
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322385959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 331

  
 

Stabilization of Fuzzy Takagi - Sugeno 
Descriptor Models; Application to a Double 

Inverted Pendulum 
 

Thierry Marie Guerra, Sebastien Delprat & Salim Labiod 
 
 
 

1. Introduction 
 

Takagi-Sugeno (TS) fuzzy models (Takagi & Sugeno 1985) have been widely used in the 
context of control and observation of nonlinear models, see for example (Tanaka & Wang 
2001) and the references therein. They consist in a collection of linear models blended 
together with nonlinear membership functions. Their capability to represent exactly in a 
compact set of the state variables a nonlinear model makes them attractive for control and 
observation (Taniguchi et al. 2001). The stability and the stabilization of such models 
(including performances and/or robustness considerations) are mainly investigated 
through Lyapunov functions (Chen et al. 2000, Joh et al. 1997, Tanaka et al. 1996, Tanaka et 
al. 1998, Tong et al. 2002, Tuan et al. 2001, Zhao 1995). These ones are most of the time 
quadratic ones, nevertheless interesting results can also be found using piecewise 
quadratic functions (Feng 2003, Johansson et al. 1999) or non quadratic Lyapunov 
functions (Blanco et al. 2001, Guerra & Vermeiren 2004, Tanaka et al. 2001). At last, TS 
fuzzy descriptors have been studied for the stabilization and the observation points of 
view and some results are given in (Guerra et al. 2004, Tanaka & Wang 2001, Taniguchi et 
al. 2000). Most of the time an interesting way to solve the different problems addressed is 
to write the obtained conditions in a LMI form (Linear Matrix Inequalities) (Boyd et al. 
1994). 
There is a systematic way, called the sector nonlinearity approach (Tanaka & Wang 2001) 
to go from a nonlinear model affine in the control to a Takagi Sugeno fuzzy model. The 
number of linear models r  of the nonlinear TS fuzzy model grows exponentially, i.e. in 
2nl , with nl  the number of nonlinearities to be treated (Tanaka & Wang 2001, Taniguchi et 
al. 2001). In the stabilization framework, the conditions of stabilization will only depend 
on the linear models of the TS models, i.e. the nonlinear membership functions blending 
the linear models together are not used. Of course, this remains in conservative results. Let 
us also point out that the number of conditions to be solved in the LMI problems is 
directly related to the number r  of linear models of the TS fuzzy model. We can 
emphasize that the more r  is big, the more the results obtained will be conservative. Thus 
it is of high interest to obtain a TS representation of nonlinear models with a reduced 
number of rules. Another remark can be formulated. For some models, mechanical ones 
for example, a descriptor form can be interesting to keep a TS model structure closed to 
the nonlinear one. In some cases, we will show that it allows reducing the number of rules 
and therefore it can improve, in an interesting way, the results. Nevertheless using this 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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specific descriptor structure, it is then necessary to derive conditions of stabilization. Some 
results can be found in (Tanaka & Wang 2001, Taniguchi et al. 2000). Hence, this work 
focuses on continuous TS fuzzy models using a descriptor form and the stabilization 
results will be studied through a quadratic Lyapunov function. 
The chapter is organized as follows. The first part gives the notations used and the 
material necessary to derive the results. It includes some specific matrix properties and 
basic properties of TS models. The second part presents the statement of the problem 
using TS models in a descriptor form and an example to show their interest. The third part 
gives the main result obtained for stabilization. The goal is to use matrix properties in 
order to reduce the conservatism of the basic conditions. A first academic example is given 
to show the different results. At last the application of this methodology to the double-
inverted pendulum is presented. 
 

2. Notations and Material 
 

Let us consider positive scalar functions ( ) 0ih ⋅ ≥ , { }1, ,i r∈ …  and ( ) 0kv ⋅ ≥  { }1, ,k e∈ …  
satisfying the convex sum property: 

                                                         ( )
1

1
r

i
i

h
=

⋅ =∑ , ( )
1

1
e

k
k

v
=

⋅ =∑  (1) 

With such functions and some matrices of appropriate dimensions iY  we define the 

following notations: ( )( )
1

r

h i i
i

Y h z t Y
=

=∑ , ( )( ) ( )( )
1 1

r r

hh i j ij
i j

Y h z t h z t Y
= =

=∑∑ , ( )( )
1

e

v k k
k

Y v z t Y
=

=∑ , 

                                           ( )( ) ( )( )
1 1

e r

vh k i ik
k i

Y v z t h z t Y
= =

=∑∑ , and so on 

As usual, a star ( )*  in a symmetric matrix indicates a transpose quantity. Congruence of a 

symmetric definite positive matrix 0TP P= >  with a full rank matrix Y  corresponds to the 

following quantity: 0TYPY > . 
We will also use the following lemma. It is a slightly modified version of a property given 
in (Peaucelle et al. 2000) and also used in the context of Takagi-Sugeno fuzzy models 
stabilization (Guerra et al. 2003). 
Lemma 1: 

Let P , Y , Γ , Φ  and Ψ  be matrices of appropriate dimensions the two following 
properties are equivalent. 

                                                        0T TP P YΓ +Γ + <  (2) 

    It exists Φ  and Ψ  such that: ( )*
0

T T

T T T

Y

P

⎡ ⎤Φ Γ +ΓΦ +
<⎢ ⎥−Φ +Ψ Γ −Ψ −Ψ⎣ ⎦

     (3) 

Proof: 

(3) implies (2): the result is obtained using the congruence with [ ]I Γ . 

(2) implies (3): As 0T TP P YΓ +Γ + < , it always exists an enough small 2ε  such that: 

                                                    
2

0
2

T T TP P Y
ε

Γ +Γ + + Γ Γ <  (4) 

Using the Schur’s complement, (4) is equivalent to: 

                                                    
2

2 2
0

2

T T TP P Y

I

ε
ε ε

⎡ ⎤Γ + Γ + Γ
<⎢ ⎥Γ −⎣ ⎦

 (5) 

If we choose PΦ =  and 2IεΨ = , then the first inequality of (2) holds. 
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Remark 1: 
If Φ  or Ψ  are under constraint, the equivalence is not more true. 
Most of the LMI problems encountered for TS stabilization can be resumed in the 

following way. For a given k , with k
ijϒ , { }, 1, ,i j r∈ …  expressions being independent from 

time, find the best conditions, i.e. in the sense of reducing the conservatism, to the 
problem: 

                                           ( )( ) ( )( )( )
1 1

0
r r

k k
i j ij ji

i j

h z t h z t
= =

ϒ + ϒ <∑∑  (6) 

Several results are available, going from the very simple one (Tanaka et al. 1998):  

0k
iiϒ ≤ , 0k k

ij jiϒ + ϒ ≤ , { }, 1, ,i j r∈ … , j i>  (7) 
to very specific matrix transformations (Kim & Lee 2000, Teixeira et al. 2003, Liu & Zhang 

2003). Let us point out that whatever the relaxations are they can be used on the k
ijϒ . We 

will just give the one of (Liu & Zhang 2003) that seems to be a good compromise between 
complexity and number of variables involved in the LMI problem. The work presented in 
(Teixeira et al, 2003) can also be quoted, but it implies a serious increase of the number of 
variables involved in the problem. 
 
Lemma 2 (Liu & Zhang 2003): 

With k
ijϒ , { }, 1, ,i j r∈ …  matrices of appropriate dimension, (6) holds if there exist matrices 

0k
iiQ >  and ( )Tk k

ij jiQ Q= , { }, 1, ,i j r∈ …  j i>  such that the following conditions are satisfied: 

                                                             0k k
ii iiQϒ + <  (8) 

                                                        0k k k k
ij ij ij jiQ Qϒ + ϒ + + ≤  (9) 

                                             

( ) ( )

( )
( )

11

12 22

1 1

* *

0
*

k

k k

k

k k k
r rrr r

Q

Q Q
Q

Q Q Q−

⎡ ⎤
⎢ ⎥
⎢ ⎥= >⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B D
…

 (10) 
The models under consideration in this chapter are the so-called Takagi-Sugeno’s ones 
(Takagi & Sugeno 1985). They correspond to linear models blended with nonlinear 
functions (12). They can represent exactly a large class of affine nonlinear models in 
compact region of the state space (Tanaka & Wang 2001, Taniguchi et al. 2001). From a 

nonlinear model with ( )x t  the state, ( )u t the input vector and ( )y t  the output vector: 

                                                 
( ) ( )( ) ( )( ) ( )
( ) ( )( )

x t f x t g x t u t

y t h x t

⎧ = +⎪
⎨

=⎪⎩

$
 (11) 

there exists a systematic way called the sector nonlinearity approach (Tanaka & Wang 
2001) to put it into a TS form (see example 1 hereinafter): 

                                     
( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

1

1

r

i i i z z
i

r

i i z
i

x t h z t A x t B u t A x t B u t

y t h z t C x t C x t

=

=

⎧ = + = +⎪⎪
⎨
⎪ = =
⎪⎩

∑

∑

$
 (12) 

with r  the number of linear models, ( )z t  a vector which depends linearly or not on the 

state, ( )( ) 0ih z t ≥ , { }1, ,i r∈ …  nonlinear functions verifying the convex sum property (1). 



 334

The number r  of linear models grows exponentially according to the number of 
nonlinearities to be treated in the model (11) (Tanaka et al. 1998). Note also that the TS 
representation of (11) is not unique (Taniguchi et al. 2001). 
In order to stabilize this kind of models, classically the control law used is the Parallel 
Distributed Compensation (PDC) (Wang et al. 1996). The expression of this control law is 
given by: 

                                            ( ) ( )( ) ( ) ( )
1

r

i i z
i

u t h z t F x t F x t
=

= − = −∑  (13) 

Basic results of stabilization of TS models with a PDC control law can be found in (Wang 
et al. 1996).  
At last looking at the problem (6), the results do not depend on the nonlinear functions 

( )( )ih z t  and then can lead to a strong conservatism. Thus it is of high interest to find new 

ways to reduce this conservatism. One way can be to use other Lyapunov functions (Feng 
2003, Guerra & Vermeiren 2004, Johansson et al. 1999). The way explored in this chapter is 
to use a descriptor form of TS fuzzy models. 
 

3. Statement of the Problem 
 

Let us consider a fuzzy descriptor model as (Taniguchi & al. 2001): 

                                ( )( ) ( ) ( )( ) ( ) ( )( )
1 1

e r

k k i i i
k i

v z t E x t h z t A x t B u t
= =

= +∑ ∑$ , or: 

                                                      
( ) ( ) ( )

( ) ( )
v h h

h

E x t A x t B u t

y t C x t

= +⎧⎪
⎨

=⎪⎩

$
 (14) 

In the following we suppose that the problem is always well formulated, hypothesis 1. 
Hypothesis 1: 

                                               For all ( )z t , ( )( )
1

0
e

k k
k

v z t E
=

≠∑  (15) 

Defining ( ) ( ) ( )* ,
TT Tx t x t x t⎡ ⎤= ⎣ ⎦$ , the system (14) can be written as: 

                                                     
( ) ( ) ( )

( ) ( )

* * * *

* *

hv h

h

E x t A x t B u t

y t C x t

⎧ = +⎪
⎨

=⎪⎩

$
 (16) 

where:  

                                * 0

0 0

I
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, * 0
ik

i k

I
A

A E

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, * 0
i

i

B
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, [ ]* 0i iC C= . 

Consider a modified PDC control law (Taniguchi et al. 2000): 

                                           ( ) ( )( ) ( )( ) ( )
1 1

r e

i k ik
i k

u t h z t v z t F x t
= =

= −∑∑  (17) 

then, introducing (17) in (16), with [ ]* 0hv hvF F=   leads to: 

                                                     
( ) ( ) ( )

( ) ( )

* * * * *

* *

hv h hv

h

E x t A B F x t

y t C x t

⎧ = −⎪
⎨

=⎪⎩

$
 (18) 

According to the work of (Taniguchi & al. 2001) the following theorem conditions ensure 
the fuzzy descriptor to be quadratically stable. 
Theorem 1: 
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The fuzzy descriptor model (18) is quadratically stable if there exists a common matrix X  
such that: 

                                                         * * 0TE X X E= ≥  (19) 
                                           ( ) ( )* * * * * * 0

T T
hv h hv hv h hvA B F X X A B F− + − <  (20) 

Proof: 
It is straightforward considering the following Lyapunov candidate 

function: ( )( ) ( ) ( )* * * *T TV x t x t E Xx t= . 

   
The goal is now to propose LMI conditions for ensuring to find X  and the gains ikF . Let 

us define: 1 2

3 4

X X
X

X X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, condition (19) implies: 1 1 0TX X= ≥  and 2 0X = . Then condition 

(20) can be written as: 

                            1 1 3

3 4 4

0 00
0

0

T T T T
h hv h

T T
h h hv vv

X IA F B X X

X X A B F EI E X

⎡ ⎤ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤
+ <⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −− ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

 (21) 

With 4X  non-singular, we have: 
1

11 1
1 1 1

3 44 3 1 4

00 PX
X

P PX X X X

−
−

− − −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

, and after congruence 

with TX −  we obtain: 

                              11 3

3 44

0 00
0

0

T T TT
h hv h

TT
h h hv vv

I PA F BP P

A B F E P PI EP

⎡ ⎤⎡ ⎤ − ⎡ ⎤ ⎡ ⎤
+ <⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −− ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (22) 

Let us rewrite (22) as: 

                                          ( )3 3

4 1 1 3 4 4

*
0

T

T T T
h h hv v v v

P P

P A P B F P E P P E E P

⎡ ⎤+
<⎢ ⎥+ − − − −⎣ ⎦

 (23) 

Let us define with 1ik ikM F P= : 

                                    
( )3 3

4 1 3 4 4

*T
k
ij T T T

i i jk k k k

P P

P A P B M E P P E E P

⎡ ⎤+
ϒ = ⎢ ⎥+ − − − −⎢ ⎥⎣ ⎦

 (24) 

The following theorem gives the result. 
 
Theorem 2: 

Let us consider TS the fuzzy descriptor model (18), the k
ijϒ  defined in (24). The TS fuzzy 

descriptor with control law (17) is quadratically stable if there exists matrices: 1 1 0TP P= > , 

3P , 4P  regular, ikM , such that for each { }1, ,k e∈ …  and { }, 1, ,i j r∈ … , j i>  the conditions 

given equation (7) hold. Moreover the gains of the control law are given by 1
1ik ikF M P−= . 

Remark 2: 
As stated previously, any usual relaxation can be used. For example with the one 
presented before (Liu & Zhang 2003) the result will be: the TS fuzzy descriptor with 

control law (17) is quadratically stable if there exists matrices: 1 1 0TP P= > , 3P , 4P  regular, 

ikM , 0k
iiQ >  and ( )Tk k

ij jiQ Q=  such that for each { }1, ,k e∈ …  and each { }, 1, ,i j r∈ … , j i>  
the conditions given equations (8), (9) and (10) hold. Note also that the number of LMI 

conditions obtained in both case (excepted  (10)) is: ( )1

2

r r
e

⋅ +
⋅ . 

Remark 3: 
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These first conditions include those presented in (Taniguchi et al. 2000).  
To show the interest of this descriptor form formulation we will study a first academic 
example. 
Example 1: 

Consider the following nonlinear model with ( ) ( )
( )

1

2

x t
x t

x t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 the state vector: 

                                          ( )( ) ( ) ( ) ( )( ) ( )1E x t x t A x t B x t u t⋅ = ⋅ + ⋅$ $  (25) 

with:            
1 1

A
2 6

− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, ( )( ) ( )

( )

2
1

2
2

1
1

1

1
1

1

x t
E x t

x t

⎡ ⎤−⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

 and ( )( ) ( )1
1

2 cos

1

x
B x t

⎡ + ⎤
= ⎢ ⎥
⎣ ⎦

. 

A TS descriptor in the form of (14) can be obtained. For that, note that there are two 

nonlinearities in ( )( )E x t  that leads to 4e =  and one in the right side of (25) which gives 

2r = . To explicit the way to obtain a TS form, we consider the function ( ) 2

1

1
f x

x
=

+
. For 

ℜ∈x  it is easy to check that ( )f x  belongs to [ ]0,1  then we can write: 

( ) ( ) ( )1 2.1 .0f x w x w x= +  with ( )1 2

1

1
w x

x
=

+
 and ( )

2

2 21

x
w x

x
=

+
. Note that the ( )iw x  1,2i =  

are positive functions and satisfy the convex sum property: ( ) ( )1 2 1w x w x+ = . Thus using 

that decomposition for ( )( )E x t  leads to four models, i.e.: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 1 1 2 2 2 1 1 2 2 1 2 2

1 1 1 1 0 1 0 1

1 1 1 0 1 1 1 0
E x w x w x w x w x w x w x w x w x

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. Of course, this way of taking into account the nonlinearities can be applied to all 
bounded nonlinearities (Morère 2001, Tanaka et al. 1998). Then the number of conditions 

involved in the LMI problem is ( )1
12

2

r r
e

⋅ +
⋅ = . 

The conditions of theorem 2 give a solution using MATLAB LMI toolbox, this ensures the 
stabilization of the TS descriptor. 
 

Considering now a classical TS model (12) for (25) will impose to invert ( )( )E x t , i.e.: 

                               ( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 1
1x t E x t A x t E x t B x t u t− −= ⋅ + ⋅$ $  (26) 

Note that ( )( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

2 22
1 21

2 2 2 2
1 2 1 21

2 2 2
1 2 2

2 2 2 2
1 2 1 2

1 11

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

x xx

x x x x
E x t

x x x

x x x x

−

⎡ ⎤+ ⋅ ++
⎢ ⎥

+ ⋅ + + + ⋅ + +⎢ ⎥
= ⎢ ⎥

− + ⋅ +⎢ ⎥+
⎢ ⎥

+ ⋅ + + + ⋅ + +⎢ ⎥⎣ ⎦

, then after some easy but 

fastidious calculus it can be shown that the four nonlinearities: 2
11 x+ , 2

21 x+ , 

( ) ( )2 2
1 2

1

1 1 1x x+ ⋅ + +
 and ( )12 cos x+  have to be treated to obtain a TS model. This will give a 

TS model with 42 16r = =  linear models and then a LMI problem with 136  LMI! For 



 337

example, considering a compact set of the state variable: ( ) ( ) [ ]1 2, 6,6x t x t ∈ −  no solution 

was obtained, even using the relaxation of (Liu & Zhang 2003). 
This example clearly shows that keeping the TS form close to the nonlinear model can be 
helpful. The goal of the next section is to try to reduce the conservatism of the conditions 
obtained in the theorem 2. 
 

4. Main Result 
 

With the change of variable: 1hv hvM F P= , let us rewrite (22) in the following way: 

                       11 3

3 44

0 00 0
0

00

T T TT
h hv h

TT
h vv h hv

I PA M BP P

A E P PI E B MP

⎡ ⎤ ⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎡ ⎤
+ + <⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (27) 

Let us consider the property described in lemma 1, equation (2), i.e. 0T TP P YΓ +Γ + < , 

with 1

3 4

0P
P

P P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
0

h v

I

A E

⎡ ⎤
Γ = ⎢ ⎥−⎣ ⎦

 and 
0

0

T T
hv h

h hv

M B
Y

B M

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

 then using the equivalence 

with (3) and 1 2

3 4

Φ Φ⎡ ⎤
Φ = ⎢ ⎥Φ Φ⎣ ⎦

, 1 2

3 4

Ψ Ψ⎡ ⎤
Ψ = ⎢ ⎥Ψ Ψ⎣ ⎦

, condition (22) is satisfied if: 

         

( ) ( ) ( )
( ) ( )

( )

3 3

4 1 3 2 2 4 4

1 1 3 2 1 3 1 1

3 3 4 4 4 2 4 3 2 4 4

* * *

* *
0

*

T

T T T T T
h v h hv h h v v

T T T T T T
h v

T T T T T T T
h v

A E B M A A E E

P A E

P P A E

⎡ ⎤Φ +Φ
⎢ ⎥Φ + Φ − Φ − Φ + Φ −Φ − Φ⎢ ⎥ <
⎢ ⎥−Φ +Ψ −Φ +Ψ −Ψ −Ψ −Ψ
⎢ ⎥

−Φ +Ψ −Φ +Ψ −Ψ −Ψ −Ψ −Ψ −Ψ⎢ ⎥⎣ ⎦

(28) 

Note that the expression (28), due to the term h hvB M  will be at least a triple sum: 

( ) ( ) ( )
1 1 1

r r e

i j k
i j k

h z h z v z
= = =
∑∑∑ . As Φ  and Ψ  are unspecified matrices, their degrees of freedom 

can be extended to this triple sum in the following way: 

                            ( )
( ) ( )

( ) ( )

1 2
1 11 2

13 4
3 4

1 1

e e

k ik k ikr
k khv hv

i r r
ihh hh

j ij j ij
j j

v z v z

h z

h z h z

= =

=

= =

⎡ ⎤Φ Φ⎢ ⎥Φ Φ⎡ ⎤ ⎢ ⎥Φ = =⎢ ⎥ ⎢ ⎥Φ Φ⎣ ⎦ Φ Φ⎢ ⎥
⎣ ⎦

∑ ∑
∑

∑ ∑
 (29) 

                           ( )
( ) ( )

( ) ( )

1 2
1 11 2

13 4
3 4

1 1

e e

k ik k ikr
k khv hv

i r r
ihh hh

j ij j ij
j j

v z v z

h z

h z h z

= =

=

= =

⎡ ⎤Ψ Ψ⎢ ⎥Ψ Ψ⎡ ⎤ ⎢ ⎥Ψ = =⎢ ⎥ ⎢ ⎥Ψ Ψ⎣ ⎦ Ψ Ψ⎢ ⎥
⎣ ⎦

∑ ∑
∑

∑ ∑
 (30) 

Remark 4: If the fuzzy descriptor shares the same input matrices, i.e. iB B= , { }1, ,i r∈ …  

then, of course, 1 2

3 4

v v

h h

Φ Φ⎡ ⎤
Φ = ⎢ ⎥Φ Φ⎣ ⎦

 and 1 2

3 4

v v

h h

Ψ Ψ⎡ ⎤
Ψ = ⎢ ⎥Ψ Ψ⎣ ⎦

. 

A new expression for (28) is then: 

        

( ) ( ) ( )

( ) ( )

( )

3 3

2 24 1

3 4 4

1 1 3 2 1 3 1 1

3 3 4 4 4 2 4 3 2 4 4

* * *

* *

*

T
hh hh

T TT
hv h h hvhh h hv

T T
v hh h hv hh v v hh

T T T T T T
hv hh hv hv h hh v hv hv

T T T T T T T
hh hh hh hv h hh v hh hv hh hh

A AA

E B M E E

P A E

P P A E

⎡ Φ +Φ
⎢

⎛ ⎞Φ + Φ⎛ ⎞Φ + Φ⎢
⎜ ⎟⎜ ⎟⎢ ⎜ ⎟− Φ − −Φ − Φ⎝ ⎠ ⎝ ⎠⎢

⎢ −Φ +Ψ −Φ +Ψ −Ψ −Ψ −Ψ
−Φ +Ψ −Φ +Ψ −Ψ −Ψ −Ψ −Ψ −Ψ⎣

0

⎤
⎥
⎥
⎥ <
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

 (31) 
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Let us define: 

 

( ) ( ) ( )
( ) ( )

( )

3 3

4 1 3 2 2 4 4

1 1 3 2 1 3 1 1

3 3 4 4 4 2 4 3 2 4 4

* * *

* *

*

T
ij ij

T T T T T
ij i jk k ij i jk jk i i jk ij k k ijk

ij T T T T T T
jk ij jk jk i ij k jk jk

T T T T T T T
ij ij ij jk i ij k ij jk ij ij

A E B M A A E E

P A E

P P A E

⎡ ⎤Φ +Φ
⎢ ⎥Φ + Φ − Φ − Φ + Φ −Φ − Φ⎢ ⎥ϒ = ⎢ ⎥−Φ +Ψ −Φ +Ψ −Ψ −Ψ −Ψ
⎢ ⎥

−Φ +Ψ −Φ +Ψ −Ψ −Ψ −Ψ −Ψ −Ψ⎢ ⎥⎣ ⎦

 (32) 

Theorem 3: 

Let us consider the fuzzy descriptor model (18) and the k
ijϒ  defined in (32). The fuzzy 

descriptor with control law (17) is quadratically stable if there exist matrices 1 1 0TP P= > , 

3P , 4P , ikM , Φ  and Ψ  defined in (29) and (30) such that for each { }1, ,k e∈ …  and 

{ }, 1, ,i j r∈ … , j i>  the conditions (7) (or considering also matrices 0k
iiQ >  and 

( )Tk k
ij jiQ Q= { }, 1, ,i j r∈ … , j i>  the conditions (8), (9) and (10)) are satisfied. Moreover the 

gains of the control law are given by: 1
1ik ikF M P−= . 

Lemma 3: 
For any fuzzy descriptor (14), if the conditions of theorem 2 are satisfied then those of 
theorem 3 are also satisfied. 
Proof: 

In the proof, the exponent ( )1  stands for the first approach (theorem 2), the exponent ( )2  
stands for the second one (theorem 3). Suppose that the conditions of theorem 2 are 

satisfied. Then there exists 1 1 0TP P= > , 3P , 4P , ikM , ( )1 0k
iiQ >  and ( ) ( )( )1 1

T
k k
ij jiQ Q=  satisfying  

(8), (9) and (10) (if no relaxation is chosen the proof follows the same path). We keep the 

same matrices 1 1 0TP P= > , 3P , 4P , ikM , for the theorem 3 and fix ( )
( )1

2

2

0

0

k
k ii
ii

Q
Q

Iε

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

( )
( )1

2 0

0 0

k
k ij
ij

Q
Q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. Then directly, ( )2 0kQ >  if and only if: 
( )1

2

0
0

0

k

n r

Q

Iε ×

⎡ ⎤
>⎢ ⎥

⎣ ⎦
 which is clearly 

satisfied as ( )1 0kQ > . Fix also: 1 1ik PΦ = , 2 0ikΦ = , 3 3ij PΦ = , 4 4ij PΦ = , 2 3 0ik ijΨ = Ψ = , 
2

1 4ik ij IεΨ = Ψ = , { }, 1, ,i j r∈ … , j i> , { }1, ,k e∈ … , (32) can be written as: 

 

                     ( )

( ) ( )
( ) ( )

3 3

2 1 3 4 4 4
2 2

2 2 2

* 0 *

* *

0 2 0

0 2

T

T T T
k i i jk k k k
ij T

i
T
k

P P

A P B M E P P E P P E

A I

I E I

ε ε
ε ε ε

⎡ ⎤+
⎢ ⎥− − + − −⎢ ⎥ϒ =
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 (33) 

 

or defining: 
0k

i
i k

I

A E

⎡ ⎤
Γ = ⎢ ⎥−⎣ ⎦

: ( )
( ) ( )

( )

1

2

2 2
2

*

2

k
ijk

Tij k
i nIε ε

⎡ ⎤ϒ
⎢ ⎥ϒ =
⎢ ⎥Γ −⎣ ⎦

 (34) 

 
Then: 

                                       ( ) ( )
( ) ( ) ( )
( )

1 1

2 2

2 2
2

*k k
ii iik k

Tii ii k
i n

Q
Q

Iε ε

⎡ ⎤ϒ +
⎢ ⎥ϒ + =
⎢ ⎥Γ −⎣ ⎦

 (35) 
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                    ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

1 1 1 1

2 2 2 2

2 2
2

*

4

k k k k
ij ji ij jik k k k

Tij ji ij ji k k
i j n

Q Q
Q Q

Iε ε

⎡ ⎤ϒ + ϒ + +
⎢ ⎥ϒ + ϒ + + =
⎢ ⎥Γ +Γ −⎣ ⎦

 (36) 

 
Applying Schur’s complement leads to: 
 

(35) ⇔  ( ) ( ) ( )1 1 2 0
Tk k k k

ii ii i iQ εϒ + + Γ Γ <  (37) 

(36) ⇔  ( ) ( ) ( ) ( ) ( )( )
2

1 1 1 1 0
4

Tk k k k k k k k
ij ji ij ji i j i jQ Q

ε
ϒ + ϒ + + + Γ +Γ Γ +Γ <  (38) 

 

As (8), (9) are verified for the theorem 2, then it always exists an enough small 2ε  such 
that (37) and (38) are satisfied. 
 
To show the interest of this new result we will study a second academic example. 
Example 2: 
This example is constructed in a way that theorem 2 conditions fail to obtain a solution. 

Consider the following nonlinear model in a descriptor form with ( ) ( )
( )

1

2

x t
x t

x t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 the state 

vector: 

                                    ( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 1E x t x t A x t x t B x t u t⋅ = ⋅ + ⋅$ $  (39) 
 
The different matrices are given by:  
 

( )( ) ( )( )
( )

1 1

1

28.7 45.2

sin
14.7 47.4 19.9

A x t x t

x t

−⎡ ⎤
⎢ ⎥

= ⎢ ⎥− − ⋅ −⎢ ⎥
⎣ ⎦

, ( )( ) ( ) ( )( )1 248.9 cos 41.8 33.5

0.1 20.7

x t x t
E x t

⎡ ⎤− − ⋅
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
  

 

and  ( )( )
( )( )

( )
1

1 1

sin
40

5

x t

B x t x t

⎡ ⎤
− ⋅⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 
All the nonlinearities being bounded, following the same path as presented for the 
example 1, we obtain the TS model in a descriptor form: 
 

                                                      
( ) ( ) ( )

( ) ( )
v h h

h

E x t A x t B u t

y t C x t

= +⎧⎪
⎨

=⎪⎩

$
 (40) 

 
 

With: 1

-28.7 45.2

-4.272 -19.9
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

28.7 45.2
A =

62.1 19.9

−⎡ ⎤
⎢ ⎥− −⎣ ⎦

, 1

8.8

5
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

-40

5
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

91.8 33.5
E =

0.1 20.7

⎡ ⎤
⎢ ⎥− −⎣ ⎦

 

and 2

8.2 33.5
E =

0.1 20.7

⎡ ⎤
⎢ ⎥− −⎣ ⎦

. Using theorem 3 conditions allows obtaining the following 

solution.  
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Cart

ϑ 

p 

Second pole 

First pole 

β 

Applied force: u(t)

0 

Matrices : 1

4.117 0.249

0.249 1.058
P

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 3

5.196 0.729

1.254 59.511
P

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 and 4

217.55 18.175

1966.3 1206.9
P

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, and 

for the gains: 

                                    
[ ] [ ]
[ ] [ ]

11 12

21 22

1.445 7.69 , 0.913 2.708

= 2.49 20.65 , 0.99 4.85

F F

F F

= − − = − −

− − = − −
 (41) 

 
The non linear model (39) and the obtained control law (17) with the gains (41) have been 
implemented using the MATLAB/SIMULINK software. An example of simulation is 

presented figure 1. Considering the initial condition vector ( ) [ ]0 5 5
T

x = − , the 

convergence of the state vector and the evolution of the control signal are presented figure 
1. 
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Figure 1. Stabilization of the non linear model (39) using control law (17) and initial conditions ( ) [ ]0 5 5

T
x = − . 

 

5. Application to a Double-Inverted Pendulum 
 

We consider the well-known double-inverted pendulum application. It is composed with 
a cart with two poles. Both of the poles are free in rotation around their axis as shown 

figure 2. The goal is to keep the angles ( )tθ  and ( )tβ  - respectively the angle between the 

first pole and the vertical and the second one and the vertical – around 0 and to ensure the 

tracking of the cart position ( )p t . The different variables useful and the values chosen for 

the model description are resumed table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Representation of a double-inverted pendulum on a cart 
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Notation value Description 

M  30 Kg  Mass of the cart 

1J  3 25 10 Kg m−⋅ ⋅  Inertia of the first pole 

1m  0.2 Kg  Mass of the first pole 

1l  10 cm  Half-length of the first pole 

1k  10.1 N s m−⋅ ⋅  First joint friction (viscous) 

2J  3 28 10 Kg m−⋅ ⋅  Inertia of the second pole 

2m  0.3 Kg  Mass of the second pole 

2l  15 cm  Half-length of the second pole 

2k  10.1 N s m−⋅ ⋅  Second joint friction (viscous) 

g  29.81 m s−⋅  Gravity 

f  11 m s−⋅  Friction 

( )u t   Force to apply on the cart 

( )tθ   Angle for the first pole 

( )tβ   Angle for the second pole 

( )p t   Position of the cart 

 
Table 1. Variables useful for the double-inverted pendulum 

 
According to the Euler Lagrange equations the following model can be obtained (Morère 
2001): 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 1 2 2

2 2
1 2 1 2 2

2 cos cos

2 sin sin

M m m p m m l m l

f p m m l m l u

θ θ β β

θ θ β β

+ + ⋅ + + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ =

− ⋅ + + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +

$$ $$$$
$ $$

 (42) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
1 2 1 1 1 2 1 1 2 1 2

2
2 1 2 1 2 1 1

2 cos 4 2 cos

2 sin 2 sin

m m l p m l m l J m l l

m l l m m g l k

θ θ θ β β

β θ β θ θ

+ ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ =

− ⋅ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ ⋅ − ⋅

$$ $$$$
$ $

 (43) 

 
( ) ( ) ( )

( ) ( )

2
2 2 2 1 2 2 2 2

2
2 1 2 2 2 2

cos 2 cos

2 sin sin

m l p m l l m l J

m l l m g l k

β θ β θ β

θ θ β β β

⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ + ⋅ + ⋅ =

+ ⋅ ⋅ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ − ⋅

$$ $$$$
$ $

 (44) 

 

With the state vector ( )
T

x t p pθ β θ β⎡ ⎤= ⎣ ⎦
$ $ $$ $$$ $$  we have the following descriptor form 

of the double-inverted pendulum: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 2 1 2 1 2 2
2 2

1 2 1 1 1 2 1 1 2 1 2
2

2 2 2 1 2 2 2 2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 cos cos

0 0 0 2 cos 4 2 cos

0 0 0 cos 2 cos

θ
β

θ β
θ θ β θ

β θ β β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⋅ + + −
⎢ ⎥ ⎢ ⎥

− + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

$
$
$

$$
$$
$$

p

M m m m m l m l p

m m l m l m l J m l l

m l m l l m l J
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( ) ( )

( )

4

1 2 1 1
5

6
2 2 2

0 0 0 1 0 0

0 00 0 0 0 1 0

0 00 0 0 0 0 1

0 00 0 0 0 0

1sin
0 2 0 0 0

0

sin 0
0 0 0 0

θ
β

θ
θθ

β β
β

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥= + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦−⎢ ⎥
⎢ ⎥⎣ ⎦

$
$
$

x

f
u

Hx
m m gl k

H

H
m gl k

 (45) 
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Figure 3. Simulation of the double-inverted pendulum. Upper figure: first pole angle )(tΘ , lower figure: 

second pole angle ( )tβ  
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With: ( ) ( ) ( )2 2
4 1 2 1 2 22 sin sinH m m l m lθ θ β β= + +$ $ , ( )2

5 2 1 22 sinH m l l β θ β= − −$  and 

( )2
6 2 1 22 sinH m l l θ θ β= −$  

 
Or in a compact writing: 
 

( ) ( ) ( )
( ) ( )
v h h

h

E x t A x t B u t H

y t C x t

= + +

=

$
 (46) 

 
Remark 5: In this simplified version the term H  is neglected. In a more general framework, 
this is due to the fact that for output stabilization, i.e. with an observer, there exists a 

separation principle in the case where the premise vector ( )z t  is measurable. As  ( )tθ  and 

( )tβ  are measurable, neglecting H  allows using this principle. Let us also say that several 

ways to use a complete TS descriptor model are possible. One is to consider the H  part as 
bounded uncertainties and then use robust conditions of stabilization; nevertheless this 
was not the purpose of this chapter. 

For vE  it is necessary to take into account three nonlinearities: ( )cos θ , ( )cos β  and 

( )cos θ β− . That means 32 8e = =  functions kv . For hA  2 nonlinearities ( )sin θ
θ

 and 

( )sin β
β

, that means 22 4r = =  functions ih . Conditions of theorem 2 were then performed 

to obtain the control law.  
An example of simulation is presented in the next figures with the initial condition: 

( )0 20θ = − °  and ( )0 15β = − ° .  

Figure 3 shows the evolution of the angles ( )tθ  and ( )tβ , figure 4 the evolution of the 

cart position ( )p t  and the control law. The three first figures are simulated on 20s , the 

last figure, the control law, is zoomed on the first 0.25s . 
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Figure 4. Simulation of the double-inverted pendulum. Upper figure: cart position p(t), lower figure: control 
law evolution (zoomed on the first 0.25s) 

 
 

6. Conclusion 
 

The chapter focused on TS fuzzy models in descriptor form stabilization. As for classical 
TS models, they can be obtained in a systematic way using the sector nonlinearity 
approach. Their main interest is to remain close to the nonlinear model. Thus, in some 
cases the number of models involved can be highly reduced in comparison to a classical 
TS model representing the same nonlinear model. Hence, the results obtained with the 
conditions of stabilization can allow reducing in a large way the conservatism of 
preceding classical results. Nevertheless, if we want to outperform basic conditions of 
stabilization for TS models in the descriptor form, a way is to use specific matrix 
transformation. The application of matrix transformation allowed outperforming the 
results. At last we presented the application to the well-known double inverted pendulum 
in simulation. 
To go further, robustness can be easily introduced in the different conditions. It can be 
done using classical bounded uncertainties. The regulator problem could be also 
investigated. 
 
 
 

7. References 
 

Y. Blanco, W. Perruquetti, & P. Borne (2001). Non quadratic stability of nonlinear systems 
in the Takagi–Sugeno form. Proceedings of European Control Conference, Porto, 
Portugal. 

S. Boyd, L. El Ghaoui, E. Feron & V. Balakrishnan (1994), Linear Matrix Inequalities in 
system and control theory. SIAM, Philadelphia, PA 

B.S. Chen, C.S. Tseng, & H.J. Uang (2000). Mixed fuzzy output feedback control design for 
nonlinear dynamic systems: an LMI approach. IEEE Trans. Fuzzy Systems, 8(3):249–
265. 



 345

G. Feng (2003). Controller synthesis of fuzzy dynamic systems based on piecewise 
Lyapunov functions. IEEE Trans. Fuzzy Systems, 11(5):605–612. 

T.M. Guerra, M. Ksontini & F. Delmotte (2003). Some new relaxed conditions of quadratic 
stabilization for continuous Takagi-Sugeno fuzzy models. Proceedings of IEEE 
CESA’03 Lille, France  

T.M. Guerra, K. Guelton & S. Delprat (2004). A class of nonlinear observers in descriptor 
form: LMI based design with applications in biomechanics, Proceedings of the 
Workshop IFAC/AFNC’04, Oulu, Finland 

T.M. Guerra & L. Vermeiren (2004). LMI-based relaxed non quadratic stabilization 
conditions for non-linear systems in the Takagi-Sugeno’s form. Automatica, 
40(5):823–829. 

J. Joh, R. Langari, E.T. Jeung, & W.J. Chung (1997). A new design method for continuous 
Takagi–Sugeno fuzzy controller with pole placement constraints: an LMI approach. 
IEEE Trans. Fuzzy Systems, 5(3):72–79. 

M. Johansson, A. Rantzer, & K.E. Arzen (1999). Piecewise quadratic stability of fuzzy 
systems. IEEE Trans. Fuzzy Systems, 7:713–722. 

E. Kim & H. Lee (2000). New Approaches to Relaxed Quadratic Stability Condition of 
Fuzzy Control Systems, IEEE Transactions on Fuzzy Systems, 8(5) 523-533 

X. Liu & Q. Zhang (2003). New approaches to ∞H  controller designs based on fuzzy 

observers for T-S fuzzy systems via LMI, Automatica, 39(9) 1571-1582 
Y. Morère (2001). Control laws synthesis for Takagi-Sugeno fuzzy models. PhD 

Dissertation, LAMIH, Univ. de Valenciennes et du Hainaut-Cambrésis (in French) 
D. Peaucelle, D. Arzelier, O. Bachelier & J.  Bernussou (2000). A new robust D-stability 

condition for real convex polytopic uncertainty. Systems and Control letters, 40 (1), 
21-30 

T. Takagi & M. Sugeno (1985). Fuzzy identification of systems and Its applications to 
modeling and control, IEEE Trans. Systems Man and Cybernetics 15(1) 116-132. 

K. Tanaka, T. Hori, T. Taniguchi & H.O. Wang (2001). Stabilization of nonlinear systems 
based on fuzzy Lyapunov function, Workshop IFAC/AFNC, Valencia, Spain 

K. Tanaka, T. Ikeda, & H.O. Wang (1996). Robust stabilization of a class of uncertain 
nonlinear systems via fuzzy control: Quadratic stability, H1 control theory and linear 
matrix inequalities. IEEE Transactions on Fuzzy Systems, 4(1):1–13. 

K. Tanaka, T. Ikeda, & H.O. Wang (1998). Fuzzy regulators and fuzzy observers: relaxed 
stability conditions and LMI-based designs. IEEE Trans. Fuzzy Systems, 6(2):1– 6. 

K. Tanaka & H.O. Wang (2001). Fuzzy control systems design and analysis. A linear 
matrix inequality approach. John Wiley & Sons, New York. 

T. Taniguchi, K. Tanaka & H.O. Wang (2000). Fuzzy descriptor systems and nonlinear 
model following control. IEEE Transactions on Fuzzy Systems 8(4) 442-452 

T. Taniguchi, K. Tanaka, H. Ohtake & H.O. Wang (2001). Model construction, rule 
reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy 
systems. IEEE Transactions on Fuzzy Systems 9(4), 525-537 

M.C.M. Teixeira, E. Assunçao & R.G. Avellar (2003). On relaxed LMI-based design for 
fuzzy regulators and fuzzy observers. IEEE Transactions on Fuzzy Systems 11(5) 613-
623 

S. Tong, T. Wang, & H.X. Li (2002). Fuzzy robust tracking control for uncertain nonlinear 
systems. International Journal of Approximate Reasoning, 30:73–90. 



 346

H.D. Tuan, P. Apkarian, T. Narikiyo, & Y. Yamamoto (2001). Parameterized linear matrix 
inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Systems, 
9(2):324–332. 

H.O. Wang, K. Tanaka & M. Griffin (1996). An approach to fuzzy control of nonlinear 
systems: stability and design issues. IEEE Trans. on Fuzzy Systems 4(1) 14-23 

J. Zhao (1995). Fuzzy logic in modeling and control. PhD dissertation, CESAME, Louvain 
la Neuve, Belgium, 1995. 



Cutting Edge Robotics

Edited by Vedran Kordic, Aleksandar Lazinica and Munir Merdan

ISBN 3-86611-038-3

Hard cover, 784 pages

Publisher Pro Literatur Verlag, Germany

Published online 01, July, 2005

Published in print edition July, 2005

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book is the result of inspirations and contributions from many researchers worldwide. It presents a

collection of wide range research results of robotics scientific community. Various aspects of current research

in robotics area are explored and discussed. The book begins with researches in robot modelling & design, in

which different approaches in kinematical, dynamical and other design issues of mobile robots are discussed.

Second chapter deals with various sensor systems, but the major part of the chapter is devoted to robotic

vision systems. Chapter III is devoted to robot navigation and presents different navigation architectures. The

chapter IV is devoted to research on adaptive and learning systems in mobile robots area. The chapter V

speaks about different application areas of multi-robot systems. Other emerging field is discussed in chapter VI

- the human- robot interaction. Chapter VII gives a great tutorial on legged robot systems and one research

overview on design of a humanoid robot.The different examples of service robots are showed in chapter VIII.

Chapter IX is oriented to industrial robots, i.e. robot manipulators. Different mechatronic systems oriented on

robotics are explored in the last chapter of the book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Thierry Marie Guerra, Sebastien Delprat and Salim Labiod (2005). Stabilization of Fuzzy Takagi - Sugeno

Descriptor Models; Application to a Double Inverted Pendulum, Cutting Edge Robotics, Vedran Kordic,

Aleksandar Lazinica and Munir Merdan (Ed.), ISBN: 3-86611-038-3, InTech, Available from:

http://www.intechopen.com/books/cutting_edge_robotics/stabilization_of_fuzzy_takagi_-

_sugeno_descriptor_models__application_to_a_double_inverted_pendulum



© 2005 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


