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Comparison of Demosaicking Methods  
for Color Information Extraction 

 
Flore Faille 

 

 
1. Introduction 
 

Most digital color cameras are based on a single CCD or CMOS sensor combined with a 
color filter array (CFA): each pixel measures only one of the RGB colors. The most popular 
CFA is the Bayer CFA (Bayer, 1976) shown in fig. 1. Demosaicking algorithms interpolate 
the sparsely sampled color information to obtain a full resolution image, i.e. three color 
values per pixel. Many demosaicking algorithms were designed. However, even recent 
methods are prone to interpolation errors or artifacts, especially near edges. The most 
common artifacts are shown in fig. 2: “zipper” effects, wrong colors and wrong saturation 
of colored details. These artifacts are influenced by the sampled channel (R, G or B) and by 
the image content, like e.g. the orientation of the nearby edges. As a consequence, the same 
scene point may get a very different color value after a camera movement. This raises the 
two questions whether images acquired with a single chip camera can be used to extract 
reliable color information for further computer or robot vision tasks, and which 
demosaicking method suits best. Hence, this paper provides an overview and a detailed 
comparison of several state of the art and several recent demosaicking algorithms to 
enable the reader to choose the most appropriate demosaicking algorithm for his 
application. The previous comparisons between demosaicking methods, like the ones in 
(Lu & Tan, 2003; Ramanath et al., 2002), aimed at visually pleasing images. As a 
consequence, their evaluation criteria were, in addition to Mean Square Error (MSE) in 

RGB space, visual inspection and measures based on human perception like *
abE∆  (Lu & 

Tan, 2003; Ramanath et al., 2002). In computer vision 
tasks, separation between intensity and chrominance is 
widely used to increase robustness to illumination 
changes (Funt et al., 1998; Gevers & Smeulders, 1999). 
However, none of the previously used criteria can 
evaluate chrominance quality. For that reason, a 
detailed analysis using MSE in typical color spaces 
(HSI, Irb and YUV) is provided here. In addition, 
performance differences in colored, textured and 
homogeneous areas are emphasized. After an overview 
of the existing demosaicking algorithms, the methods 
chosen for comparison are introduced in section 2. The 
comparison framework and the results are presented in 
section 3. A conclusion is given in section 4. 

 G R G R G 

B 

G 

B 

G 

G G 

G G 

G G 

G G 

B B 

B B 

R R 

R R 

 

Figure 1. Bayer color filter array 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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Figure 2. Overview of typical demosaicking artifacts on simulated CFA images. For a better visualization of 
the color and saturation artifacts, the hue (H) and the saturation (S) components are given for the 
demosaicked image and for the original three channel image. H and S components are scaled between 0 and 
255. The images are available online in color (Faille, 2005) 

 
2. Demosaicking Algorithms 
 

2.1 Overview 
 

The simplest demosaicking algorithm consists of a separate bilinear interpolation of the 
three channels. The obtained images are however very blurry and present many artifacts 
as shown in figs. 8(a) and 9(a). Demosaicking quality can be improved by enlarging the 
considered neighborhood. In addition, gradient information can be taken into account to 
adapt the used neighborhood to the image, as in (Hamilton & Adams, 1997). This allows 
interpolation to be performed along rather than across edges, hence reducing artifacts. 
Finally, many algorithms make use of the high inter-channel correlation to constrain the 
interpolation process: either the color differences R – G and B – G (Freeman, 1988; 
Hamilton & Adams, 1997) or the color ratios R/G and B/G (Cok, 1987) are assumed to 
remain constant in a small neighborhood. These principles improve demosaicking at a 
moderate increase of complexity. A good overview and comparison of many state of the 
art methods is given in (Ramanath et al., 2002). In this paper, the best two methods will be 
analyzed. The median-based postprocessing (MBP) enforces high inter-channel correlation 
to reduce artifacts after a first demosaicking step (Freeman, 1988). In addition to inter-
channel correlation, the adaptive color plane interpolation (ACPI) takes gradients into 
account to select either horizontal or vertical interpolation (Hamilton & Adams, 1997). 
MBP and ACPI are described in more detail in sections 2.2 and 2.3. 
The most interesting of the recently developed algorithms can be divided into three 
categories. The algorithms of the first category use principles similar to ACPI but provide 
more powerful and flexible ways to adapt the considered neighborhood. In (Lu & Tan, 
2003) and in the first step of (Kimmel, 1999), each direction contributes to the interpolation 
with a weight which is proportional to the gradient inverse. In (Ramanath, 2003), the 
weights depend on the similarity to the center pixel after a first demosaicking step. 
Additionally, the framework to estimate R and B channels is improved in (Lu & Tan, 
2003). This enhances the chrominance quality, so the method by (Lu & Tan, 2003) will be 
analyzed here. More details are given in section 2.4. 
The second category of methods locally selects between horizontal and vertical 
interpolation as in ACPI, however based on more complex image measures than 
gradients. (Hirakawa & Parks, 2003) use image homogeneity in CIELAB color space. 
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(Omer & Werman, 2004) use the variation of R/G and B/G color ratios and the response to 
the Harris corner detector. As these complex measures cannot be estimated directly from 
the CFA sampled images, one horizontally interpolated image and one vertically 
interpolated image are generated first. The local direction selection is performed 
subsequently to generate a final image. This results in a very high computing time, even 
when direction selection is only performed in textured areas as in (Omer & Werman, 
2004). For that reason, these methods will not be analyzed here. 
The last category of methods works similarly to MBP. After a first demosaicking step, the 
result is postprocessed to enforce one or more constraints, hence reducing artifacts. In the 
second step of (Kimmel, 1999), the locally constant color ratio assumption is enforced, 
using thereby an adaptive neighborhood. In (Gunturk et al., 2002), a compromise between 
the following two constraints is reached: locally constant color differences and fidelity to 
sampled data. As these methods yield no significant enhancement over MBP, they will not 
be analyzed here. 
 
2.2 Median-Based Postprocessing (MBP and EMBP) 
 

MBP reduces demosaicking artifacts by enforcing high inter-channel correlation (Freeman, 
1988). After a first demosaicking step, the difference images R R Gδ = −  and B B Gδ = −  are 

median-filtered. The image is then reconstructed using the filtered difference images Rδ  

and Bδ  as well as the CFA sampled data. For example, at a sampled G pixel: 
 

                                             )G,G,G()'B,'G,'R( BR +δ+δ= . 
(1) 

 

The algorithm works similarly at sampled R and B 
pixels. A larger filter kernel enhances the 
demosaicking results. As a consequence, a 
compromise between image quality and complexity 
is reached using the kernel proposed in (Freeman, 
1988) and shown in Fig. 3: the value of the center 
pixel is the median of the nine pixel values indicated 
in grey. Demosaicking results are shown in figs. 8(b) 
and 9(b). Pixels with wrong intensity and wrong 

saturation appear near color edges with low inter-
channel correlation such as for example red/white 
edges. To avoid such artifacts due to contradictions between the high inter-channel 
correlation model and the sampled data, an Enhanced Median-Based Postprocessing 
(EMBP) is used in (Hirakawa & Parks, 2003; Lu & Tan, 2003), in which sampled values are 
changed too. The reconstruction step becomes the same for all pixels: 
 
 

                                )'G,2/)BR(,'G()'B,'G,'R( BBRR +δδ−+δ−+δ=  
(2) 

 
 

The implementation proposed in (Lu & Tan, 2003) was chosen here. Already processed 
pixels are used to filter following pixels for a faster diffusion of the estimation. In addition, 
only textured areas (areas where the laplacian of the G channel is above a given threshold) 
are postprocessed, as homogeneous areas are less prone to artifacts. Results are presented 
in figs. 8(c) and 9(c). For the comparison in section 3, MBP and EMBP will be applied after 
the method by Lu and Tan (Lu & Tan, 2003) to obtain the best possible results. 

Figure 3. Kernel used for median filtering 
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2.3 Adaptive Color Plane Interpolation (ACPI) 
 

ACPI is a state of the art method using gradient information and inter-channel correlation 
(Hamilton & Adams, 1997). As the Bayer CFA contains twice as many G pixels as R or B 
pixels, the G channel is interpolated first and is used to estimate R and B channels in a 
second step. Fig. 4 presents the G channel estimation. The interpolation is performed in 
the direction of the minimum gradient. To take the high inter-channel correlation into 
account, gradients and interpolated G values depend on the laplacian of the R (or B) 
channel. Similarly, estimated R and B values depend on the laplacian of the interpolated G 
channel. Gradient based neighborhood adaptation is only performed to estimate R (or B) 
values at sampled B (or R) pixels, for which four R (or B) neighbors exist. The 
demosaicking results are illustrated in figs. 8(d) and 9(d). 
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Compute the horizontal and the vertical gradients: 
 H = |G4 – G6| + |R5 – R3 + R5 – R7| 
 V = |G2 – G8| + |R5 – R1 + R5 – R9| 
If H > V, interpolate along the vertical direction: 
 G5 = (G2 + G8) / 2 + (R5 – R1 + R5 – R9) / 4 
else if V > H, interpolate along the horizontal direction: 
 G5 = (G4 + G6) / 2 + (R5 – R3 + R5 – R7) / 4 
else use both directions: 
 G5 = (G2 + G8 + G4 + G6) / 4 + (4 R5 – R1 – R9 – R3 – R7) / 8

 

Figure 4. Interpolation of the G value at a sampled R pixel with ACPI (Hamilton & Adams, 1997). Sampled B 
pixels are processed similarly 

 
2.4 Weighted Adaptive Color Plane Interpolation (WACPI) 
 

WACPI (Lu & Tan, 2003) is based on the same principles as ACPI. G values are estimated 
first. Gradients and interpolated values depend on the laplacian of the other color 
channels, like in ACPI. Yet WACPI provides a more flexible framework to adapt the 
interpolation neighborhood to the image. Four directions (instead of two) are considered 
as shown in fig. 5, which enhances the performance near slanted edges and corners (see 

figs. 8(e) and 9(e)). The contributions of every direction to the interpolation iG#  are 

weighted by the gradient inverses iα before they are summed up and normalized to build 

the estimate: 
 

                         DOWNUPRIGHTLEFT

DOWNDOWNUPUPRIGHTRIGHTLEFTLEFT G
~

G
~

G
~

G
~

G
α+α+α+α

α+α+α+α
=

 

(3) 

 

The formulas for LEFTα  and LEFTG#  are given in fig. 6 as an example for all iα  and iG# . As can 

be seen, the contributions to the interpolation iG#  are the same as for ACPI. In contrast, the 

gradients are estimated on a larger neighborhood to compute the weights iα . The constant 

additive term in the denominator of iα  (see fig. 6) avoids division by zero in 

homogeneous areas. The estimation of the R and B channels is also improved in 
comparison to ACPI, as the gradient based neighborhood adaptation is performed for the 
interpolation of all R and B values. To achieve this, R (or B) values at sampled B (or R) 
pixels are interpolated first. After this step, sampled G pixels have two sampled R (or B) 
neighbors and two estimated R (or B) neighbors. As a consequence, the neighborhood 
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adaptation framework can then be applied without any restriction. The reader should 
refer to (Lu & Tan, 2003) for the complete algorithm description. 
 

3. Comparison of the Algorithms 
 

The algorithms are evaluated on simulated CFA 
sampled images by comparison with the original 
three channel images. 24 images of the Kodak color 
image database are used. These images represent 
scenes of various content, like for example 
landscapes, persons, natural and man-made 
objects, as can be seen in Fig. 7. 
Before the quantitative evaluation, the 
demosaicking results are illustrated in figs. 8 and 9 
to show the different artifacts. The figures show 
one colorful area and one textured area of the 
Small Lighthouse image, a downsampled version 
of one of the Kodak database images used in 
(Kimmel, 1999; Lu & Tan, 2003). 

The chosen areas illustrate best the results. To 
enable better visual analysis and understanding of 

the results, hue (H), saturation (S) and intensity (I) components are also presented, as HSI 

is an intuitive color space. For better visualization, the theoretical ranges of hue [–π, π] and 
saturation [0, 1] are mapped to [0, 255]. Bilinear interpolation produces blurred images 
and artifacts known as “zipper” effects near edges (see figs. 8 and 9). For ACPI and 
WACPI, color artifacts may appear especially near slanted edges or corners as shown in 
fig. 9. MBP and EMBP correct these artifacts (see fig. 9) but introduce new ones near color 
edges (see fig. 8): MBP generates pixels with wrong intensity and wrong saturation, 
whereas EMBP generates areas with wrong saturation. In addition, MBP reconstructs hue 
more accurately than EMBP in colorful areas (see fig. 9). 
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Figure 6. Weight and contribution of the left direction (cf. fig. 5) to the interpolation of the G value at pixel 
position R6 

 

 

Figure 7. Four images of the Kodak color image database 
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Figure 5. Considered directions and
neighbourhood shown in fig. 6 
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Figure 8. Enlarged colorful detail of the Small Lighthouse image showing a buoy. From left to right: (a) 
bilinear interpolation, (b) MBP, (c) EMBP, (d) ACPI, (e) WACPI, (f) original three channel image. From top to 
bottom: RGB image, hue, saturation, intensity. This figure is available online in color (Faille, 2005) 

 
 

As mentioned before, popular color spaces for computer vision separate intensity and 
chrominance information to reduce sensitivity to light direction and intensity (Funt et al., 
1998; Gevers & Smeulders, 1999). 
To achieve this, chrominance components are based on ratios between channels. In 
addition, robustness to specularities can be achieved using channel differences (Gevers & 
Smeulders, 1999). HSI and Irb are two well-known color spaces based on these principles: 
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YUV is another popular color space, as it is linear and often directly delivered by color 
cameras. Y gives the intensity information. Color information is represented by channel 
differences U and V instead of channel ratios like in HSI and Irb spaces: 
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Figure 9. Enlarged textured detail of the Small Lighthouse image showing roofs. From left to right: (a) bilinear 
interpolation, (b) MBP, (c) EMBP, (d) ACPI, (e) WACPI, (f) original three channel image. From top to bottom: 
RGB image, hue, saturation, intensity. This figure is available online in color (Faille, 2005) 

 
To analyze demosaicking quality for further computer or robot vision applications, 
performances will be evaluated using the Mean Square Error (MSE) between original and 
demosaicked images in HSI, Irb and YUV spaces. The MSE in RGB space is added for 
comparison with previous evaluations like (Lu & Tan, 2003; Ramanath et al., 2002). H, S, r 
and b are scaled by 100, so that their order of magnitude is similar to the other 
components. To avoid numerical instabilities, MSE for S, r and b was only estimated in 
sufficiently bright areas (I > 0.9). Similarly, MSE for H was only estimated in sufficiently 
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colored areas (S > 0.1). In addition, a three pixel wide border was left out to suppress any 
influence by border effects. As the results depend on image content, the average MSE over 
all 24 images is presented in table 1.  
The performance discrepancy in textured and in homogeneous areas is emphasized 
(texture was detected in the original images with a Laplacian filter). As far as complexity is 
concerned, ACPI, WACPI, MBP (+ WACPI) and EMBP (+ WACPI) require on average 
over all images 2, 8.5, 20 and 14 times as much computation time as bilinear interpolation. 
 
 

Edges Homogeneous areas Entire images 
Algorithm 

RGB YUV HSI rb RGB YUV HSI rb RGB YUV HSI rb 

215 84.2 21.1 1.40 14.1 5.32 .900 .0545 104 40.4 10.7 .669 

87.1 49.3 .966 1.57 5.64 3.42 .0549 .0587 42.0 24.0 .460 .748 Bilinear 

222 45.8 95.4  15.1 3.14 6.14  108 22.2 45.9  

38.1 18.1 3.10 .394 4.85 1.97 .370 .0245 20.1 9.60 1.79 .202 

24.9 9.59 .268 .319 2.60 1.27 .0223 .0232 13.2 5.20 .141 .168 ACPI 

33.6 10.1 15.8  4.52 1.26 1.89  18.4 5.30 8.46  

23.6 10.4 1.63 .232 3.44 1.34 .273 .0178 12.4 5.57 .936 .118 

13.3 5.99 .187 .210 1.71 .956 .0173 .0180 7.22 3.25 .0959 .108 WACPI 

21.6 5.99 9.44  3.52 .884 1.35  11.7 3.15 5.08  

25.2 8.51 1.62 .249 4.01 1.52 .269 .0206 12.6 4.39 .814 .120 

9.93 5.57 .195 .212 1.91 1.09 .0204 .0212 5.18 2.95 .0976 .106 MBP 

18.4 6.08 8.13  3.67 .962 1.49  9.72 3.02 4.20  

29.7 11.0 2.30 .543 3.51 1.36 .281 .0201 14.4 5.63 1.09 .245 

18.1 6.38 .264 .283 1.79 .980 .0182 .0188 8.57 3.18 .124 .134 EMBP 

24.0 11.0 9.64  3.58 .938 1.36  12.1 4.86 5.07  

Table 1. Demosaicking performance near edges, in homogeneous areas and on entire images. The average 
MSE over 24 images of the Kodak image database is given for RGB, YUV, HSI and Irb spaces. Each row 
shows a channel (top row for R, Y, H and r, etc.). As I is the same in HSI and Irb, the MSE for I is only given 
for HSI. The best performance in each category is indicated in boldface 

 
Bilinear interpolation, which does not use gradients and inter-channel correlation, yields 
by far the worst results. 
Despite its low complexity, ACPI allows significant enhancement, proving the strength of 
the used principles. WACPI and MBP perform best. The quality of color ratios, of 
saturation and of color differences are on average comparable for both (see MSE for r, b, S, 
U and V). MBP improves texture estimation (see MSE for R, G, B, Y and I) and reduces 
color artifacts (see MSE for H). But its performance in homogeneous areas is worse. This is 
mostly due to its higher sensitivity to the inaccuracy of the high inter-channel correlation 
model (constant color differences in a neighborhood) in colored areas. Even very low 
contrast edges in colored areas may result in pixels with wrong intensity and saturation. 
As told in the overview in section 2.1, the recent methods similar to MBP (Kimmel, 1999; 
Gunturk et al., 2002) do not significantly reduce this sensitivity to model inaccuracy. The 
overall performance of EMBP is moderate. It better estimates homogeneous areas than 
MBP, but achieves poor chrominance quality compared to WACPI and MBP. 
To emphasize the model inaccuracy in colored areas, table 2 gives the average MSE in 
areas with high saturation (S ≥ 0.3). As in table 1, WACPI and MBP perform best. Yet MBP 
shows the maximal performance drop, especially for the estimation of texture (see MSE for 
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R, G, B, Y and I) and color differences (U and V). In this case, WACPI achieves the best 
results. MBP's higher sensitivity to the model inaccuracy is also shown by a higher 
number of negative (hence invalid) interpolated values: if these are not corrected to 0, the 
average MSE for all 24 entire images e.g. for r becomes 0.441 for WACPI and 0.965 for 
MBP. To summarize, MBP better estimates texture and reduces wrong color artifacts, but it 
is outperformed by WACPI in homogeneous and in colored areas. This explains our 
observation that MBP is better on images with fine textures (e.g. landscapes or natural 
objects), while WACPI is better on images showing man-made objects and on close-ups. 
Another consequence is that MBP should be applied after white balancing, so that the 
number of edges in colored areas is reduced to a minimum. 
 
 

ACPI WACPI MBP EMBP 

RGB YUV HSI rb RGB YUV HSI rb RGB YUV HSI rb RGB YUV HSI rb 

30.8 14.1 2.15 .747 19.2 8.05 1.12 .435 28.2 9.43 .817 .452 27.2 9.25 1.06 .806 

19.6 7.13 .756 .598 10.7 4.67 .584 .409 11.3 5.54 .524 .407 15.8 6.02 .759 .484 

27.6 8.78 12.8  18.8 5.49 7.75  19.2 7.18 8.99  21.0 10.3 7.95  

Table 2. Demosaicking performances in colored areas (with S ≥ 0.3). As in table 1, the average MSE over all 
24 images is given in RGB, YUV, HSI and Irb color spaces. The results for the bilinear interpolation are 
omitted, as it yields by far the worst results in table 1 

 

4. Conclusion 
 

After an overview over state of the art and recent demosaicking methods, selected 
algorithms were compared using images with various content. To verify if demosaicked 
images are suitable for computer or robot vision tasks, the average MSE in typical color 
spaces (RGB, YUV, HSI and Irb) was measured. While the high inter-channel correlation 
model improves interpolation results significantly, it was also shown to be inaccurate in 
colored areas. WACPI and MBP (+WACPI) provide the best results. WACPI performs 
better in colored and in homogeneous areas. MBP better reconstructs texture and reduces 
wrong color artifacts. The choice between both algorithms should depend on the 
application, according to the most relevant information and to the image type 
(indoor/outdoor, natural/man-made objects). The MBP algorithm could be enhanced by 
processing only edge pixels like in EMBP: this would reduce the computation time and 
improve the performance in homogeneous areas. In addition, regions with saturated 
colors could be left unchanged. If emphasis lies on efficiency, ACPI and WACPI achieve 
the best compromise between speed and quality. 
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