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Abstract 

This paper presents an investigation into the development of a parametric model of pitch 

movement of a twin rotor multi-input multi-output system (TRMS) using adaptive finite 

impulse response (FIR) models. The TRMS is a laboratory platform designed for control 

experiments. In certain aspects, its behaviour resembles that of a helicopter. It typifies a 

high-order nonlinear system with significant cross coupling between its two channels. 

The system is initially excited with PRBS signals of different bandwidths to ensure that 

all resonance modes are captured. The PRBS magnitude is selected so that it does not 

drive the system out of its linear operating range. Then, an adaptive FIR filter structure 

with LMS, NLMS, and genetic algorithm (GA) with LMS algorithms is investigated to 

identify the system and extract its parametric model. Effects of filter taps, step-size and 

system convergence are also studied. Performances of the employed techniques are 

assessed and presented in time and frequency domains. 

1. INTRODUCTION

Adaptive filters are digital filters capable of self-adjustment. They can change in 

accordance with their input signals. They have been used in a number of applications, 

including noise cancellation, system identification, and adaptive control [1, 5].  

In system identification using adaptive filtering techniques, the unknown system is 

modelled by an adaptive filter with adjustable coefficients. Both the unknown system and 

adaptive filter model are excited by an input sequence x(n), as shown in Figure 1. At each 

time interval, an input signal sample x(n) is processed by the time-varying filter 

generating a predicted output y(n). The output is compared with the desired output d(n) to 

produce an error signal e(n). The error signal is then used as input to an adaptive control 

algorithm, which modifies tap weights of the filter. This process is repeated through 
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several iterations until the error signal e(n) becomes sufficiently small. The objective is 

to minimize the cost function, mean-square-error =E[e2(n)], where e(n) is defined as: 

)n(y)n(d)n(e  .  

Genetic algorithm (GA) is one of the global stochastic search algorithms based on 

natural biological evolution [6, 8]. Since their introduction by Holland [8], there has been 

growing interest among scientists and engineers in the use of GAs in identification and 

control applications [9, 10]. Unlike steepest descent and recursive estimation approaches 

to nonlinear parameter identification, GA requires no calculation of the gradient and is 

not susceptible to local minimum problems that arise with multimodal error surfaces.  

In this study, a finite impulse response (FIR) transversal filter using least mean square 

(LMS), normalized least mean square (NLMS) and a new algorithm, GA with LMS 

(GA+LMS) is investigated for a twin rotor multi-input multi-output system (TRMS) in 

hovering mode.  
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Figure 1: System identification with 
adaptive filter. 
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Figure 2: Schematic diagram of the 

TRMS.

2. EXPERIMENTAL SET-UP 

The TRMS, shown in Figure 2, is a laboratory set-up designed for control experiments 

[3]. In certain aspects it behaves like a helicopter. The TRMS rig consists of a beam 

pivoted on its base in such a way that it can rotate freely both in the horizontal and 

vertical directions producing yaw and pitch movements, respectively. At both ends of the 

beam there are two rotors driven by two d.c. motors. The main rotor produces a lifting 

force allowing the beam to rise vertically making a rotation around the pitch axis (pitch 

angle). While, the tail rotor is used to make the beam turn left or right around the yaw 

axis (yaw angle).  

The TRMS is constructed so that the angle of attack of the blades is fixed and the 

aerodynamic force is controlled by varying the speed of the motors. Therefore, the 
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control inputs are supply voltages of the d.c. motors. A change in the voltage value 

results in a change in the rotational speed of the propeller, which results in a change in 

the corresponding position of the beam [3]. 

The hovering property of the TRMS is the main area of interest in this work. Station 

keeping or hovering is vital for a variety of flight missions such as load delivery, air-sea 

rescue etc. Although the TRMS rig reference point is fixed, it still resembles a helicopter, 

by being highly nonlinear with strongly coupled modes. Such a plant is thus a good 

benchmark problem to test and explore modern identification and control methodologies.  

3. TRANSVERSAL FIR ADAPTIVE FILTERS 

In a transversal FIR filter of length M, the output y(n) is computed by a weighted sum of 

the current and delayed input samples [7]:  







1

0

M

m
m )mn(x)n(b)n(y  (1) 

 
where, )n(bm  are the adaptive parameters, and y(n) and x(n) are the predicted output and 

actual input, respectively. Equation (1) can be rewritten in a vector form as: 

)n(u)n(w)n(y T  (2) 

where, the coefficient vector w and the signal vector u each have length of M and are 

defined as;  TM )n(b),...,n(b)n(w 10   and  T)Mn(x),...,n(x)n(u 1 . 

4. ADAPTIVE LEARNING ALGORITHMS 

The task of an adaptive algorithm is to find the optimal parameters of the model that 

minimize the cost function. The performance of the algorithm can be measured by a 

number of factors such as: accuracy of the obtained solution with respect to the 

theoretical value, convergence speed, tracking ability, computational complexity and 

robustness.  

4.1 Least mean square algorithm 

The LMS algorithm is an iterative gradient algorithm that can be used to adapt the 

coefficients of an adaptive FIR filter (Figure 1) such that the error e(n) is minimized in 

the mean square sense. The LMS update equation is given as [4, 7]: 

)n(u)n(w)n(y T 1  (3) 
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)n(y)n(d)n(e   (4) 

)n(u )n(e )n(w)n(w  21  (5) 

where, e*(n) is the complex conjugate of error signal and indicates the step size for the 

gradient descent method.  

4.2 Normalised least mean square algorithm 

In the LMS algorithm, the correction [ u(n) e*(n)] applied to the tap-weight vector 

)n(w  at time n+1 is normalized with respect to the squared Euclidean norm of the tap-

input vector u(n) at time n. The update expression of the NLMS algorithm can be defined 

as [5, 7]: 

)n(e)n(u
)n(ua

)n(w)n(w 




2
1   (6) 

For convergence it is required that: 20   , and a is a small positive number.  

4.3 Genetic algorithm with LMS (GA+LMS) 

Genetic algorithms constitute global and data independent search techniques. They 

operate on a population of potential solutions by applying the natural evolutionary 

process (i.e. principles of survival of the fittest) to produce better and better 

approximation to a solution and as such it is flexible and parallel in nature [2]. The 

algorithm begins with a collection of parameter estimates, called a chromosome. Each 

chromosome is evaluated for its fitness in the problem domain. At each generation 

(algorithm time-step) the most-fit chromosomes are allowed to mate and bear offspring. 

The new parameter estimates (offspring), then, form the basis for the next generation. 

GA operators such as selection, crossover and recombination are then re-employed to 

process the next generation [6]. This process is repeated several times to satisfy some 

criteria. The mutation feature is often introduced to guard against the local minimum. 

The problem of local minima in the gradient-based algorithm like LMS, is very 

common which leads to biased estimation. In order to overcome the effects of local 

minima and to improve global searching capability, GA is combined with the LMS 

estimation. The working principle of GA+LMS algorithm is illustrated in Figure 3. The 

process starts with data segmentation; dividing the experimental input-output data into n  

segments of equal length and overlapping each other as shown in Figure 3. Here the 

number of data segments n  is chosen equal to the number of individuals to be used in the 
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GA optimisation process. The length of the each data segment nDDD ,...2,1  is set to N . It 

is noted that, for consecutive data segments the latter one i.e., 2D  lags the previous one 

i.e., 1D  by d number of samples. The number of weight for the FIR transversal structure 

is set at m  and conventional LMS algorithm is applied on each set of data set separately 

and corresponding filter weights are stored in a matrix W  at the end of iterations.  

 
Figure 3: Working principle of GA+LMS algorithm 

 
Similarly, sum of squared error for each data set is stored in a column vector )(xf , 

as shown in Figure 3. Taking matrix W  as the initial population and vector )(xf  as their 

corresponding objective functions, GA is applied with any data segment for a predefined 

number of generations to obtain suitable values of weight values that minimise the 

objective function further.  
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5. RESULTS AND DISCUSSION 

In this study, three FIR adaptive filters were employed in modelling the TRMS in 

hovering mode. In each case a different adaptive algorithm based on LMS, NLMS and 

GA+LMS techniques was used to estimate the parameters of the filter. 

The system was excited with a pseudo random binary sequence (PRBS) of bandwidth 

(0-10 Hz) in order to ensure that all system resonance modes are captured. The PRBS 

signal level of ±0.2 volts, was selected so that it does not drive the TRMS out of its linear 

operating range. The input PRBS signal and its corresponding output response of vertical 

channel of the TRMS is shown in Figure 4. The system is modeled from the input volt to 

vertical angle/movement with 4000 data samples. The performances of the three 

algorithms are evaluated in terms of output tracking, resonance mode detection, and 

minimization of cost function. 

 
Figure 4: Experimental input-output data of vertical channel of TRMS 

5.1 System modelling with LMS algorithm 

The principal factors that influence the LMS algorithm are: the step-size parameter, , 

the number of taps and the eigenvalues of the correlation matrix of tap-input vector.   

5.1.1 Selecting the filter tap 

In this study, efforts were made to find the optimum filter order for modelling the system 

on trial and error basis. Since the transversal structure has only zeros it needs fairly high 

number of taps to model a practical system, which has complex nonlinear characteristics. 

It was observed that with a 60th order FIR filter, the system could be modelled with a 

satisfactory convergence and stability levels, and with further higher model order, the 
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performance degraded. This is because the larger filter order, the larger the eignvalue 

spread of the correlation matrix of input tap-vector, which in turn decreases the rate of 

convergence of the LMS to optimal solution. Moreover, the higher number of filter taps 

adds huge computation, which may not meet real time requirements of the application.  

5.1.2 Choice of step-size 

The step size parameter  controls the convergence of the algorithm. If  is small the 

adaptation is slow. On the other hand, when  is large, the adaptation is relatively fast, 

but at the expense of an increase in the average excess mean squared error after 

adaptation. For stable adaptation behaviour, the step-size has to be: max 20  , 

where, max is the maximum eigenvalue of the tap-input correlation matrix. For the 60th 

order FIR filter, the maximum value of  according to the above relation is 0.009 for 

PRBS input. To select the optimum step-size, the experimentation was repeated many 

times with different step-sizes by monitoring the mean square error (MSE) and the 

spectrum. The optimum step-size for 60 taps was recorded at 0.008. Figures 5a and 5b 

demonstrate the effect of step-size on MSE and convergence of LMS algorithm, 

respectively. It is noted that as the step-size increases, the MSE decreases. This is 

applicable until a certain value (0.008). After that value, if the step-size is increased, the 

MSE increases to a very high value. 
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b) Effect of step size on LMS convergence 

Figure 5: Effect of step size on mean-square error and convergence 

Genetic algorithm was also used to find the optimum step size of LMS algorithm. 

The objective function for optimisation was chosen as sum of squared error; 
2)n(y)n(dsum)x(f  . Multiple crossover was selected with a probability of 0.9 to 

update the step sizes in the subsequent generations. A high degree of precision (48 bits) 
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was chosen for the step size. An optimum step size was recorded as 0.0081711, for filter 

taps 60, only after 20 generations. This is almost the same with the value obtained 

through trial and error. 

5.2 System modelling with NLMS algorithm 

The normalized LMS algorithm is convergent in the mean-square sense if the adaptation 

constant  satisfies the condition: 20   . For the 60th order FIR transversal filter 

using NLMS algorithm, the optimum step-size was found to be 1.75 at which the MSE is 

minimum. 

5.3 System modelling using GA + LMS algorithm 

The system was modelled from the input volt to vertical angle/movement. The GA+LMS 

was designed (see Figure 3) with 10 ,60 ,30 ,4000  dmnN , i.e., number of 

samples in each data segment = 4000, number of individual in initial population = 30, 

number of FIR filter weights = 60 and lag between consecutive data segments = 10. 

Satisfactory results were achieved with the following set of parameters: generation gap: 

0.8; crossover rate: 0.9; precision: 20; mutation rate: 0.0001 and the maximum number of 

generations: 100. The convergence curves of GA+LMS and conventional GA in the same 

problem are shown in Figure 6. It is important to note that the proposed GA+LMS 

converge to a much lower value of objective function compared to conventional GA in 

the same number of generation. Moreover it seems that objective function is gradually 

decreasing in case of GA+LMS while for GA, the objective function remains almost 

unchanged from generation 30 to onwards. It is clearly evident that the performance of 

GA+LMS algorithm is much better than conventional GA in this problem. 

 
Figure 6: Convergence curves of GA and GA+LMS in system modelling 
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5.4 Comparative assessment 

In terms of output tracking, the three algorithms have demonstrated a satisfactory level of 

performance, as shown in Figures 7. Among the three algorithms, the LMS algorithm has 

outperformed the other two algorithms, followed by NLMS, and then combined 

GA+LMS. Figure 4d shows the corresponding power density plot of the three algorithms. 

The three models have also demonstrated a satisfactory performance in detecting the 

main system’s mode. The system’s main mode was clearly detected with the three 

approaches as 0.3516 Hz. Since, the system has a low frequency modes, the higher 

frequency region is less significant in terms of system dynamics. 

The cost function is minimized by the three algorithms. For the LMS and NLMS 

based models, the cost function was the MSE. With 60th model order, lowest values of 

the MSE of 0.0008062 and 0.0008497 were recorded for LMS and NLMS based models, 

respectively. For the GA+LMS, the objective function was the sum of the squared error 

(SSE). After 100 generations the SSE was found to be 4.477 for this case.  
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Figure 7: Output tracking and PSD plots for the three algorithms 
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6. CONCLUSION 

This investigation has witnessed the development of dynamic modelling of a twin rotor 

multi-input multi-output system in a hovering mode. A one degree-of-freedom TRMS 

model, whose dynamics resemble that of a helicopter has been successfully identified 

using finite impulse response adaptive filtering formulation. Three adaptive algorithms 

based on; LMS, NLMS and GA+LMS, were utilized to update the filter’s coefficients. 

The three employed algorithms have demonstrated satisfactory performance and were 

quite comparable in terms to output tracking and resonance mode detection. The 

extracted models will be used in subsequent investigations for the development of 

simulation of rigid-body motion, vibration suppression and control strategies for the twin 

rotor system. 
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