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Introduction 
Swarm-intelligence based algorithms full under 

bio-inspired optimization algorithms where the 
intelligence is attributed to the social behaviour of 
animals and insects in nature. In recent years, many 
researchers have adopted swarm intelligence 
algorithms to solve hard optimization problems and 
they have shown great potential in solving complex 
engineering optimization problems [21]. Numerous 
swarm-based algorithms have been developed, and 
these include particle swarm optimization (PSO), ant 
colony optimization (ACO), bacteria foraging 
optimization (BFO), and bat algorithm (BA). Inspired 
by the flashing pattern of a swarm of fireflies, Yang 
[23] proposed a new swarm intelligence based 
algorithm called firefly algorithm (FA).  

Yang [22, 23] proves that FA is very efficient in 
dealing with multimodal problems as well as performs 
better than other bio-inspired optimization algorithms. 
That is why, it has attracted much attention to solve 
problems in various applications including single 
objective problems [7, 15, 16, 17, 18] and also multi 
objective problems [13, 25]. Although FA has 
similarities with other swarm intelligence algorithms, 
it is much simpler in concept and implementation. 

Some drawbacks of the algorithm have been found 
regarding the capability of the algorithm in higher 
dimension problems [20] as well as getting trapped in 
local optima [3]. Thus, improved versions have been 
developed to address such issues [3, 4, 19, 20], and 
applied to discrete, combinatorial and continuous 
optimization problems. Alternatively, hybridization 
has also been attempted to improve performance of the 
algorithm in terms of search capabilities and better 
accuracy. Several works have been reported such as 
hybrid with levy flight [24], ACO [2], differential 
evolution [1] and genetic algorithm [3]. 

Assistive robotic devices are increasingly needed 
to facilitate mobility and rehabilitation requirements 
of elderly and disabled [14]. Therefore, research 
interest in upper and lower extremities robot 
assistance has intensified in the academic and 
industrial sectors. Exoskeleton is an assistive device 
designed for mobility and for rehabilitation purpose 
[5]. Significant research within academic and 
industrial sectors in the area of exoskeleton mobility 
and robot assistance for medical and rehabilitation 
applications [5 – 6]. The proposed algorithms are used 
to devise control mechanisms for lower and upper 
extremities. The bio-inspired algorithms are applied to 
optimise the controller to achieve preferable 
manoeuvrability of the model. 

ABSTRACT – Firefly algorithm (FA) is a swarm intelligence based algorithm for global optimization and 
has widely been used in solving problems in many areas. The FA is good at exploring the search space 
and locating the global optimum, but it always gets trapped at local optimum especially in case of high 
dimensional problems. In order to overcome such drawbacks of FA, this paper proposes a modified 
variant of FA, referred to as spread enhancement strategy for firefly algorithm (SE-FA), by devising a 
nonlinear adaptive spread mechanism for the control parameters of the algorithm. The performance of 
the proposed algorithm is compared with the original FA and one variant of FA on six benchmark 
functions. Experimental and statistical results of the approach show better solutions in terms of reliability 
and convergence speed than the original FA especially in the case of high-dimensional problems. The 
algorithms are further tested with control of dynamic systems. The systems considered comprise 
assistive exoskeletons mechanism for upper and lower extremities. The performance results are 
evaluated in comparison to the original firefly and invasive weed algorithms. It is demonstrated that the 
proposed approaches are superior over the individual algorithms in terms of efficiency, convergence 
speed and quality of the optimal solution achieved. 
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In this paper, a new variant of firefly with nonlinear 
adaptive strategy to modify and improve the original 
algorithm is proposed. The modified algorithm is 
named spread enhancement strategy for firefly 
algorithm (SE-FA). The organization of the paper is as 
follows: Section II introduces the classical FA 
algorithm and its parameters, Section III describes the 
adaptive variants and introduces the proposed 
algorithm. Section IV describes the experimental set-
up and presents performance investigations with 
benchmark functions. Section V presents analysis and 
evaluation of the results. The latter section investigates 
the application of the proposed algorithms on practical 
engineering applications. The proposed algorithms are 
applied to optimise the control parameters of position 
tracking control of human arm and lower limb 
exoskeleton model. Finally, conclusion drawn from 
the work are presented in section VI.     

 
Firefly algorithm 

Firefly algorithm (FA) is one of the bio-inspired 
optimization algorithms and in the family of swarm 
intelligence based optimization algorithms developed 
by Yang [22-24]. It is a population-based 
metaheuristic algorithm inspired by the social 
behaviour of a group of fireflies that interact and 
communicate via the phenomenon of bioluminescence 
produced in the insect body.  

Yang also suggests that each firefly will produce 
its own light intensity that determines the brightness 
of the firefly. The variation of light intensity produced 
is associated with the encoded objective function. As 
the attractiveness of firefly is proportional to the light 
intensity produced by each firefly, the distance, r could 
be defined as the distance between any two fireflies. 
For a firefly to move to another brighter firefly, 
assuming that a firefly 𝒿 is more attractive than 
firefly	𝒾, Yang suggests that the movement of firefly	𝒾, 
towards firefly 𝒿 is determined by 

 
𝑥%&' = 𝑥% + 𝛽+𝑒-./

01𝑥2 − 𝑥%4 + 𝛼𝜖% (1) 
 
where the third term is the randomization term which 
consists of randomization coefficient, 𝛼 with the 
vector of random variable, 𝜖% from Gaussian 
distribution and 𝛽+ is the parameter value of 
attractiveness coefficient at r = 0. 

 
Spread enhancement for firefly algorithm 

The proposed algorithm presented here is 
purposely to solve several issues of the classical 
algorithm. The classical algorithm’s parameters are all 
predetermined and do not change after each 
generation. Yan et al. [20] noted that it works well on 
functions with low dimension and narrow variable 

ranges. However, the algorithm will not perform well 
in complex situations such as increment of the 
dimension and variable ranges. Moreover, the fireflies 
get easily trapped in local optimum as the search space 
is wider and the problem dimension is larger. As a 
result, the accuracy of optimization result is not high 
in such situations. 

Therefore, the algorithm outlines several strategies 
to minimise the impact of these drawbacks. On the 
other hand, it also aims to improve the exploration and 
intensification of the firefly search. The proposed 
strategies introduce time-varying weight in the process 
of renewal of the firefly location, transform the 
predetermined parameter into time-varying nonlinear 
step size and add synergy to local search in the 
algorithm. 

In the original FA, most of the parameter values in 
the equation of movement renewal are set and 
predetermined. Therefore, in order to improve the 
performance of the algorithm, in each process of 
movement renewal, those parameters change, whether 
increase or decrease, nonlinearly with time. The aim 
of the changes made is to enhance the search and local 
exploration, and avoid excessive pace of any local 
extreme point. It helps the algorithm to jump out of a 
local optimum at the beginning and leads to fast 
movement to the global best value at the end of the 
generations. The modification is by determining the 
inertia weight 𝜔%89/ as a nonlinear function of the 
present iteration number (𝑖𝑡𝑒𝑟) at each time step. The 
formulation of the nonlinear adaptive weight function 
thus proposed is as follows: 

 
 

𝜔%89/ = =(%89/?@A-%89/)C

(%89/?@A)C
D × 1𝜔F − 𝜔%4 + 𝜔F           (2)  

 
 
where 𝑖𝑡𝑒𝑟GHI is the maximum number of 
iterations/generations in a given run, 𝑛 is the nonlinear 
modulation index and 𝜔(𝑡) is inertia weight with 𝜔F 
as the final parameter value and 𝜔% as the initial 
parameter value. The inertia weight will be the 
parameter of the algorithm such as absorption 
coefficient,	𝛾(𝑡) and randomization coefficient, 	α(t) 
and inertia weight of firefly position renewal,	𝛿(𝑡).  

The synergy of local search is done by exploiting 
the neighbourhood condition. Hence, the score of 
information index, 𝑆%(𝑖𝑡𝑒𝑟) is introduced for the 
fireflies with nonlinear spread enhancement strategy 
to pay more attention to local search and find better 
global optimum solution. The index is formulated as: 

 
𝑆% = P F1IQRSTU(%89/)4-F1IV(%89/)4

F1IQRSTU(%89/)4-F1IWXTU(%89/)4
Y × Z𝑞% − 𝑞F\ + 𝑞F    

                                 (3) 
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where 𝑥]^/_8(𝑖𝑡𝑒𝑟) and	𝑥`9_8(𝑖𝑡𝑒𝑟) are the worst and 
best positions at iteration (iter), respectively with 𝑞% as 
the lowest factor value and 𝑞F as the highest factor 
value set at the initialization stage. The index will 
adjust the proposed nonlinear adaptation strategies. 
Hence, the adjustment mechanism of the nonlinear 
adaptive strategies is expressed mathematically as: 

 
𝑥%&' = 𝛿(𝑡)𝑥8 + 𝑆%(𝑡)𝛽𝑒-.(8)/

01𝑥2 − 𝑥%4 +
𝑆%(𝑡)𝛼(𝑡)              (4) 

 
 
The above shows the adaptation of position of the 

fireflies after each iteration / generation in a given run 
of the experiment. With these nonlinear adjustments, 
the modified firefly algorithm will have better balance 
between the global search and local search 
capabilities, and thus will avoid getting trapped into 
local optimum, and this will increase the speed of 
convergence to better optimum solution.  

 
Methodology 

In this paper, the performance of SE-FA compared 
to the classical FA is assessed with six benchmark 
functions as shown in Table 1. The performance 
evaluation measurements used in the comparative 
assessment include the quality of the final solution and 
the convergence speed towards optimum solution. 
Furthermore, the proposed algorithms are also used to 
devise control mechanisms for lower and upper 
extremities. A set-point tracking position control is 
developed as the control mechanism. The bio-inspired 
algorithms are applied to optimise the controller to 

achieve preferable manoeuvrability of the model. 
Performances of the proposed algorithms with the 
control strategy are evaluated and analysed. 

The experimental testing hardware platform 
comprises a personal computer (PC) with processor 
CPU Intel (R) Core (TM) i5-2400 with operating 
systems Window 7 Professional, frequency of 3.10 
GHz and memory installed of 4.00 GB RAM. The 
program is coded in MATLAB R2013a. 

 
Benchmark functions and experimental 
analysis 

The proposed algorithm, SE-FA is extensively 
compared with the classical FA and one variant of FA 
known as inertia weight FA (IWFA) [19]. Yafei et al. 
[19] introduced inertia weight (IW) at updating 
fireflies during iteration period to lead to improved 
solutions. Adopting such idea, the adaptive dynamic 
step size of the firefly parameters is proposed here. For 
a fair comparison of all the competitive algorithms, the 
same population size of fireflies is used as proposed 
by Yang [24]. Table 1 shows the parameter set of all 
the algorithms during initialization for the tested 
problems. 

The performance of SE-FA compared to the 
classical FA and IWFA is assessed with six 
benchmark functions as shown in Table 2. The 
benchmark functions consist of three unimodal 
functions (De Jong, f1, Schwefel’s Problem 2.22, f2 
and Schwefel’s Problem 1.2, f3) and three multimodal 
functions (Rastringin, f4, Ackley, f5 and Griewank, f6). 

Table 1. Benchmark functions used in the tests. 

No Function Benchmark Formulation Search Space 

f1 Sphere 𝑓'(𝑥) = b 𝑥%c
d

%e'
 [-10,10]D 

f2 Schwefel’s Problem 2.22 𝑓c(𝑥) = b |𝑥%|
d

%e'
+g |𝑥%|

d

%e'
 [-10,10]D 

f3 Schwefels’s Problem 1.2 𝑓h(𝑥) = b (b 𝑥2
%

2e'
)c

d

%e'
 [-65,65]D 

f4 Rastringin 𝑓i(𝑥) =b {𝑥%c − 10 cos(2𝜋𝑥%) + 10}
d

%e'
 [-5.12, 5.12]D 

f5 Ackley 𝑓s(𝑥) = −20 expw−0.2y
1
𝐷b 𝑥%c

d

%e'
{ − exp |

1
𝐷b cos 2𝜋𝑥%

d

%e'
} + 20 + 𝑒 [-32,32]D 

f6 Griewank 𝑓~(𝑥) =
1

4000b 𝑥%c
d

%e'
−g

𝑥%
√𝑖

d

%e'
+ 1 [-600, 600]D 

 
Table 2. The FA variants used. 

Algorithm Parameters Reference 
Classical FA 𝛽^ = 1.0, 𝛼 = 0.2, 𝛾 = 1.0 [23, 24] 
IWFA 𝛽^ = 1.0, 𝛼 = 0.2, 𝛾 = 1.0, 𝜔%�%8%H� = 1.0, 𝜔F%�H� = 0.4 [19] 

SE-FA 𝛽^ = 1.0, 𝛼%�%8%H� = 1.0, 𝛼F%�H� = 0.01, 
𝛾%�%8H� = 0.01, 𝛾F%�H� = 1.0, 𝜔%�%8%H� = 1.0, 𝜔F%�H� = 0.4  

 



Kasdirin et al. 

u journal.ump.edu.my/mekatronika 30 

The number of function evaluations (NFE) is used 
in the tests as a measurement of computational time 
instead of the number of generations. 30 independent 
runs of the three algorithms are carried out on each of 
the benchmark functions and the mean value of the 
best value of benchmark function solution and their 
respective standard deviation are noted. The problems 
are considered in 10 and 30 dimensions. 

The performance evaluation measurements used in 
the comparative assessment include the quality of the 
final solution, the convergence speed towards 
optimum solution, the successful rate (reliability of 
hitting the optimum threshold) and statistical 
significance test. Such comparison reflects the 
superiority of the proposed approach as tabulated in 
Tables 3 – 4, and these are discussed below.  

Comparison of the quality of optimum solutions for 
the algorithms in dimensions 10 and 30 is shown in 
Tables III and IV. The results obtained are in terms of 
mean fitness value and standard deviation for 30 
independent runs of each algorithm. The maximum 
number of NFE for each algorithm is predetermined as 
3000. The best solution value in each case is marked 
in bold. Based on the results obtained, it is noted that 
the algorithms successfully located the optimum 
points of all the benchmark functions. However, the 
mean result obtained with SE-FA was better than the 
other algorithms. This demonstrates that SE-FA 
achieves better performance than the other algorithms, 
in terms of convergence to the optimum solution. 

Both classical FA and IWFA seem to have got 
trapped to the local optimum especially in case of 

Schwefel’s Problem 1.2, Ackley and Griewank 
function in 30 dimensions. IWFA showed some 
improvement as compared with the classical FA; 
however, both algorithms could not jump out of the 
local optimum. On the other hand, SE-FA improved 
the situation and also showed exploitation of local 
search. SE-FA also showed faster convergence and 
tendency to get better result as the number of NFE 
increased. 

Application to control of assistive exoskeleton 
Human arm model of upper extremities and lower 

limb exoskeleton model for lower extremities are used 
in this experiment. The proposed algorithms are used 
to devise control mechanisms for lower and upper 
extremities. A set-point tracking position control using 
proportional, integral and derivative (PID) control is 
developed as the control mechanism. Performances of 
the proposed algorithms with the control strategy are 
evaluated and analysed. For the experiment, the basic 
criteria used were thus as follows: 

 
Maximum number of population, nmax = 30. 
Maximum number of iterations, itmax = 30  
(NFE = 900). 

 
In this section, the proposed algorithms are 

employed for upper limb exoskeleton exercise. A lot 
of the research work has been reported using bio-
inspired algorithms in the design and development of 
upper limb exoskeleton. For example, Hassan and 

Table 3. Test with benchmark functions in 10 dimensions. 

 
FA IWFA SE-FA 

Mean Value Standard 
Deviation Mean Value Standard 

Deviation Mean Value Standard 
Deviation 

f1 1.22e+02 2.05e+01 1.30e-06 1.47e-06 1.05e-12 7.47e-13 
f2 2.83e+01 2.90e+00 2.03e-03 1.77e-03 2.63e-06 1.00e-06 
f3 1.12e+02 2.24e+01 5.18e-05 8.86e-05 2.94e-12 4.21e-12 
f4 5.98e+01 7.28e+00 7.81e-05 1.65e-04 1.99e-10 1.15e-10 
f5 1.95e+00 2.47e+00 1.08e-02 1.18e-02 5.09e-09 5.29e-09 
f6 1.39e+02 2.36e+01 1.89e-03 3.23e-03 1.95e-13 1.82e-13 

 
Table 4. Test with benchmark functions in 30 dimensions. 

 
FA IWFA SE-FA 

Mean Value Standard 
Deviation Mean Value Standard 

Deviation Mean Value Standard 
Deviation 

f1 6.20e+02 5.36e+01 1.27e-06 3.23e-06 4.13e-12 4.34e-12 
f2 5.29e+06 1.03e+07 1.74e-03 1.31e-03 1.14e-05 7.57e-06 
f3 8.72e+02 1.19e+02 7.14e-05 1.46e-04 4.63e-11 1.06e-10 
f4 3.32e+02 1.11e+01 3.54e-05 4.87e-05 1.75e-09 2.99e-09 
f5 2.15e+00 3.20e+00 8.49e-03 7.32e-03 6.71e-09 6.33e-09 
f6 6.06e-02 7.37e+01 1.71e-03 2.83e-03 2.70e-13 2.02e-13 
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Karam [8] used PSO in designing the structure of 
rehabilitation robot arm. Khan et al. [9] also employed 
PSO in determining the control gains of upper limb 
assist exoskeleton robot. Simulation were performed 
for only one human arm. The algorithms were used to 
tune and optimise the controller to determine the best 
gains for the system. The performance of the control 
system with the used optimisation algorithms is 
evaluated. The error and torque characteristics are also 
monitored. For all the tests, the algorithms used the 
same population size, n and NFE for a fair 
comparative evaluation. 

In the simulations, the elbow and shoulder joints 
were actuated individually. In this experiment, wrist 
was considered static and hence, the wrist movement 
was followed based on the elbow movement. In this 
case, the tracking was based on the movement of 
elbow and arm. The starting point was standing 
position in normal condition. Both shoulder and elbow 
were initialised to zero position. Zero position refers 
to human in standing where both elbow and shoulder 
are in straight downward position. For this 
experiment, the shoulder moved in outward rotation 
while the elbow was raised by moving in flexion and 
extension condition. From the experiments, SE-FA 
achieved better result by producing the lowest cost 
function value as compared to FA and IWO 
algorithms. 

 
Lower Limb Exoskeleton Movement  

In this section, control mechanisms for lower-
extremities exoskeleton assistance are devised and 
evaluated with the proposed algorithms. The lower 
limb exoskeleton system model as described by 
Ghassaq et al. [5] is used in this experiment. The 
exoskeleton system is to control and balance both 
lower limb exoskeleton and humanoid movement in a 
walking cycle. The humanoid model structure has 

been developed by [5] in MATLAB 2012 / Simulink 
linked with Visual Nastran 4D (VN4D) environment. 
For simulated walking, a specific trajectory of the 
knee joint movement is set using Clinical Gait 
Analysis (CGA) data with reference to Kirtley [10]. 
The algorithm can be used to find optimal parameters 
of exoskeleton design and also to fine tune the control 
structure used for the exoskeleton. Long et al. [11], 
used GA to optimise a sliding mode controller in lower 
limb exoskeleton application. 

In this research, PID control is developed for knee 
joint movement. The bio-inspired algorithms are used 
to optimise and minimise the orientation error for the 
knee joints while the exoskeleton system is in walking 
phase. The proposed optimisation algorithms are used 
to fine tune the controller gains to minimise the error, 
e(t). The block diagram of the PID control used for the 
lower limb exoskeleton is shown in Figure 3. 

The simulation focused on the trajectory of right 
and left knee and the ability of the controller to move 
the exoskeleton model accordingly. The output of the 
controller is the knee torque of the model which is fed 
to the humanoid. In Figure 8, the Error 1 and 2 need to 
be minimised, and the proposed algorithms as the 
optimisation tools in the controller. Furthermore, SE-
FA achieved better result by producing the lowest cost 
function value as compared to FA and IWO 
algorithms. 

Table 8 shows the minimum and maximum torque 
profiles of the right and left knee joints of both 
humanoid and exoskeleton during walking phase. 
Samples of the torque profile are shown in Figure 4 for 
the case of torque profiles for both humanoid and 
exoskeleton of the SE-FA. Most of the algorithms 
achieved good results as they showed that the average 
torque of exoskeleton was less than 30 Nm. This is 

 
Figure 1. The human arm model. 

 
Figure 2. The controller of the upper limb exoskeleton system. 
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because, according to Low [12], the maximum 
assistive torque for exoskeleton in the application to 
support knee joint is advised to be lower than 60 Nm. 

Conclusion 
This paper has presented an improved variant of 

firefly algorithm by using nonlinear adaptation of the 
step size of the algorithm parameters. The present 

formulation scheme attempts to improve the 
exploration and exploitation abilities of the search 
space to avoid premature convergence and achieve 
better optimum solution. It has been demonstrated in 
tests with six benchmark functions in high dimensions 
that the proposed SE-FA has outperformed the 
classical FA and IWFA in terms of quality of optimum 
value, convergence speed and successful rate. The 
proposed bio-inspired optimisation algorithms have 

 

 
Figure 3. Lower limb exoskeleton with controller. 

 

 
Figure 4. Torque profile for SE-FA, 1(a) Right leg, 1(b) Left leg. 
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been employed in two engineering applications. 
Application of the optimisation algorithms to optimise 
parameters of PID control for trajectory tracking of 
upper and lower extremity exoskeletons. The 
performance comparison has been made based on 
ability of the algorithms to achieve best fitness and 
convergence to optimal solution. The test results 
obtained have shown that the proposed algorithm has 
provided significant improvement to the original 
algorithm, and is more reliable, achieves better results 
and significantly outperforms the original algorithms. 
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