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1. Introduction  
 

Self-localization, a basic problem in mobile robot systems, can be divided into two sub-
problems: pose tracking and global localization. In pose tracking, the initial robot pose is 
known, and localization seeks to identify small, incremental errors in a robot’s odometry 
(Leonard & Durrant-Whyte, 1991). In global localization, however the robot is required to 
estimate its pose by local and incomplete observed information under the condition of 
uncertain initial pose. Global localization is a more challenging problem. Only most 
recently, several approaches based on probabilistic theory are proposed for global 
localization, including grid-based approaches (Burgard et al., 1996), topological 
approaches (Kaelbling et al., 1996) (Simmons & Koenig, 1995), Monte Carlo localization 
(Dellaert et al., 1999) and multi-hypothesis tracking (Jensfelt & Kristensen, 2001) 
(Roumeliotis & Bekey, 2000). By representing probability densities with sets of samples 
and using the sequential Monte Carlo importance sampling (Andrieu & Doucet, 2002), 
Monte Carlo localization (MCL) can represent non-linear and non-Gaussian models well 
and focus the computational resources on regions with high likelihood. So MCL has 
attracted wide attention and has been applied in many real robot systems. 
But traditional MCL has some shortcomings. Since samples are actually drawn from a 
proposal density, if the observation density moves into one of the tails of the proposal 
density, most of the samples’ non-normalized importance factors will be small. In this case, 
a large sample size is needed to represent the true posterior density to ensure stable and 
precise localization. Another problem is that samples often too quickly converge to a 
single, high likelihood pose. This might be undesirable in the case of localization in 
symmetric environments, where multiple distinct hypotheses have to be tracked for 
extended periods of time. How to get higher localization precision, to improve efficiency 
and to prevent premature convergence of MCL are the key concerns of the researchers. To 
make the samples represent the posterior density better, Thrun et al. proposed mixture-
MCL (Thrun et al., 2001), but it needs much additional computation in the sampling 
process. To improve the efficiency of MCL, methods adjusting sample size adaptively over 
time are proposed (Fox, 2003) (Koller & Fratkina, 1998), but they increase the probability of 
premature convergence. Although clustered particle filters are applied to solve premature 
convergence (Milstein et al., 2002), the method loses the advantage of focusing the 
computational resources on regions with high likelihood because it maintains the same 
sample size for all clusters.  In this paper, a new version of MCL is proposed to overcome 
those limitations. Samples are clustered into groups which are also called species. A 
coevolutionary model derived from competition of ecological species is introduced to 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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make the species evolve cooperatively, so the premature convergence in highly symmetric 
environment can be prevented. The population growth model of species enables the 
sample size to be adjusted according to the total environment resources which represent 
uncertainty of the pose of the robot. And genetic operators are used for intra-species 
evolution to search for optimal samples in each species. So the samples can represent the 
desired posterior density better, and precise localization can be realized with a small size 
of sample. Compared with the traditional MCL, the new algorithm has the following 
advantages: (1) it can adaptively adjust the sample size during localization; (2) it can make 
stable localization in highly symmetric environment; (3) it can make precise localization 
with a small sample size.  

 
2. Background  
 

2.1  Robot Localization Problem  
 

Robot localization is to estimate the current state tx of the robot, given the information 

about initial state and all the measurements tY  up to current time: 

                                                      },,1,0|{ ttyY t
t A==   (1) 

Typically, the state tx is a three-dimensional vector including the position and direction of 

the robot, i.e. the pose of the robot. From a statistical point of view, the estimation of tx  is 

an instance of Bayes filtering problem, which can be implemented by constructing the 

posterior density )|( t
t Yxp . Assuming the environment is a Markov process, Bayes filters 

enable )|( t
t Yxp  to be computed recursively in two steps. 

Prediction step: Predicting the state of the next time-step with previous state 1−tx  

according to the motion model ),|( 11 −− ttt uxxp : 

                                     1
1)|( −

−
t

t
t Yxp dxYxpuxxp t

tttt )|(),|( 1
111

−
−−−∫=   (2) 

Update step: Updating the state with the newly observed information ty  according to the 

perceptual model )|( tt xyp : 

                                             
)|(

)|()|(
)|(

1

1

−

−

=
t

t

t
tttt

t Yyp

Yxpxyp
Yxp   (3) 

 
2.2  Monte Carlo localization (MCL)  
 

If the state space is continuous, as is the case in mobile robot localization, implementing 
equations (2) and (3) is not trivial. The key idea of MCL is to represent the posterior 

density )|( t
t Yxp by a set of weighted samples tS : 

 },,1|),{( )()( NjwxS j
t

j
tt A==   (4) 

Where )( j
tx  is a possible state of the robot at current time t. The non-negative numerical 

factor )( j
tw  called importance factor represents the probability that the state of robot is 

)( j
tx at time t. MCL includes the following three steps: 

(1) Resampling: Resample N samples randomly from 1−tS , according to the distribution 

defined by 1−tw ; 

(2) Importance sampling: sample state )( j
tx  from ),|( 1

)(
1 −− t
j

tt uxxp  for each of the N possible 

state )(
1
j

tx − ; and evaluate the importance factor )|( )()( j
tt

j
t xypw = . 
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(3) Summary: normalize the importance factors ∑ =
=

N

k

k
t

j
t

j
t www

1

)()()( / ; and calculate the 

statistic property of sample set tS  to estimate the pose of the robot. 

 
2.3  Coevolutionary Algorithms 
 

Evolutionary algorithms (EAs), especially genetic algorithms, have been successfully used 
in different mobile robot applications, such as path planning (Chen & Zalzala, 1995) 
(Potvin et al., 1996), map building (Duckett, 2003) and even pose tracking for robot 
localization (Moreno et al., 2002). But premature convergence is one of the main 
limitations when using evolutionary computation algorithms in more complex 
applications as in the case of global localization. 
Coevolutionary algorithms (CEAs) are extensions of EAs. Based on the interaction 
between species, coevolution mechanism in CEAs can preserve diversity within the 
population of evolutionary algorithms to prevent premature convergence. According to 
the characters of interaction between species, CEAs can be divided into cooperative 
coevolutionary algorithms and competitive coevolutionary algorithms. Cooperative (also 
called symbiotic) coevolutionary algorithms involve a number of independently evolving 
species which together form complex structures. The fitness of an individual depends on 
its ability to collaborate with individuals from other species. Individuals are rewarded 
when they work well with other individuals and punished when they perform poorly 
together (Moriarty & Miikkulainen, 1997) (Potter & De Jong, 2000). In competitive 
coevolutionary algorithms, however the increased fitness of one of the species implies a 
diminution in the fitness of the other species. This evolutionary pressure tends to produce 
new strategies in the populations involved so as to maintain their chances of survival. This 
“arms race” ideally increases the capabilities of the species until they reach an optimum. 
Several methods have been developed to encourage the arms race (Angeline & Pollack, 
1993) (Ficici & Pollack, 2001) (Rosin & Belew, 1997), but these coevolution methods only 
consider interaction between species and neglect the effects of the change of the 
environment on the species. 
Actually the concept of coevolution is also derived from ecologic science. In ecology, much 
of the early theoretical work on the interaction between species started with the Lotka-
Volterra model of competition (Yuchang & Xiaoming, 1996). The model itself was a 
modification of the logistic model of the growth of a single population and represented the 
result of competition between species by the change of the population size of each species. 
Although the model could not embody all the complex relations between species, it is 
simple and easy to use. So it has been accepted by most of the ecologists. 

 
3. Coevolution Based Adaptive Monte Carlo Localization 
 

To overcome the limitations of MCL, samples are clustered into different species. Samples 
in each species have similar characteristics, and each of the species represents a hypothesis 
of the place where the robot is located. The Lotka-Volterra model is used to model the 
competition between species. The competition for limited resources will lead to the 
extinction of some species, and at the same time make some species become more complex 
so as to coexist with each other. The environment resources which represent uncertainty of 
the pose of the robot will change over time, so the total sample size will also change over 
time. Compared with other coevolution models, our model involves the effects of 
competition between species as well as that of the change of environment on species. 
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3.1 Initial Species Generation 
 

In the traditional MCL, the initial samples are randomly drawn from a uniform 
distribution for global localization. If a small sample size is used, few of the initial samples 
will fall in the regions where the desired posterior density is large, so MCL will fail to 
localize the robot correctly. In this paper, we propose an efficient initial sample selection 
method, and at the same time the method will cluster the samples into species. 
In order to select the samples that can represent the initial location of the robot well, a 

large test sample set )}~,~(,),~,~{( )(
0

)(
0

)1(
0

)1(
0

testtest NN
test wxwxS A=  with testN samples is drawn from a 

uniform distribution over the state space, here )~|(~ )(
00

)(
0

jj xypw = . Then the multi-

dimensional state space of the robot is partitioned into small hyper-rectangular grids of 

equal size. And samples in testS  are mapped into the grids. The weight of each grid is the 

average importance factor of the samples that fall in it. A threshold µ=T is used to classify 

the grids into two groups, here the coefficient )1,0(∈µ . Grids with weight larger than T  

are picked out to form a grid set V . The initial sample size 0N is defined by: 

                                                              00 /|| wVN η=   (5) 

Where η is a predefined parameter, 0w  is the average weight of grids in set V , and ||V  is 

the number of grids in set V . This equation means that if the robot locates in a small area 
with high likelihood, a small initial sample size is needed.  
Using the network defined through neighborhood relations between the grids, the set V is 
divided into connected regions (i.e. sets of connected grids). Assuming there are Ω  
connected regions, these connected regions are used as seeds for the clustering procedure. 
A city-block distance is used in the network of grids. As in image processing field, the use 
of distance and seeds permits to define influence zones, and the boundary between 
influence zones is known as SKIZ (skeleton by influence zone) (Serra, 1982). So the robot’s 

state space is partitioned into Ω  parts. And )(
0

iN  samples which have the largest 

importance factor will be selected from the test samples falling in the ith part. 

                                                      ∑
Ω

=

⋅=
1

000
)(

0 )(/)(
k

i kwiwNN   (6) 

Where )(0 kw  is the average weight of grids in the  kth part of the state space. The selected 
)(

0
iN  samples from the ith part form an initial species of )(

0
iN  population size. 

 
3.2 Inter-Species Competition 
 

Inspired by ecology, when competing with other species the population growth of a 
species can be modeled using the Lotka-Volterra competition model. Assuming there are 
two species, the Lotka-Volterra competition model includes two equations of population 
growth, one for each of two competing species.  
 

                                                 )1(
)1(

)2()12()1(
)1()1(

)1(

t

ttt
t

t

K

NN
Nr

dt

dN α+
−=                                           (7) 

                                                 )1(
)2(

)1()21()2(
)2()2(

)2(

t

ttt
t

t

K

NN
Nr

dt

dN α+
−=                                          (8) 

Where )(ir  is the maximum possible rate of population growth, )(i
tN  is the population size 

and )(i
tK  is the upper limit of population size of species i that the environment resource 

can support at time step t respectively, and )(ij
tα  refers to the impact of an individual of 
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species j on population growth of species i; here i, j ∈{1,2}. Actually, The Lotka-Volterra 
model of inter-specific competition also includes the effects of intra-specific competition 

on population of the species. When )(ij
tα or )(i

tN equals 0, the population of the species j will 

grow according to the logistic growth model which models the intra competition between 
individuals in a species.  
These equations can be used to predict the outcome of competition over time. To do this, 
we should determine equilibria, i.e. the condition that population growth of both species 

will be zero.  Let 0/)1( =dtdN t and 0/)2( =dtdNt . If )1()1(
tNr  and )2()2(

tNr do not equal 0, we get 

two line equations which are called the isoclines of the species. They can be plotted in four 
cases, as are shown in Fig.1. According to the figure, there are four kinds of competition 

results determined by the relationship between )1(
tK , )2(

tK , )12(
tα  and )21(

tα . 

(a) When )1()21()2( / ttt KK <α , )2()12()1( / ttt KK >α  for all the time steps, species 1 will always win 

and the balance point is )1()1(
tt KN = , 0)2( =tN . 

(b) When )1()21()2( / ttt KK >α , )2()12()1( / ttt KK <α  for all the time steps, species 2 will always win 

and the balance point is 0)1( =tN , )2()2(
tt KN = . 

(c) When )1()21()2( / ttt KK <α , )2()12()1( / ttt KK <α  for all the time steps, they can win each other; 

the initial population of them determines who will win. 

(d) When )1()21()2( / ttt KK >α , )2()12()1( / ttt KK >α  for all the time steps, there is only one balance 

point and they can coexist with their own population size. 
For an environment that includes Ω  species, the competition equation can be modified as: 

                                              )1( )(

,1

)()()(

)()(
)(

i
t

ijj

j
t

ij
t

i
t

i
t

i
i

t

K

NN

Nr
dt

dN
∑

Ω

≠=

+
−=

α
  (9) 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. The isoclines of two coevolution species 

 
3.3 Environment Resources  
 

Each species will occupy a part of the state space, which is called living domain of that 

species. Let matrix )(i
tQ  represent the covariance matrix calculated using the individuals in 

a species i. )(i
tQ is a symmetric matrix of nn× , here n is the dimension of the state.  

Matrix )(i
tQ  can be decomposed using singular value decomposition: 

                                                                Ti
t UDUQ =)(                                                           (10) 

                                                          nn
n ReeU ×∈= ),,( 1 A                                                (11) 
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                                                            ),,( 1 ndddiagD A=                                                  (12) 

Where jd  is the variance of species i in direction je , n
j Re ∈ is a unit vector, and  

                                                         
⎩
⎨
⎧

≠
=

=⋅
kj

kj
ee k

T
j 0

1
                                                 (13) 

We define the living domain of the species i at time t to be an ellipsoid with radius of 

jd2 in direction je , and it is centered at )(i
tx which is the weighted average of the 

individuals in species i. The size of the living domain is decided by: 

                                                             ∏
=

=
n

j
jn

ni
t dCA

1

)( 2                                                     (14) 

Where nC  is a constant, depending on n, for example π=2C , 3/43 π=C . Actually the 

living domain of a species reflects the uncertainty of the robot’s pose estimated according 
to that species, and it is similar to the uncertainty ellipsoid (Herbert et al., 1997). 
Environment resources are proportional to the size of the living domain. The environment 
resources occupied by a species are defined as: 

                                                      
⎪⎩

⎪
⎨
⎧

≤⋅

>⋅
=

εεδ

εδ
)(

)()(
)(

i
t

i
t

i
ti

t
A

AA
R                                         (15) 

Where δ  is the number of resources in a unit living domain, andε is the minimum living 
domain a species should maintain. Assuming a species can plunder the resources of other 
species through competition, i.e. the environment resources are shared by all species. And 
the number of individuals that a unit of resource can support is different for species with 
different fitness. The upper limit of population size that the environment resources can 
support of a species is determined by:  

                                                          t
i

t
i

t RwK ⋅−= )1exp( )()(                                               (16) 

Where parameter ∑Ω

=
=

1

)(

i

i
tt RR  is the total resources of the system and )(i

tw  is the average 

importance factor of species i. 
It is obvious that the environment resources will change over time. In the beginning, the 
pose of the robot is very uncertain, so the environment resources are abundant. When the 
pose of robot becomes certain after running for some time, the living domains will become 
small and the environment resources will also be reduced. The upper limit of population 
of species will change according to the environment resources, but the change of the 

resources will not affect the competition results of the species. Supposing 1−= tt RR λ  and 

there are two species, upper limit of the population of species will be )1(
1

)1(
−= tt KK λ  and 

)2(
1

)2(
−= tt KK λ . This will not change the relation between (2) (21)/t tK α  and )1(

tK , and that 

between )12()1( / ttK α  and )2(
tK  in the Lotka-Volterra competition model. 

 
3.4 Intra-Species Evolution 
 

Since genetic algorithm and sequential Monte Carlo importance sampling have many 
common aspects, Higuchi (1997) has merged them together. In CEAMCL the genetic 
operators, crossover and mutation, are applied to search for optimal samples in each 
species independently. The intra-species evolution will interact with inter-species 
competition: the evolution of individuals in a species will increase its ability for inter-
species competition, so as to survive for a longer time. Because the observation density 

)|( tt xyp  includes the most recent observed information of the robot, it is defined as the 
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fitness function. The two operators: crossover and mutation, work directly over the 
floating-points to avoid the trouble brought by binary coding and decoding. The crossover 
and mutation operator are defined as following: 

Crossover: for two parent samples ),( )1()1( p
t

p
t wx , ),( )2()2( p

t
p

t wx , the crossover operator mates 

them by formula (17) to generate two children samples. 
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                                        (17) 

Where ],1,0[~ Uξ  and ]1,0[U represents uniform distribution. And two samples with the 

largest importance factors are selected from the four samples for the next generation. 

Mutation: for a parent sample ),( )()( p
t

p
t wx , the mutation operator on it is defined by 

formula (18). 

                                                       
⎪⎩

⎪
⎨
⎧

=

+=

)|( )()(

)()(

p
tt

c
t

p
t

c
t

xypw

xx τ
                                                  (18) 

Where ),0(~ ΣNτ  is a three-dimensional vector and ),0( ΣN represents normal 

distribution. The sample with larger importance factor is selected from the two samples 
for next generation. 

In CEAMCL, the crossover operator will perform with probability cp and mutation 

operator will perform with probability mp . Because the genetic operator can search for 

optimal samples, the sampling process is more efficient and the number of samples 
required to represent the posterior density can be reduced considerably. 
 
3.5  CEAMCL Algorithm 
 

The coevolution model is merged into the MCL, and the new algorithm is termed 
coevolution based adaptive Monte Carlo localization (CEAMCL). During localization, if 
two species cover each other and there is no valley of importance factor between them, 
they will be merged; and a species will be split if grids occupied by the samples can be 
split into more than one connected regions as in initial species generation. This is called 
splitting-merging process. The CEAMCL algorithm is described as following: 
 
(1) Initialization: select initial samples and cluster the samples into Ω  species; for each 

species i, let dtdN i /)(
0 =0; and let t =1. 

(2) Sample size determination: if 0/)(
1 >− dtdN i

t , draw dtdN i
t /)(

1− samples randomly from the 

living domain of the ith species and merge the newly drawn samples to )(
1

i
tS − ; let 

)0,/max( )(
1

)(
1

)( dtdNNN i
t

i
t

i
t −− +=  

(3) Resampling: for each species i, resample )(i
tN  samples from )(

1
i

tS −  according to )(
1

i
tw − ; 

(4) Importance Sampling: for each species i, sample state )(ij
tx  from ),|( 1

)(
1 −− t

ij
tt uxxp  for each 

of the )(i
tN  possible state )(

1
ij

tx − ; and evaluate the importance factor )|( )()( ij
tt

ij
t xypw = . 

(5) Intra-species evolution: for each species i randomly draw two samples, and mate them 

with probability cp ,  repeat this for )(i
tN /2 times; then randomly draw one sample  

from species i, and  mutate it with probability mp , repeat this for )(i
tN  times. 
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(6) Splitting-merging process: split and merge the species using the rules defined in the 
splitting-merging process. 

(7) Calculating the sample size increment: for each species i calculate the upper limit 

population size of species i, and calculate dtdN i
t /)(

using equation (9). 

(8) Summary: The species whose average importance factor is the largest is assumed to be 
the location of the robot, and the importance factors of each species are normalized 
independently. 

(9) t=t+1; go to step 2) if not stop. 
 
3.6  Computational Cost 
 

Compared with MCL, CEAMCL requires more computation for each sample. But the 
sampling process is more efficient in CEAMCL. So it can considerably reduce the number 
of samples required to represent the posterior density.  
The resampling, importance factor normalization and calculating statistic properties have 
almost the same computational cost per sample for the two algorithms. We denote the 
total cost of each sample in these calculations as Tr. The importance sampling step 

involves drawing a n dimensional-vector according to the motion model ),|( 1
)(

1 −− t
j

tt uxxp  

and computing the importance factor whose computational costs are denoted as Ts and Tf 
respectively. The additional computational cost for CEAMCL arises from the intra-species 
evolution step and the splitting-merging process. The evolution step computes the 

importance factor with probability cp  in crossover and with probability mp  in mutation. 

The other computation in evolution step includes drawing a n dimensional-vector from a 
Gaussian distribution, drawing a random number from uniform distribution of U[0,1] and 
several times of simple addition, multiplication and comparison. Since the other 
computational cost in evolution step is almost the same as Ts which also includes drawing 
a n dimensional-vector from a Gaussian distribution, the total computational cost for each 
sample in evolution step is approximated by (pc+ pm)Tf + Ts. The splitting or merging 
probability of species in each time step is small, especially when the species become stable 
no species need to be split or merged, so the computational cost of the splitting-merging 
process denoted as Tm is small. And the computational costs of other steps in CEAMCL are 
not related to the sample size, so they can be neglected. Defining NM and NC as the number 
of samples in MCL and CEAMCL respectively, the total computational costs for one of the 
iteration in localization TM and TC are given by: 

                                                        )( rsfMM TTTNT ++=                                                   (19) 

                                             
)2)1(( mrsfCC TTTTpNT +++⋅+≈

                                (20) 

Where mc ppp += . The most computationally intensive procedure in localization is the 

computation of the importance factor which has to deal with the high dimensional sensor 

data, so fT  is much larger than the other terms. It is safe to draw the following rule: 

                                                     )/()1( MCMC NNTpT ⋅+≈                                            (21) 

 
4. Experimental Results 
 

We have evaluated CEAMCL in the context of indoor mobile robot localization using data 
collected with a Pioneer2 robot. The data consist of a sequence of laser range-finder scans 
along with odometry measurements annotated with time-stamps to allow systematic real-
time evaluations. The experimental field is a large hall in our laboratory building whose 
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size is of 1515 × m2, and the hall is partitioned into small rooms using boards to form a 
highly symmetric map shown in Fig 2(a).  
In the initial species generation, we only use the x-y position and don’t use direction to 

cluster the samples. The map is divided into 150150 ×  grids. The test sample size 
testN  

equals 1000000; the threshold parameter µ  equals 0.85; and parameter η  is 2. The initial 

species generation results are shown in Fig 2. It is obvious that even in the same 
environment the initial sample sizes are different when the robot is placed in different 
places. The real position of robot is marked using a small circle. 
 
 

                       
      (a)            (b)                                    (c) 

Figure 2. The initial species for localization. (a) The map  (b) 4 species with 537 samples (c) 8 species with 961 
samples 

 
In the localization experiments, the robot was placed at the center of one of the four rooms, 
and it was commanded to go to a corner of another room. 5 times of experiments were 
conducted for each center. The three algorithms MCL, GMCL and CEAMCL were applied 
to localize the robot using the data collected in the experiments. Here GMCL is genetic 
Monte Carlo localization which merges genetic operators into MCL but without 

coevolution mechanism. The parameter )()()( / i
t

j
t

ij
t ww=α , where )(i

tw is the fitness (average 

importance factor) of species i; parameter )(ir , the maximum possible rate of population 
growth of species, equals 0.2; and parameter ε , the minimum living domain of species, 
equals 0.5m2; parameter δ , the number of resources in a unit living domain which is 1 m2 

in this paper, equals 80; the crossover probability cp is 0.85; and the mutation probability 

mp is 0.15. The success rate of the three algorithms to track the hypothesis corresponding 

to the robot’s real pose until the robot reaches the goal is shown in table 1. In table 1, the 
converged time is the time when the samples converged to the four most likely positions; 
the expired time is the time when one of the hypotheses vanished. The data shows that the 
CEMCL can converge to the most likely positions as fast as GMCL, but it can maintain the 
hypotheses for a much longer time than the other two algorithms. This is because the 
species with much lower fitness will die out because of the competition between species, 
and the species with similar fitness can coexist with each other for a longer time. 

 
 CEAMCL GMCL MCL 

Converged time (s) 6. 8 6.4 9.7 

Expired time (s) Never 30.4 36.4 

Success rate 100% 82% 86% 

Table 1. Success rate of multi-hypotheses tracking 
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                              (a)                                                    (b)                                                         (c) 

Figure 3. Localization based on CEAMCL. (a) samples at 7th second    (b) samples at 16th second  (c) Samples 
at 40th second 
 

Figure 3 shows three inter moments when the robot ran from the center of room 1 to the 
goal using the CEAMCL algorithm. 
To compare the localization precision of the three algorithms, we use the robot position 
tracked by using MCL with 5000 samples in the condition of knowing the initial position 
to be the reference robot position. The average estimation errors along the running time 
are shown in Fig 4. Since the summary in CEAMCL is based on the most likely species and 
the genetic operator in intra-species evolution can drive the samples to the regions with 
large importance factors, so localization error of CEAMCL is much lower. Although 
GMCL almost has the same precision as CEAMCL after some time, GMCL is much more 
likely to produce premature convergence in symmetric environment. 
The computational time needed for each iteration with 961 initial samples on a computer 

with a CPU of PENIUM 800 is shown in Fig 5. Because 1=+ mc pp , the computational time 

needed for each iteration of CEAMCL is almost twice of that of MCL with the same size of 
sample set. But since the sample size of CEAMCL is adaptively adjusted during the 
localization process, the computational time for each iteration of CEAMCL becomes less 
than that of MCL after some time. From Fig 4. and Fig 5. we can see that the CEAMCL can 
make precise localization with a small sample size. The changes of the total environment 
resources and the total number of samples are shown in Fig 6. From the figure we can see 
that the resources will be reduced when the position becomes certain, the total sample size 
needed for robot localization will also be reduced.  
Large δ  will reduce the competition between the species since there is enough resource 
for them. The curve of total sample size with different δ  is shown in Fig 7.  
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Figure 4. Estimation Error                                           Figure 5. Computational time for each iteration 
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Figure 6. Change of resource and sample size  Figure 7. Effect of δ  on sample size 
 

The growth rate )(ir  is another important parameter. Large )(ir will increase the rate of 

convergence to the species that have larger fitness. But if )(ir  is too large it may cause 
premature convergence. 
 

5. Conclusions 
 

An adaptive localization algorithm CEAMCL is proposed in this paper. Using an 
ecological competition model, CEAMCL can adaptively adjust the sample size according 
to the total environment resource, which represents uncertainty of the position of the 
robot. Coevolution between species ensures that the problem of premature convergence 
when using MCL in highly symmetric environments can be solved. And genetic operators 
used for intra-species evolution can search for optimal samples in each species, so the 
samples can represent the desired posterior density better. Experiments prove that 
CEAMCL has the following advantages: (1) it can adaptively adjust the sample size during 
localization; (2) it can make stable localization in highly symmetric environment; (3) it can 
make precise localization with a small sample size. 
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