
robot interaction; section 5 provides conclusions. 

2. Cognitive Robotics: A Spoken Language Approach 

In Dominey & Boucher (2005a, 2005b) and Dominey & Weitzenfeld (2005) we describe the 
Event Perceiver System that could adaptively acquire a limited grammar based on training 
with human narrated video events. An image processing algorithm extracts the meaning of 
the narrated events translating them into action(agent, object, recipient) descriptors. The event 
extraction algorithm detects physical contacts between objects, see Kotovsky & Baillargeon 
(1998), and then uses the temporal profile of contact sequences in order to categorize the 
events. The visual scene processing system is similar to related event extraction systems that 
rely on the characterization of complex physical events (e.g. give, take, stack) in terms of 
composition of physical primitives such as contact, e.g. Siskind (2001) and Steels & Bailled 
(2002). Together with the event extraction system, a speech to text system was used to 
perform translations sentence to meaning using different languages (Dominey & Inui, 2004). 

2.1 Processing Sentences with Grammatical Constructions 

Each narrated event generates a well formed <sentence, meaning> pair that is used as input to a 
model that learns the sentence-to-meaning mappings as a form of template in which nouns and 
verbs can be replaced by new arguments in order to generate the corresponding new meanings. 
These templates or grammatical constructions, see Goldberg (1995) are identified by the 
configuration of grammatical markers or function words within the sentences (Bates et al., 1982).  
Each grammatical construction corresponds to a mapping from sentence to meaning. This 
information is also used to perform the inverse transformation from meaning to sentence. 
For the initial sentence generation studies we concentrated on the 5 grammatical 
constructions shown in Table 1. These correspond to constructions with one verb and two or 
three arguments in which each of the different arguments can take the focus position at the 
head of the sentence. On the left example sentences are presented, and on the right, the 
corresponding generic construction is shown. In the representation of the construction, the 
element that will be at the pragmatic focus is underlined. 

 Sentence Construction <sentence, meaning> 
1 The robot kicked the ball <Agent event object, event(agent, object>  
2 The ball was kicked by the robot <Object was event by agent, event(agent, object>  

3 The red robot gave the ball to the 
blue robot 

<Agent event object to recipient,  
             event(agent, object, recipient)> 

4 The ball was given to the blue 
robot by the red robot  

<Object was event to recipient by agent, 
           event(agent, object, recipient)> 

5 The blue robot was given the ball 
by the red robot 

<Recipient was event object by agent, 
           event(agent, object, recipient)> 

Table 1. Sentences and corresponding constructions. 

This construction set provides sufficient linguistic flexibility, for example, when the system is 
interrogated about the red robot, the blue robot or the ball. After describing the event give(red robot, 
blue robot, ball), the system can respond appropriately with sentences of type 3, 4 or 5, respectively. 
Note that sentences 1-5 are specific sentences that exemplify the 5 constructions in question, and 
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that these constructions each generalize to an open set of corresponding sentences. 
We have used the CSLU Speech Tools Rapid application Development (RAD) (CSLU, 2006) 
to integrate these pieces, including (a) scene processing for event recognition, (b) sentence 
generation from scene description and response to questions, (c) speech recognition for 
posing questions, and (d) speech synthesis for responding. 

2.2 Shared Intentions for Learning 
Perhaps the most interesting aspect of the three part “command, interrogate, teach” scenario 
involves learning.  Our goal is to provide a generalized platform independent learning 
capability that acquires new <percept, response> constructions.  That is, we will use existing 
perceptual capabilities, and existing behavioral capabilities of the given system in order to 
bind these together into new, learned <percept, response> behaviors.   
The idea is to create new <percept, response> pairs that can be permanently archived and used in 
future interactions. Ad-hoc analysis of human-human interaction during teaching-learning reveals 
the existence of a general intentional plan that is shared between teachers and learners, which 
consists of three components. The first component involves specifying the percept that will be 
involved in the <percept, response> construction. This percept can be either a verbal command, or 
an internal state of the system that can originate from vision or from another sensor. The second 
component involves specifying what should be done in response to this percept.  Again, the 
response can be either a verbal response or a motor response from the existing behavioral 
repertoire. The third component involves the binding together of the <percept, response> 
construction, and validation that it was learned correctly. This requires the storage of this new 
construction in a construction database so that it can be accessed in the future. This will permit an 
open-ended capability for a variety of new types of communicative behavior. 
In the following section this capability is used to teach a robot to respond with physical 
actions or other behavioral responses to perceived objects or changes in internal states. The 
user enters into a dialog context, and tells the robot that we are going to learn a new 
behavior. The robot asks what is the perceptual trigger of the behavior and the human responds. 
The robot then asks what is the response behavior, and the human responds again. The robot 
links the <percept, response> pair together so that it can be used in the future. 
Having human users control and interrogate robots using spoken language results in the 
ability to ergonomically teach robots.  Additionally, it is also useful to execute components 
of these action sequences conditional on perceptual values.  For example the user might 
want to tell the robot to walk forward until it comes close to an obstacle, using a "command 
X until Y" construction, where X corresponds to a continuous action (e.g. walk, turn left) 
and Y corresponds to a perceptual condition (e.g. collision detected, ball seen, etc.). 

3. RoboCup Soccer: Four-Legged League 

In order to demonstrate the generalization of the spoken language human-robot interaction 
approach we have begun a series of experiments in the domain of RoboCup Soccer (Kitano, 1995), a 
well documented and standardized robot environment thus provides a quantitative domain for 
evaluation of success. For this project we have chosen as testing platform the Four-Legged league 
where ITAM’s Eagle Knights team regularly competes (Martínez-Gómez et al. 2005;  Martínez-
Gómez & Weitzenfeld, 2005). In this league two teams of four robots play soccer on a 6m by 4m 
carpeted soccer field using Sony’s Four-Legged AIBO robots (RoboCup, 2004), as shown in Figure 
1. Robots in this league have fully autonomous processing capabilities including a local color-based 
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camera, motors to control leg and head joints, and a removable memory stick where programs can 
be loaded. The robots also include wireless communication capabilities to interact with other robots 
in the field as well as computers outside. In addition to the two colored goals, four colored cylinders 
are used in helping the robots localize in the field. To win, robots need to score as many goals as 
possible in the opposite goal. Ball is orange and robots use either a red or blue colored uniform. As 
in human soccer, good teams need to perform better that opponents in order to win, this includes 
being able to walk faster, process images, localize and kick the ball in a more efficient way, and have 
more advanced individual behaviors and more evolved team strategies.  

 
Fig. 1. Four-Legged Soccer League. Two teams of four robots play against each other in a 6m by 
4m carpet. AIBOs from Sony are used having fully autonomous control. Sensors include a local 
color-based camera having images processed by a local CPU sending output commands to 
motors controlling joints in the four legs and heads. The AIBO also includes wireless 
communication capabilities to interact with other robots in the field and computers outside. 

 
Fig. 2. Four-Legged System Architecture. The system includes the following processing 
components: sensors, actuators, motion, vision, localization, behaviors and wireless 
communication. The latter is used to share information with other robots through the game 
controller responsible of informing all robots of the state of the game. 

6 m 

4 m 
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A typical four-legged system architecture shown in Figure 2 consists of the following modules: 
• Sensors. Primary sensors include a color camera and feedback from motors. The raw 

camera image is passed to a vision module segmenting objects of interest. Other 
sensors are used to obtain complementary information on the robot such as joints. 

• Actuators. The main robot actuators are head and leg motor controlling joints for 
walking and head turns. 

• Motion. The motion module is responsible for robot movements, such as walk, run, 
kick, pass, turn, move the head, etc. It receives commands from the behavior module 
with output sent to the corresponding actuators representing individual leg and head 
joint motor control. Robot motions are adapted according to team roles, for example, 
the goalie has different defensive poses in contrast to other team players. This also 
applies to different head and ball kicks.  

• Vision. The vision module receives a raw image from the camera segmenting objects 
according to color and shape. Objects recognized include ball, robots, cylinder 
landmarks and goals. More details are given in Section 3.1. 

• Localization. The localization module uses visual information to provide a reliable 
localization of the robot in the field. Colored cylinders, goals and white lines are used 
for this task. More details are given in Section 3.2. 

• Behaviors. The behaviors module makes decisions affecting individual robots and team 
strategies. It takes input from sensors and localization system to generate commands sent 
to motion and actuators modules. Further details are given in Section 3.3. 

• Wireless Communication. Robots include wireless communication to share 
information and commands with the external Game Controller or among robots. 
Data transmitted includes information such as player id, location of ball if seen, 
distance to the ball, robot position and ball position. 

3.1 Vision 
The vision module segments incoming camera images to recognize objects of interest from 
color and shape information. The vision architecture consists of the following stages: image 
capture, color calibration, segmentation, recognition and identification, as shown in Figure 
3. The vision architecture is common to many leagues in RoboCup, including the Mid-size 
league havign a global viewing camera and the Small-size league having an aereal camera 
(Martínez-Gómez & Weitzenfeld, 2004). In order to recognize and identify objects of interest in 
the image appropriate calibration needs to be performed to adapt to existing lighting conditions. 
We take initial photos of objects of interest and then select colors that we want to distinguish 
during segmentation. Figure 4 shows sample output of the segmentation calibration process. 
Images on the first and third columns are segmented to images in the second and fourth 
columns, respectively. Colors of interest are orange, green, yellow, pink and blue. All other colors 
are left as black in the images. 
 

 

Fig. 3. Vision Architecture. The vision module includes the following stages: image capture, 
color calibration, segmentation, recognition and identification. Output is in the form of 
recognized and identified objects. 

IMAGE 
CAPTURE

SEGMENTATION

COLOR 
CALIBRATION 

RECOGNITION IDENTIFICATION
Object 

Recognition & 
Identification 
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Fig. 4. Color segmentation. Images on the first and third columns are segmented to images 
in the second and fourth columns, respectively. Colors of interest are orange, green, yellow, 
pink and blue. All other colors are left as black in these images. 

After color regions are obtained, objects are recognized according to certain requirements to allow 
some confidence that the region being analyzed corresponds to an object of interest. For example, 
the ball must have green in some adjacent area with a similar criteria used to identify goals. The 
recognition of landmarks is a little more complex, nevertheless after more elaborated comparison 
landmarks are identified. Finally, recognized objects are identified depending on color 
combinations, for example, preestablished landmark “1” and landmark “2”.  

3.2 Localization 
To be successful robots need to localize in the field in an efficient and reliable way. 
Localization includes computing distances to known objects or landmarks, use of a 
triangulation algorithm to compute exact positioning, calculate robot orientation angles, and 
correct any resulting positioning errors, as described in Figure 5. 
Distances to Objects. The first step in localizing is to obtain distances from the robot to identified 
objects in the field. The more objects the robot can distinguish in the field the more reliable the 
computation. After making several experiments, we developed a simple algorithm that computes 
distances to objects by using a cubic mathematical relationship that takes as parameter the viewed 
object area and returns the distance to that object. The distance range tested was from 15 
centimeters to 4 meters. Closer than 15 cm or beyond 4 m it becomes harder to compute distances 
or distinguish between objects and noise, respectively.  

 
Fig. 5. Localization system block diagram. Localization involves computing distances to 
known objects in the field, triangulations based on landmarks and goals, angles to 
landmarks and goals, and computing error corrections to obtain reliable positioning. 
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Triangulation Algorithm. Following distance computation we apply a triangulation method 
from two marks to obtain the position of the robot in the field. Triangulation results in a very 
precise positioning of the robot in a two dimensions plane. If a robot sees one landmark and can 
calculate the distance to this landmark, the robot could be anywhere in a circumference with 
origin in the landmark, and radio equal to the distance calculated. By recognizing two landmarks 
the robot can compute its location from the intersection of two circumferences, as shown in 
Figure 6. Note that the robot could be in one of two intersection points in the circumferences, 
although one of these two points will fall outside the field of play. 

 
Fig. 6. Triangulation from two landmarks. By calculating distance to two different 
landmarks the robot can compute its position in the field. 

Angle Calculation. Once robot position is computed orientation is calculated to complete 
localization. Two vectors are calculated with origin at the robot pointing to the marks used 
as references for triangulation, as shown in Figure 7. Orientation calculation is usually more 
precise than positioning while also being more important to the game. Kicking the ball in 
the right direction is quite critical to winning. 

 
Fig. 7. Robot orientation. By computing vectors to marks (or goals) the robot may calculate 
its orientation in the field. 

Correction Algorithm. Robot positioning resulting from the localization algorithm usually results 
in inconsistencies between contiguous frames. To stabilize localization computation correction 
algorithms are necessary starting by smoothing historic measurements. To reduce variation of the 
output signal for the triangulation algorithm the following filter function shown in equation 1 can 
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be used where s(x) represents the updated position value as a function of previously computed x 
position values taking an average over n historic samples.  
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Figure 8 shows sample output from this filter correction. Original signals can produce 
variations of 10% in contiguous positions. By applying the filter this variation can be 
reduced to less than 3%, see Martínez-Gómez & Weitzenfeld (2005) for more details.  

 
Fig. 8. Correction Algorithm. Abrupt variations in positioning are caused by resolution related 
errors. To reduce this variability data can be smoothed by averaging with a historic filter. 

In addition to variances in positioning, the large size of the robots, around 20cm in length and 
10cm in width, requires a positioning precision of at least half the size of the robot. Furthermore, 
positioning in the field like in human soccer does not require exact knowledge of location as 
opposed to orientation. For this purpose localization by field regions can be more effective than 
knowing exact positioning. In Figure 9 the complete field is divided into twelve similarly sized 
areas to provide rough localization in the field.  During experimentation, localization in some 
regions resulted in larger errors due to changes in illumination. 

 
Fig. 9. Localization by regions. While orientation in the field is critical in moving and kicking 
the ball in the right direction, positioning does not require very high precision as in human 
soccer. Knowing positioning in relation to certain regions in the field provides enough 
information for play as shown in the diagram with a 3 by 4 field subdivision. 
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Regions can be defined in a heterogeneous way as well, e.g. having a specific local goal area 
while dividing middle field areas with coarser granularity than areas closer to the goals. 
Also, probabilistic methods not described in the chapter are usually used to localize when 
occlusions occur during a game. 

3.3 Behaviors 
The behavior module receives input information from sensors, vision and localization in 
order to compute individual and team behavior. Output from behavior decisions are sent to 
motion and actuators. In defining team robot behaviors, we specify different player roles, 
e.g. Goalkeeper, Attacker, and Defender. Each role behavior depends on ball position, state 
of game and overall team strategy. 
Goalkeeper basic behaviors are described by a state machine as shown in Figure 10:  

• Initial Position. Initial posture that the robot takes when it is turned on. Depending 
on its ability to localize robot may autonomously move to its initial position. 

• Search Ball. An important aspect of the game is searching for the ball around the 
field. If communication is enabled among robots, searching may be made more 
efficient by doing this task as a team with individual robots informing others where 
the ball is when found. 

• Search Goal. The ultimate objective of the goalkeeper is to defend its own goal. To 
achieve this it must always know its relative position. Sometimes the goalkeeper gets 
away from its area for a special defensive move and needs to return to the goal by 
searching around. 

• Reach Ball. After searching and finding the ball, the robot can walk towards it in 
order to take possession or simply kick the ball. Additional plays include reaching 
the ball up to certain distance in order to defend the goal from a possible ball kick by 
an opponent.  

• Reach Goal. After searching and finding the goal, the goalkeeper moves towards it 
to relocate on the goal line in the middle of the goal. 

• Kick ball. The goalkeeper can kick the ball in different ways to get it out of its own goal. 

 
Fig. 10. Goalkeeper Basic Behavior. The basic individual goalkeeper state machine includes 
activities starting from an initial position followed by search ball, search goal, reach ball, 
reach goal and kick ball. 
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Attacker and Defender basic common individual behaviors are described by a state 
machine as shown in Figure 11: 

• Initial Position. Initial posture that the robot takes when it is turned on. Depending 
on the ability to localize robot may autonomously move to their initial positions. 

• Search Ball. An important aspect of the game is searching for the ball around the field. If 
communication is enabled among robots, searching may be made more efficient by doing 
this task as a team with individual robots informing others where the ball is when found. 

• Reach Ball. After searching and finding the ball, the robot can walk towards it in 
order to move with it or kick the ball. Additional plays include turning with the ball 
and reaching the ball with different orientations. 

• Explore Field. Exploring the field is a more extended search than the search ball 
behavior in that it can walk throughout the arena not only looking for the ball but 
also searching for goals and landmarks. 

• Kick Ball. The robot can kick the ball in different ways such as to score a goal in the 
case of an attacker or to simply kick it forwards in the case of a defender. 

 
Fig. 11. Attacker and Defender Basic Behavior. The basic individual attacker and defender 
state machine includes common activities starting from an initial position followed by 
search ball, explore field, reach ball, and kick ball. 

4. Human-Robot Coaching in RoboCup Soccer 

While no human intervention is allowed during a RoboCup Four-Legged soccer league 
game, in the future humans could play a decisive role analogous to real soccer coaches. 
Coaches could be able to adjust in real-time their team playing strategies according to the 
state of the game. RoboCup already incorporates a simulated coaching league where 
coaching agents can learn during a game and then advice virtual soccer agents on how to 
optimize their behavior accordingly, see (Riley et al., 2002; Kaminka et al. 2002). In this 
section we describe our most recent work in human-robot interaction with Sony AIBOs. 

4.1 Human-Robot Architecture 
The human-robot interaction architecture is illustrated in Figure 12. The spoken language 
interface is provided by the CSLU-RAD framework while communication to the Sony AIBO 
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robots is done in a wireless fashion via the URBI platform (URBI, 2006). The URBI system 
provides a high level interface for remotely controlling the AIBO. Via this interface, the 
AIBO can be commanded to perform different actions as well as be interrogated with 
respect to various internal state variables. Additionally, URBI provides a vision and motion 
library where higher level perceptions and movements can be specified. (The AIBO 
architecture shown at the right hand side of Figure 12 describes the robot processing 
modules previously shown in Figure 2.) 

 
Fig. 12. CSLU-URBI-AIBO system architecture. The left portion of the diagram shows a 
Human Coach interacting with the CSLU RAD spoken language system that in turns 
interacts via wireless communication with the URBI interface at the AIBO. The diagram to 
the right shows the internal AIBO processing modules: Sensors, Actuators, Vision, Motion, 
Localization, Behaviors and Wireless Communication. 

4.2 Command, Interrogate and Teach Dialogs 
In order to demonstrate the human coaching model we have developed and experimented 
with simple dialogs that let the user: (1) command the robot to perform certain actions 
including perception related actions; (2) interrogate the robot with specific questions about its 
state and corresponding perceptions; and (3) teach the robot to link a sequence of lower level 
behaviors into higher level ones.  
Command. We define a set of action-only and action perception commands. Action-only 
commands i.e. no perception, include: Stop, Move, Turn, Turn Head, and Kick Ball. Depending 
on the commands, these may include arguments such as magnitude of rotation, and 
movement in degrees or steps, etc. For example a rotation command would be Turn 180 
degrees and a movement command would be Move 4 steps. It should be noted that at this 
level commands such as Kick Ball would not use any perceptual information, i.e. the 
resulting kick will depend on the current robot orientation. We also define a set of action-
perception commands requiring the full perception-action cycle, i.e. the action to be 
performed depends on the current robot perceptions. These commands include: Kick Ball 
with a specified direction; Reach Ball moving to a position behind the ball pointing towards 
the goal; Initial Position during game initialization requiring localization in the field; Pass the 
Ball to gently kick the ball to another team robot; Move to Location specifying a position in the 
field where to move; Search Ball resulting in robot looking for a ball nearby; Explore Field 
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resulting in a more extensive search for the ball; Defend Goal resulting in all robots moving 
close to the goal requiring knowledge of the robot location in the field; Defend Kick in trying 
to block a kick from the other team, requiring knowledge of ball location, and Attack Goal 
similar although opposite in behavior to defending goal.  
Interrogation. We define state and perception interrogation commands returning 
information on current actions or behaviors. State interrogations include for example: What 
was your last action, e.g. kicked the ball; Why did you take the last action, e.g., I saw the ball, so I 
moved towards it; What is your current behavior, e.g. I’m searching for the ball; What is your 
current role in the game, e.g. I am the goalie. Perception interrogations include for example: 
Do you see the ball returning e.g. I do, I don’t; What is your distance to the ball, returning e.g. 30 
centimeters; What is your current orientation, returning e.g. 45 degrees (in relation to field 
coordinate system); What is your current position, returning e.g. I am in region 9; What is the 
position of object X returning an estimate of its position. 
We have already implemented in the AIBO a number of these commands and 
interrogations.  A sample command and interrogation dialog is shown in Table 2 
corresponding to “Go get the ball and walk it into the goal”.  

Robot: Welcome to the LAFMI Human-Robot Interaction Demonstration. I am 
the AIBO… 

Human: Do you see the ball? 
Robot: Looking for the ball…I don’t see anything. 
Human: Turn right.  
Robot: Turning right. (Turns right) 
Human: Do you see the ball? 
Robot: Looking for the ball… I see the ball. 
Human: Get the ball. 
Robot: Going for the ball. (Starts walking to the ball). 
Human: Stop. Turn right. 
Robot: Turning right. (Turns right but misses the ball) 
Human: Back up. 
Robot: Back up. (Backs up) 
Human: Turn left. 
Robot: Turning left. (Turns left but misses the ball) 
Human: Turn right. 
Robot: Turning right. (Turns right and catches the ball) 
Human: Walk. 
Robot: Walking. (Starts walking, pushing the ball towards the goal) 
Human: Walk. 
Robot: Walking. (Keeps walking, pushing the ball and “scoring”) 

Table 2. Sample human-robot dialog. The dialog shows sample spoken interaction with the 
human for commanding and interrogating the robot. 

Teach. The ultimate goal in human-robot coaching in the context of soccer is being able to 
positively affect the team performance during a game. While part of this interaction can 
eventually be carried out by agent coaches inside the robot, it is our goal to define the basic 
capabilities and communication interactions that human coaches should have. For example, 
being able to transmit strategy knowledge in the form “if blocked pass the ball to player behind”. 

www.intechopen.com



Cognitive Robotics: Robot Soccer Coaching using Spoken Language 265 

Such a command will modify an internal robot database with “if possess(ball) and goal(blocked) 
then pass(ball)”. 
Previous systems allowed the user to use spoken language to teach the AIBO robot the 
association between a name and a single behavior in the robot’s repertoire (Dominey et al. 
2005).  More recently, we have extended this so that the system can associate a sequence of 
commands with a new name in a macro-like capability.  The limitations of this approach 
result from the fact that all of the motor events in the sequence are self contained events 
whose terminations are not directly linked to perceptual states of the system.  We can thus 
teach the robot to walk to the ball and stop, but if we then test the system with different 
initial conditions the system will mechanically reproduced the exact motor sequence, and 
thus fail to generalize to the new conditions. 
Nicolescu & Mataric (2001, 2003) developed a method for accommodating these problems 
with a formalized representation of the relations between pre-conditions and post-
conditions of different behaviors.  In this manner, after the robot has performed a human 
guided action, such as following the human through an obstacle course and then picking up 
an object, the system will represent the time ordered list of intervals during which each of 
the component behaviors is active.  From this list, the pre- and post-condition relations 
between the successive behaviors can be extracted, generalized over multiple training trials, 
and finally used by the robot to autonomously execute the acquired behavior.   
Boucher and Dominey (2006) builds upon these approaches in several important ways. First 
they enrich the set of sensory and motor primitives that are available to be used in defining 
new behaviors. Second, they enrich the human-robot interaction domain via spoken 
language and thus allow for guiding the training demonstrations with spoken language 
commands, as well as naming multiple newly acquired behaviors in an ever increasing 
repertoire.  Third, they ensure real-time processing for both the parsing of the continuous 
valued sensor readings into discrete parameterized form, as well as the generalization of the 
most recent history record with the previously generalized sequence.  This ensures that the 
demonstration, test, correction cycle takes places in a smooth manner with no off-line 
processing required. 
Here is a simple example scenario with the AIBO.  In this case the user will teach the robot a 
form of collision avoidance through demonstration.  The user initiates the learning by 
commanding the robot with a spoken command “turn around” that does not correspond to 
a primitive command nor to a previously learned command.  The robot thus has no 
knowledge of what to do, and awaits further instructions.  The user commands the robot to 
“march forward” and the robot starts walking.  The user sees that the robot is approaching a 
wall, and tells the robot to stop.  He then tells the robot to turn right.  Behind and to the 
right of the robot is the red ball.  When the robot has turned away from the wall and is 
facing the ball the user tells it to stop turning, and then tells it that the learned behavior 
demonstration is over. 
Now let us consider the demonstration in terms of the commands that were issued by the user, 
and executed by the robot, and the preconditions that could subsequently be used to trigger 
these commands. The robot was commanded to “turn around.”  Because it had no representation 
for this action, it awaited further commands. The robot was then commanded to walk.  Before it 
collided with the wall the robot was commanded to stop walking.  It was then commanded to 
turn right, and to stop when it was in front of the red ball.  Now consider the perceptual 
conditions that preceded each of these commands, which could be used in a future automatic 
execution phase to sequentially trigger the successive commands.  The pertinent precondition to 
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start walking was that the command to “turn around” had been issued.  The pertinent 
precondition to stop walking was the detection of an obstacle in the “near” range by the distance 
sensor in the robots face.  The pertinent preconditions for subsequently turning right are that the 
robot is near something, and that it has stopped walking.   

The goal then is for the system to encode the temporal sequence of all relations (which 
include user commands and perception values) in a demonstration run, and then to 
determine what are the pertinent preconditions for each commanded action relation.  
Likewise, it may be the case that perceptual relations were observed during the 
demonstration that were not pertinent to the behavior that the human intended to teach the 
robot.  The system must thus also be able to identify such “distractor” perceptions that 
occurred in a demonstration, and to eliminate these relations from the generalized 
representation of the behavioral sequence. 

5. Conclusions 

The stated objective of the current research is to develop a generalized approach for human-
machine interaction via spoken language that exploits recent developments in cognitive science - 
particularly notions of grammatical constructions as form-meaning mappings in language, and 
notions of shared intentions as distributed plans for interaction and collaboration. In order to do 
this, we tested human-robot interaction initially with the Event Perceiver system and later on 
with the Sony AIBOs under soccer related behaviors. We have presented the system architecture 
for the Eagle Knights Four-Legged team as a testbed for this work. 
With respect to social cognition, shared intentions represent distributed plans in which two 
or more collaborators have a common representation of an action plan in which each plays 
specific roles with specific responsibilities with the aim of achieving some common goal. In 
the current study, the common goals were well defined in advance (e.g. teaching the robots 
new relations or new behaviors), and so the shared intentions could be built into the dialog 
management system. We plan to continue this work by experimenting with more evolved 
behaviors in testing full coaching capabilities in the soccer scenario. Videos for several 
human-robot dialogs, including the previous one, can be found in Dominey & Weitzenfeld 
(2006). 
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