
Ediacaran–Cambrian survivor Cochleatina

1

1 //Cochleatina: an enigmatic Ediacaran–Cambrian survivor among small 

2 carbonaceous fossils (SCFs)

3 BEN J. SLATER1, THOMAS H. P. HARVEY 2, ANDREY BEKKER3 and NICHOLAS J. 

4 BUTTERFIELD4

5 1Department of Earth Sciences, Palaeobiology, Uppsala University, Sweden.

6 2School of Geography, Geology and the Environment, University of Leicester, UK.

7 3Department of Earth and Planetary Sciences, UC Riverside, USA.

8 4Department of Earth Sciences, University of Cambridge, UK.

9 ___________________________________________________________________________

10 Abstract: Conspicuously few body-fossil taxa are known to span the Ediacaran-Cambrian 

11 boundary, a pattern usually taken to signal either a terminal Proterozoic mass extinction, or 

12 taphonomic failure. We draw attention to the emerging record of small carbonaceous fossils 

13 (SCFs), which exhibit continuous preservation spanning this critical interval. Here we focus on 

14 the enigmatic SCF Cochleatina, a morphologically complex coil-shaped problematicum that 

15 ranges across the Ediacaran-Cambrian divide, and potentially among the oldest fossil 

16 occurrences of metazoans. We report new material of Cochleatina canilovica from the 

17 Ediacaran of Estonia and Ukraine, which offers new characters for assessing its palaeobiology. 

18 Significantly, new specimens include sets of three-alike triplets of Cochleatina adhering to 

19 organic sheets, suggesting a clustering habit, or grouping of elements within an individual 

20 during life; an important step in constraining the morphology and ecology of this Ediacaran-

21 Cambrian problematicum. We present revised systematic descriptions for Cochleatina and C. 

22 canilovica, and critically evaluate previous biological interpretations, drawing comparisons with 

23 metazoan, algal and protistan analogues. We reject hypotheses supporting Cochleatina as a 

24 metazoan mouthpart, and suggest new grounds for viewing Cochleatina as a potential 

25 multicomponent predator that trapped protists among microbial mats. Most occurrences are 

26 from Baltica, but we synthesise sporadic reports of Cochleatina from other palaeocontinents, 
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27 pointing to its global distribution during the latest ~10 Myr of the Ediacaran and majority of the 

28 earliest Cambrian Fortunian Stage. As a rare example of an ‘Ediacaran survivor’, Cochleatina 

29 highlights the broader significance of SCFs as a novel means of tracking evolutionary patterns 

30 through the Proterozoic-Phanerozoic transition. 

31 Key words: Ediacaran-Cambrian survivor, oldest metazoan, Proterozoic mass extinction, small 

32 carbonaceous fossils, fossil problematica

33 ___________________________________________________________________________

34 The Ediacaran–Cambrian boundary, approximately 541–539 Ma (Linnemann et al. 2019), is 

35 widely recognised as a juncture of exceptional ecological and evolutionary importance (Conway 

36 Morris 2000; Butterfield 2007; Budd and Jensen 2017). At around this time, the fossil record is 

37 permanently transformed by the appearance and radiation of diverse biomineralizing and 

38 agglutinating forms (Kouchinsky et al. 2012). This switching-on of the ‘shelly’ fossil record 

39 approximately corresponds with an increase in the degree and complexity of bioturbation 

40 (Jensen et al. 2006; Herringshaw et al. 2017), substantial shifts in the nature of biogenic 

41 sediments (fig. 1 of Davies et al. 2019), a disappearance of macroscopic Ediacara-style 

42 preservation (Butterfield 2003), and major changes in the composition of acritarch assemblages 

43 (Moczydłowska 1991; Butterfield 1997; Nowak et al. 2015). Identification of such 

44 ecological/evolutionary perturbations is heavily reliant on taphonomic continuity – in other 

45 words, the factors governing fossil preservation should not substantially change through the 

46 time interval of interest. If they do, then the traceability of lineages/taxa can be seriously 

47 compromised. The coincident opening and closure of several key taphonomic windows across 

48 the Ediacaran–Cambrian transition obscures the precise tracking of taxonomic ranges from this 

49 crucial interval. At present, only a handful of taxa known from body fossils are convincingly 

50 shown to span the boundary (e.g., Narbonne et al. 1997; Crimes and McIlroy 1999; Hagadorn et 

51 al. 2000; Narbonne 2005; Laflamme et al. 2013; Moczydłowska et al. 2014; Darroch et al. 2015; 
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52 Budd and Jensen 2017; Simón 2018). The apparent disconnect in the body fossil record is 

53 contrasted by the relatively unbiased trace fossil record, which instead documents a signal of 

54 continuity between late Ediacaran and earliest Cambrian benthic bilaterian behaviour (e.g., 

55 Jensen 2003; Mangano and Buatois 2017; Kesidis et al. 2019). Before a precise description of 

56 the magnitude, timing, and nature of this transition can reasonably be achieved, there is a 

57 pressing need for an improved accounting of non-biomineralizing taxa in order to discriminate 

58 genuine macroevolutionary patterns from localised signals or taphonomic shortfalls.

59 Small carbonaceous fossils (SCFs) offer one means of tracking the Ediacaran–Cambrian 

60 transition without the associated biases of mineralization. Even under relatively indifferent 

61 taphonomic circumstances, cell walls, cuticle, and other recalcitrant components of non-

62 biomineralizing organisms can be recognizably preserved (Butterfield and Harvey 2012). The 

63 widespread preservation of SCFs has recently been demonstrated from regions and time-

64 intervals where other, more ‘exceptional’ evidence of non-biomineralizing taxa is lacking 

65 (Slater et al. 2017a, 2017b, 2018).  In this study, we focus on an enigmatic SCF taxon, 

66 Cochleatina, a distinctive and widely distributed SCF taxon that appears to span the Ediacaran–

67 Cambrian divide. Cochleatina is especially interesting given that it preserves in substantially 

68 different depositional environments than iconic boundary-spanning taxa such as Cloudina 

69 (Warren et al. 2014; Penny et al. 2014; Yang et al. 2016). Despite this, Cochleatina has so far 

70 been neglected from discussion of Ediacaran ‘survivors’, and so warrants renewed attention, 

71 particularly in the context of recent debate on rates of turnover, extinction and the nature of the 

72 Ediacaran–Cambrian transition (Budd and Jensen 2017; Darroch et al. 2018; Tarhan et al. 2018; 

73 Wood et al. 2019).

74 Cochleatina is a coiled carbonaceous fossil formed as a spiral-shaped ribbon ornamented 

75 with fine serrations (Fig. 1). Examples of this fossil were first figured among acid-extracted 

76 material from the Ediacaran of the Ukraine by Aseeva (1974), but were initially interpreted as 

77 simple coiled filaments and ascribed to the filamentous form-taxon Volyniella (albeit as a new 
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78 species). Three further species were later added based on material from the Rovno (latest 

79 Ediacaran or earliest Cambrian) and Lontova (Cambrian) formations in Belarus, Lithuania and 

80 Latvia (Paškevičiene 1980), but remained assigned to Volyniella until Aseeva (1983a) 

81 established Cochleatina as a new genus to circumscribe these morphologically distinct fossils. 

82 Several succeeding studies mentioned or figured Cochleatina from sediments in Baltica and 

83 Siberia (e.g., Velikanov et al. 1983; Aseeva 1988; Rudavskaya and Vasilyeva 1989), but with no 

84 substantial revision until a major redescription and analysis by Burzin (1995), in which the four 

85 currently accepted species were amended: C. canilovica, C. rara, C. rudaminica and C. 

86 ignalinica. More recent reports of Cochleatina, recovered among acritarch preparations, have 

87 expanded its known geographic range beyond Baltica and Siberia to Avalonia and Gondwana 

88 (e.g., Sabouri et al. 2013; Palacios et al. 2018). Attempts to pin Cochleatina to the tree of life 

89 have been wide-ranging. Several authors have proposed a metazoan affinity (among annelids or 

90 molluscs; Butterfield and Harvey 2012), a premise which would clearly have significant 

91 implications if confirmed or refuted.

92 Here we describe new material of Cochleatina from Ediacaran sediments of Estonia 

93 (Kotlin Formation) and Ukraine (Krushanovka Formation). We further discuss the broader 

94 significance of this SCF taxon in light of its status as a credible Ediacaran–Cambrian ‘survivor’, 

95 in the context of recently revised stratigraphy (Meidla 2017), and its emerging 

96 palaeobiogeographic distribution (Fig. 2). We further examine and test previous hypotheses for 

97 the biological affinity of Cochleatina, and propose new models for its possible mode of life. 

98

99 Geological Setting

100 Estonia: The Kotlin Formation (Fig. 3) is widely developed across the Baltic States on the East 

101 European Platform, and equivalent strata occur from Poland in the west, to the margin of the 

102 Baltic craton in the east (Moczydłowska 1991; Pirrus 1992; Mens and Pirrus 1997). In Estonia, 
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103 the Kotlin Formation is known exclusively from subsurface drillcore material, the nearest 

104 outcrop being on Kotlin Island (Russia) in the Gulf of Finland. The Kotlin Formation comprises 

105 a relatively homogeneous package of sediments composed predominantly of finely laminated 

106 grey, illite-smectite mixed-layer clays, with occasional interbeds of fine-grained sandstone and 

107 siltstone (Raidla et al. 2006; Mens and Pirrus 1997). Due to a relatively shallow burial depth and 

108 quiescent regional tectonic history, Kotlin strata have experienced negligible thermal alteration 

109 over their more than half a billion year history (Raidla et al. 2006). In Estonia, the Kotlin 

110 Formation conformably overlies the coarser-grained sandy sediments of the Gdov Formation, 

111 and is in turn overlain by the correspondingly sandstone-rich Voronka Formation (Fig. 3; Mens 

112 and Pirrus 1997; Meidla 2017). Together, this package of Ediacaran sediments rests 

113 unconformably on a weathered crystalline basement (Puura et al. 1983; Nielsen and Schovsbo 

114 2011; Meidla 2017).

115 Despite its relative homogeneity, the Kotlin Formation in Estonia is partitioned into 

116 three subdivisions (Mens and Pirrus 1997; Meidla 2017). The lowermost Jamma and uppermost 

117 Laagna members comprise relatively homogenous grey clays, whilst the middle Meriküla 

118 Member can be distinguished by its visible fine-scale intercalations of sand, silt, and clay 

119 (‘varve-like’ appearance; Pirrus 1992), abundance of sapropel films, and macroscopic 

120 ‘vendotaenid’ fossils on bedding planes (Mens and Pirrus 1997).

121 The Kotlin Formation was deposited in a shallow-marine pericratonic basin (Poprawa et 

122 al. 1999). Some authors have proposed brackish (Bityukova and Pirrus 1979) or even freshwater 

123 conditions within a basin with restricted circulation, based on suggestive boron concentrations in 

124 mudstones, localised absence of ‘Ediacara-type’ macrofossils, and a paucity of trace fossils. 

125 Certain regions where the Kotlin Formation developed, however, show clear evidence of marine 

126 deposition (see Burzin 1996), and the extent of freshwater/brackish influence remains 

127 controversial.
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128 The Kotlin Formation shares its name with the regional chronostratigraphic Kotlin stage, 

129 which in Estonia encompasses the Gdov, Kotlin and Voronka formations (Fig. 3). Although 

130 once placed relatively deep within the Ediacaran System (e.g., Sokolov 2011), the Kotlin 

131 Formation is now thought to have been deposited during the terminal ~10 Ma of Ediacaran time, 

132 based on correlation with strata from the Lubin Slope (Poland), Podillya (Ukraine), Urals, and 

133 White Sea region (Russia) where U–Pb zircon dates from volcanic tuff horizons have yielded 

134 lower boundary ages in the range of 551–548 Ma (Moczydłowska 1991; Grazhdankin et al. 

135 2011; Meidla 2017; Soldatenko et al. 2019).

136 Ukraine: Ediacaran sediments of the Krushanovka Formation (Kanilovka Series) from Ukraine 

137 represent broadly coeval deposits, also belonging to the Kotlin regional stage (Fig. 3; Sokolov 

138 and Fedonkin 1985; Velikanov 1990; Iosifidi et al. 2005). Note that the Kanilovka Series of 

139 Podillya (alternatively Podolia) is not to be confused with the Kanilovka Formation of Volyn 

140 from which Cochleatina have been reported elsewhere in Ukraine (Burzin 1995). The 

141 Krushanovka Formation is widely known from drillcore in the Podillya region of Ukraine, and 

142 comprises a series of fine-grained, greenish-grey to white sandstones with substantial interbeds 

143 of reddish siltstones and claystones in its upper parts (Iosifidi et al. 2005). The formation rests 

144 conformably on the Zharnovka Formation (a sequence of coarse- to fine-grained sandstones) 

145 and is capped by the overlying Studentsa Formation (predominantly coarse- to fine-grained 

146 sandstones with occasional siltstones).

147 There are two recognised subdivisions of the Krushanovka Formation, a lower (~45 

148 metre thick) Kryvchany Member, and an upper (~15 metre thick) Durnyakovka Member. The 

149 Kryvchany Member is generally coarser, with a larger proportion of sandstones, while the 

150 Durnyakovka Member is dominantly composed of distinctive red siltstones with occasional 

151 coarse sandstone beds (Sokolov and Fedonkin 1985; Iosifidi et al. 2005). Deposition occurred in 

152 a shallow-marine basin with storm influence (Iosifidi et al. 2005).
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153 Sampling: Sampling for microfossils targeted the most fine-grained lithologies (mudstones and 

154 siltstones) from both areas. In Estonia (Meriküla Member of the Kotlin Formation), we 

155 processed a total of 31 samples, 11 from the Maidla 75A drillcore, 2 from the Maidla F-238 

156 drillcore, 6 from the Toila 77 drillcore and 12 from the Meriküla F-169 drillcore. From the 

157 Podillya region of Ukraine, a total of 5 samples were processed from the Durnyakovka Member 

158 of the Krushanovka Formation, from the drillcore No. 700. Estonian cores are housed at the 

159 TUT Institute of Geology core-storage at Särghaua (Estonia), and samples from the drillcore No. 

160 700 (Podillya, Ukraine) are hosted at the Institute of Precambrian Geology and Geochronology 

161 of the Russian Academy of Sciences in Saint Petersburg. SCF processing and examination 

162 followed a gentle, low-manipulation hydrofluoric acid maceration procedure aimed at the 

163 recovery of larger, delicate forms, otherwise destroyed by standard palynological processing 

164 (see techniques outlined in Butterfield and Harvey 2012).

165

166 Results

167 Our processing recovered a total of 103 individual Cochleatina, of which 70 are from the 

168 Estonian Kotlin Formation (Figs 4, 5), and 33 come from the Ukrainian Krushanovka Formation 

169 (Fig. 6). The majority of specimens were recovered from a small number of highly productive 

170 samples; Estonian specimens were recovered from a depth of 186–187 metres in the Maidla 75A 

171 drillcore, 180 metres depth in Maidla F-238 drillcore, 153 metres in the Toila 77 drillcore, and 

172 119.4 metres from the Meriküla F-169 drillcore, whilst those from the drillcore no. 700 in 

173 Podillya, Ukraine were sourced from a productive layer at 184 metres depth. Both the Estonian 

174 and Ukrainian samples of Cochleatina exhibit substantial taphomorphic variation. In the 

175 Estonian samples, all Cochleatina-bearing horizons produced masses of sapropel sheets, 

176 alongside occasional vendotaenids and filamentous microbes. Productive samples from Ukraine 

177 were also associated with sapropel sheets, but at substantially lower levels.

Page 7 of 54

Palaeontology

Palaeontology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ediacaran–Cambrian survivor Cochleatina

8

178

179 New material. Specimens from the new Estonian Kotlin assemblage (Figs. 4, 5) are preserved as 

180 flattened spirals or incomplete sections of a spiral fused to sapropel films – sheets of relatively 

181 featureless organic matter, sometimes with identifiable filaments superimposed and variably 

182 fused together. These sapropel films are interpreted as compacted and variably fused 

183 sedimentary organic material and/or benthic mats (Figs 4, 5). Specimens consist of a coiled 

184 ribbon; coils reach 540 µm in maximum width (x̅ = 246, SD = 83, n = 70) and display a 

185 continuum of morphologies, ranging from tightly wound bobbin-like configurations (Fig. 4A, 

186 5G–J) to more open spiral forms (e.g., Fig. 5D, F, R, S, T). The ribbon narrows towards the 

187 centre of the spiral and is a complex of four distinct longitudinal zones running the entire ribbon 

188 length (Fig. 7). Thin, sharply pointed serrations project from the first inner zone, directed away 

189 from the centre of the coil, though these serrations are often obscured by the underlying organic 

190 sheet (e.g., Fig. 4L, 5E). Other zones are discernible by their thicknesses (Fig. 7; see Systematic 

191 Palaeontology below). Basal portions are either broken (e.g., Fig. 4I), or alternatively, where 

192 fused to a sheet, the ribbons have no obvious termination but instead fade into the sheet material 

193 (e.g., Fig. 5D–F, H, L).

194 The new Ukrainian Cochleatina (Fig. 6) occur as individual isolates (with the possible 

195 exception of Fig. 6J, no clusters were recovered) and were never found in attachment to larger 

196 organic sheets (note the absence of organic material in the central opening of the bobbin; Fig. 6). 

197 The coils reach 320 µm in maximum width. Like the Estonian specimens, the ribbons are 

198 divided into four discernible zones which narrow towards the centre of the spiral (Fig. 7). The 

199 ribbons are optically darker than their counterparts from the Kotlin Formation, especially the 

200 first and third zones of the ribbon which are opaque in most specimens (Fig. 6). Serrations 

201 emanating from the inner first zone of the ribbon are also prominently visible in the majority of 

202 specimens (e.g., Fig. 6A–C, E, G, J). The ribbon tip has a brush-like termination of fibrous 

203 projections between 5–15 µm in length (e.g., Fig. 6C–G).
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204

205 Comments. The new specimens from Estonia and Ukraine are assigned to C. canilovica on the 

206 basis of their consistent spinose serration, ribbon oriented perpendicular to the bobbin axis, and 

207 four broad ribbon zones, features which are lacking in other taxa (see Systematic Palaeontology 

208 below). Both the Estonian and Ukrainian assemblages are consistent with the currently known 

209 range of C. canilovica which is reported from the Kotlin regional stage of the late Ediacaran, 

210 and the lowermost part of the Rovno regional Ediacaran/Cambrian stage. Although Cochleatina 

211 has been reported from elsewhere in the Baltic region (e.g., Paškevičiene 1980), these are the 

212 first reports from Estonian strata.

213 The new assemblages of Cochleatina from Estonia and Ukraine differ in a number of 

214 aspects. For example, serrations appear more pronounced in the Ukrainian specimens. This, 

215 however, appears to be purely taphonomic – serrations are present in all well-preserved Kotlin 

216 Cochleatina, but are simply less prominent due to the obscuring presence of the 

217 underlying/fused organic sheet. Cochleatina from the Krushanovka Formation exhibit darker 

218 ribbons (particularly in zones one and three), however, this can be explained by variations in 

219 local post-depositional burial histories (e.g., different degrees of thermal alteration). When these 

220 taphonomic considerations are taken into account, it is clear that both assemblages of 

221 Cochleatina exhibit the same underlying morphology.

222

223 Clustered forms. Among the more complete specimens of Cochleatina recovered from the 

224 Kotlin Formation are a notable subset that occur as clusters, consisting of three coils adhered to 

225 the same carbonaceous sheet (N = 6). The sheets are interpreted as the compacted remains of 

226 benthic organic material. No more than three coiled elements per cluster are seen, even on more 

227 extensive sheets. Within clusters, some coils are incomplete (Fig. 5H, K), and some partially 

228 overlap (Fig. 5D, F, H, L). Clusters can comprise tightly-wound bobbin-like and uncoiled forms, 
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229 but within each cluster the coils are always of the same (potentially ontogenetic) stage/type. The 

230 asymmetry of the ribbon zones, in particular the overlap of the serrations, reveals that the coils 

231 occur as enantiomorphs (both right-handed and left-handed forms/chirality), which can co-occur 

232 in the same cluster (e.g., Fig. 5D, F). Occurrence as triplet clusters is an unexpected and novel 

233 insight into Cochleatina morphology. It is possible that the ‘individual’ Cochleatina reported in 

234 previous studies have been selectively disaggregated during more intensive, conventional 

235 palynological processing – indeed, low-manipulation processing appears essential to recovery of 

236 these delicate clusters. Since these Cochleatina are all at the same stage or type within a cluster, 

237 it is unlikely to represent fortuitous superposition via currents or fall-out from the water column. 

238 Either these clusters represent groups of three similar individuals from a population with a 

239 benthic ecology, or were clustered prior to sinking from suspension, or are the recalcitrant 

240 components of a single organism that has otherwise decayed away.  

241

242 Discussion

243 Biological affinities

244 Previous suggestions for the biological nature of Cochleatina have been broad ranging, 

245 reflecting the dearth of suitable fossil or modern analogues (a problem shared with many 

246 Ediacaran fossils). Proposed affinities have included the coiled ‘elaters’ of bryophyte-grade 

247 plant spores (Fig. 8A; Ischenko 1983; Gnilovskaya 1988), defensive ejectosomes of 

248 Cryptophyta (Fig. 8C; Burzin 1995), and subcomponents of a macroscopic alga (Burzin 1995). 

249 Homology with the elaters of liverwort, hornwort, and Equisetum spores (Fig. 8A) can be ruled 

250 out on both functional grounds (the ribbons of Cochleatina are solid with no internal cavity, and 

251 therefore unsuitable for extension and retraction via hygroscopic turgor), and the fact that spores 

252 assignable even to stem-embryophytes are not otherwise known until the Ordovician (Wellman 

253 and Gray 2000; Edwards et al. 2014). The coiled ribbon-like ejectosomes of Cryptophyta bear a 
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254 superficial resemblance to Cochleatina (Fig. 8C; cf., Hausmann 1985, fig. 132), but are 

255 intracellular organelles, orders of magnitude smaller than Cochleatina, making even an 

256 analogous function improbable. Similarly, the serrated filamentous ejectosomes of 

257 helicosporidial cysts are somewhat similar in form to Cochleatina, but are less than ten microns 

258 in size (Fig. 8B).

259 Cochleatina have been reported in rare instances adhering to the macroscopic fossil 

260 ‘alga’ Kanilovia insolita (Ischenko 1983) from the ‘Kotlin’ regional stage of Ukraine (e.g., Plate 

261 XVII.26 of Gnilovskaya 1988). This association with Kanilovia insolita (itself a problematicum) 

262 is intriguing, but whether the relationship is truly biological is difficult to ascertain: even if 

263 fortuitous superposition could be ruled out, there is the possibility that the Cochleatina were 

264 derived from epibionts or some other organism in association with Kanilovia insolita. Similarly, 

265 though the triplet associations of Cochleatina (Fig. 5, this study) are likely biological, the 

266 attachment of Cochleatina to organic sheets (e.g. Estonian material in this study) may or may 

267 not be biological. It is common among SCF-style preservation for multiple overlapping organic 

268 constituents to become fused into a single layer during diagenesis (Martí Mus 2014). The sheets 

269 themselves preserve little discernible morphology, and although they could represent fragments 

270 of thalli (some have regular margins), they could alternatively be regarded as sheets of degraded 

271 and depolymerised organic matter (sapropel), to which the more recalcitrant Cochleatina are 

272 fused. The consistent within-cluster similarity of Cochleatina in these instances would at least 

273 suggest the coils themselves represent structures from a single individual, or individuals from a 

274 single population (Fig. 5D, F, H, K).

275 Elsewhere among the fossil record, some of the more densely coiled Cochleatina bear a 

276 superficial resemblance to sheet-like fossils preserved in Terreneuvian (lower Cambrian) 

277 hydrothermal cherts from South China, which can exhibit a tightly enrolled coil-like habit, the 

278 coils even occurring in ‘clusters’ (Fig. 8G–H; see figs 5A, C–E, 6A, E, F and 7A of Yin et al. 

279 2017). These sheet-like fossils (interpreted as animal cuticles by the authors) also bear a fine 
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280 surface covering of hair-like or dentate projections (fig. 4E, F of Yin et al. 2017). A more 

281 precise structural comparison to Cochleatina, however, is problematic; the surface spines on 

282 these silicified sheets are sparsely distributed hollow projections, quite unlike the regular rows 

283 of tooth-like serrations in Cochleatina. Moreover, Cochleatina is never found as distended, 

284 sinuous sheets or loops, but only occurs as regular coils. In instances where specimens are found 

285 on sheets (e.g., Figs. 4A, B, D, G, J, L, M, Q, S; 5D–K, P), there is no basal connection to a 

286 sheet-margin, indicating that Cochleatina cannot be the flattened enrolled margin of such a sheet 

287 or cuticle.

288

289 Cochleatina as a feeding structure

290 Although only a few of the previously proposed affinities for Cochleatina can be rejected 

291 outright, none offers a convincing basis for assigning it to any particular biological taxon. 

292 Nevertheless, there are other extant and fossil examples that serve to elucidate at least some of 

293 the characteristics that set Cochleatina apart. Notably, Cochleatina can be usefully compared to 

294 a variety of feeding structures seen in extant and fossil heterotrophs, from protistan to 

295 eumetazoan grade. 

296 Comparisons have been made between Cochleatina and another serration-bearing 

297 carbonaceous fossil, Redkinia (Fig. 8F; Sokolov 1977; Burzin 1995), which also occurs in 

298 Ediacaran deposits, both as microfossils (Pl. 18, images 8–9 of Velikanov et al. 1983) and as 

299 bedding-plane visible mesofossils (fig. 2A of Golubkova et al. 2018). Redkinia was initially 

300 proposed to represent a disarticulated polychaete jaw (i.e., a scolecodont; Sokolov 1977), and 

301 later as the mandible-like jaws of a stem-arthropod (Conway Morris 1993); if the connection to 

302 Redkinia was established, it would potentially support a bilaterian affiliation for Cochleatina. 

303 Burzin (1995) highlighted the shared characteristics of Redkinia and Cochleatina, principally 

304 the first and second order serrations (inset in Fig. 8F), which are somewhat similar to those seen 
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305 in C. ignalinica, and considered the possibility of the latter evolving from the former based on 

306 their stratigraphic relationships – but questioned the ability of Cochleatina to have functioned as 

307 a feeding apparatus. It is also questionable whether the two structures (Cochleatina and 

308 Redkinia) are homologous; serrations are a deeply convergent morphological feature, and other 

309 than their carbonaceous habit, this is the only shared character which promotes any useful 

310 comparison.

311 A further likeness to metazoan mouthparts was raised by Butterfield and Harvey (2012), 

312 who remarked on the broad similarity of Cochleatina to certain moluscan radulae. In particular, 

313 the simple pairs of coiled radulae borne by certain Solenogastres (Fig. 8H) are somewhat 

314 Cochleatina-like in overall appearance (see fig. 19F of Scheltema and Schander 2000, and figs. 

315 3 and 4 of Scheltema 2014). Cambrian radulae are known from SCFs (Butterfield 2008) and 

316 from the radula-like mouthparts of Wiwaxia and Odontogriphus (Smith 2012); Cochleatina 

317 substantially predates these occurrences. However, Cochleatina also lacks any belt-like 

318 arrangement of individual tooth-elements: the ribbon is a solid structure, with no joints or 

319 segments. Moreover, one of the species of Cochleatina – C. rudaminica – does not possess any 

320 serrations at all, making a radula-like function or homology unlikely.

321 Among extant organisms, a particularly useful comparison is with the giant (>1 mm) 

322 single-celled ciliate Stentor (Tartar 1961; Slabodnick and Marshall 2014). Specifically, the 

323 coiled anterior region of oral cilia in Stentor is strikingly reminiscent of Cochleatina and reaches 

324 a similar size (Fig. 8J; figs. 1–6, 11–15 of Foissner and Wölfl 1994; fig. 1 of Lanzoni et al. 

325 2019; fig. 2 and sup. fig. 4 of Zinskie et al. 2015). These cilia are fused into flat triangular plates 

326 and borne on a coiled basal membranellar band. Environmental shocks can lead to the 

327 membranellar band being sloughed off and detached from the main body of the Stentor (Tartar 

328 1961; fig. 1 of Sood et al. 2017). When shed, the membranellar band does not disaggregate, but 

329 remains fused as an isolated ribbon which contracts in the transverse direction to form an even 

330 more tightly wound coil (Tartar 1961). The microanatomy of Stentor (particularly S. coeruleus) 
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331 has been studied in detail for its ability to regenerate, during which clusters of ciliary bands can 

332 form (e.g., figs 2, 4 of Tang and Marshall 2017). Similar clustering can occur naturally during 

333 reproduction or during the sessile rest state, where numerous individual Stentor can attach 

334 adjacently to a substrate via their posterior holdfast (Tartar 1961). The main obstacle to analogy 

335 with Cochleatina is taphonomic. Without any obvious robust macromolecular extracellular 

336 components to the ciliary band, it is difficult to envisage how such a structure could produce the 

337 recalcitrant SCF Cochleatina. It is possible that relatively labile structures could fuse to more 

338 resistant organic materials during diagenesis, forming a composite structure (Martí Mus 2014), 

339 and it is worth noting that seemingly decay-prone tissues are occasionally captured in Burgess 

340 Shale-type Lagerstätten (e.g., ctenophores; Fu et al. 2019, fig. 2C). Regardless of taphonomic 

341 issues, these similarities with Stentor demonstrate that complex SCF structures like Cochleatina 

342 could in principle derive from protists.

343 Another intriguing possibility, is that the coils of Cochleatina functioned as a spiral 

344 protozoan trap, analogous with the protistan traps of extant Genlisea, the corkscrew plant (Fig. 

345 8D–E; Barthlott et al. 1998). In Genlisea, specialised spiral rhizophylls with a narrow serrated 

346 slit serve to trap motile protists in the manner of an ‘eel trap’ (Rutishauser 2016). Progressively 

347 narrowed spirals or coils are prevalent among such traps in the broadest sense, including among 

348 ciliated predatory protists (e.g. Stentor), helical bryozoans (McKinney and McGhee 2003), 

349 coiled graptolites (e.g., Cyrtograptus and Monograptus turriculatus; Linnarsson 1881; Williams 

350 and Zalasiewicz 2004), the spiral traps constructed by polychaetes (Minter et al. 2006), and even 

351 the bubble-traps of whales (Leighton et al. 2007). Viewed in this light, the multi-spiral and 

352 bobbin shaped forms of Cochleatina may represent multiple traps under continuous 

353 rejuvenation. Movement is key to predation; in a pre-muscular world (as also seen in plant and 

354 fungal predators), passive sit-and-wait trapping is expected to have been the standard feeding 

355 technique, with protozoans as the primary target. Whereas Ediacaran rangeomorphs may have 

356 extracted food via passive suspension, Cochleatina may represent a next-step in luring self-
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357 propelled prey (perhaps aided by attractive chemotaxis as in Genlisea [Barthlott et al. 1998] and 

358 carnivorous fungi [Barron 1981]). Trapping of protistan prey may be seen as part of a broader 

359 stepwise escalation of eukaryovory and predation running from the Tonian to the Cambrian 

360 (Porter 2011; Cohen and Reidman 2018; Antcliffe et al. 2019). Sponges (and angiosperms and 

361 fungi) also display rare instances of trap-based carnivory (Vacelet and Boury-Esnault 1995), but 

362 this style of hunting would have declined in importance in a world of increasingly motile 

363 eumetazoan predators.

364

365 An Ediacaran ‘survivor’

366 The oldest known Cochleatina are found in rocks of the Kotlin regional Baltic/Siberian stage 

367 (this study; Burzin 1995, 1996; Golubkova and Raevskaya 2005). Under all schemes, the Kotlin 

368 is regarded as Ediacaran in age (Grazhdankin et al. 2011; Meidla 2017). The youngest 

369 Cochleatina are recovered from Fortunian strata of the regional Baltic Lontovan stage 

370 (Paškevičiene 1980), which likely corresponds to the latter half of Fortunian time based on its 

371 acritarch and trace fossil contents (in particular the appearance of the acritarchs 

372 Granomarginata prima and Asteridium tornatum along with trace fossils such as Treptichnus 

373 pedum, Gyrolithes, and Monomorphichnus; Moczydłowska 1991; Jensen and Mens 2001; 

374 Palacios et al. 2017, 2018; Slater et al. 2018). The majority of reports, however, are sourced 

375 from the intervening ‘Rovno’ regional Baltic/Siberian stage. In the older literature (e.g., Burzin 

376 1995), the Rovno was generally regarded to form the uppermost division of the ‘Vendian’ 

377 System. It is currently unclear whether the Ediacaran–Cambrian boundary actually resides 

378 within the Rovno stage (Mens et al. 1990; Moczydłowska 1991; Jensen and Mens 1999), 

379 however, in places the upper part of the Rovno Formation is clearly Fortunian (Treptichnus 

380 pedum and other typically basal Fortunian ichnofossils are found in the Rovno; Fedonkin 1983; 

381 Paliy 1976). While some recent schemes regard the entire Rovno stage as of earliest Fortunian 
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382 origin (Meidla 2017), the scheme of Moczydłowska (1991) places the lower parts of the Rovno 

383 in the Ediacaran and the upper portion where trace fossils of Cambrian aspect appear in the 

384 Fortunian. Regardless of which scheme is used, Cochleatina ranges across the Ediacaran–

385 Cambrian boundary (Fig. 9).

386 The majority of Cochleatina have been found in Ediacaran–Cambrian sediments of the 

387 Baltic Basin and Ukraine (Fig. 2). Rare reports from beyond these sedimentary basins occur 

388 elsewhere on the palaeocontinent Baltica (Finnmark; Högström et al. 2013), as well as from the 

389 palaeocontinent Siberia (Rudavskaya and Vasilyeva 1989), and isolated reports from Avalonia 

390 (Palacios et al. 2018) and Iran (Sabouri et al. 2013; Etemad-Saeed et al. 2016). The current 

391 pattern is liable to change with increased exploration of undersampled regions, but taken at face 

392 value, the distribution of Cochleatina is centred on the margins of the Ægir Ocean (Torsvik and 

393 Rehnström 2001), as well as adjacent peri-Gondwanan terranes (Fig. 2).

394 Cochleatina demonstrates how SCFs can contribute to the emerging fossil record of 

395 Ediacaran–Cambrian ‘survivors’ (Fig. 9). Although all Cambrian taxa are necessarily derived 

396 from lineages that survived from the Ediacaran, the current picture of the Ediacaran–Cambrian 

397 boundary remains one of widespread fossil range truncation. Closer scrutiny, however, reveals a 

398 more complex pattern. ‘Terminal Ediacaran’ Cloudina, for example (Amthor et al. 2003), is now 

399 known to range into the Cambrian (e.g., Zhuravlev et al. 2012; Yang et al. 2016; Han et al. 

400 2017; Simón 2018), as do the ‘Ediacaran macrofossils’ Swartpuntia (see; Narbonne et al. 1997; 

401 Jensen et al. 1998; Hagadorn and Waggoner 2000; Hagadorn et al. 2000; Budd and Jensen 2017) 

402 and Pteridinium (see; Narbonne et al. 1997; Budd and Jensen 2017), while the Cambrian 

403 foraminiferan Platysolenites is documented in terminal Ediacaran strata (Kontorovich et al. 

404 2008). These are joined by a small but increasing number of Cambrian taxa which, on 

405 morphological grounds, appear to be examples of ‘Ediacara-biota’, but have thus far only been 

406 described from Cambrian rocks; e.g., Thaumaptilon (Conway Morris 1993) and Stromatoveris 

407 (Shu et al. 2006; Hoyal Cuthill et al. 2018). The current roster of ‘Ediacaran survivors’ is 

Page 16 of 54

Palaeontology

Palaeontology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ediacaran–Cambrian survivor Cochleatina

17

408 modest, but nonetheless significant. When combined with the continuity seen among the trace 

409 fossil record (e.g., McIlroy and Logan 1999; Jensen et al. 2000, 2006; Gehling et al. 2001; 

410 Jensen 2003; Jensen and Runnegar 2005; McIlroy and Brasier 2017), an increasing case can be 

411 made that differential preservation, rather than purely extinction, can account for at least some 

412 of the disconnect between Ediacaran and Cambrian biotas.

413

414 Conclusions

415 Cochleatina persisted for some ~15–20 Ma, from the latest Ediacaran to the latter part of the 

416 Cambrian Fortunian. The range of Cochleatina encompasses possibly the most dramatic biotic 

417 transition in Earth history, spanning the close of the Proterozoic until their apparent 

418 disappearance in concert with the classical Cambrian ‘explosion’ of shelly metazoans towards 

419 the end of the Fortunian. The Ediacaran was clearly a time of enormous experimentation in 

420 multicellularity, ecology and predation – an expansion of bilaterians in the Cambrian may have 

421 marginalised previously successful modes of predation, perhaps accounting for the 

422 disappearance of forms such as Cochleatina. Shelly and trace fossil records likely represent 

423 relatively reliable accountings of when various taxa and behaviours first appeared or 

424 disappeared during this part of the record: the same is not true for records from Lagerstätten, 

425 which are time-restricted and largely absent from this time-window (Butterfield 2003). The 

426 challenge at the Ediacaran–Cambrian boundary is to distinguish fossil taxa that are 

427 taphonomically recalcitrant enough to preserve outside Lagerstätten conditions, and so stand a 

428 chance of exhibiting a global range in the first place. SCFs appear to fulfil these criteria, at least 

429 through the latest Ediacaran and early Cambrian (Slater et al. 2018; Guilbaud et al. 2018; Slater 

430 and Willman 2019). Clearly the emerging distribution of Cochleatina reveals how SCFs can 

431 supplement a crucial geographical dimension to the problem of the Ediacaran–Cambrian biotic 

432 transition (Figs. 2, 9). Cochleatina is now known from four palaeocontinents and ten 
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433 formations. Given this distribution, Cochleatina begins to enter the select realm of readily 

434 preserved, morphologically complex and widely distributed fossils from this time window, 

435 alongside iconic taxa such as Cloudina.

436

437 Systematic Palaeontology

438 Incertae Sedis

439 Genus: COCHLEATINA Aseeva, 1983a emend. Burzin, 1995, emend.

440 Type species. Cochleatina canilovica Aseeva, 1974 emend. Aseeva, 1983a, emend.

441 Emended diagnosis (of genus). Coiled carbonaceous ribbon displaying a continuum of 

442 morphologies, ranging from tightly wound bobbin-like configurations to more open-coiled 

443 forms. The ribbons comprise a carbonaceous strap, widest at the ‘base’ (outermost terminus of 

444 the coil), narrowing toward the centre of the bobbin and terminating in a thin film of fibrous 

445 projections at the ‘tip’. Ribbon is divided into a complex of three to four lateral zones running 

446 the entire ribbon length, the zones varying in degree of thickening, possession of jagged or 

447 smooth margins, and presence or absence of serrations. If present, serrations run entire length of 

448 ribbon, project away from the centre of the bobbin and increase in size towards the base. Coils 

449 may occur as overlapping or adjacent clusters. No discernible basal attachment structure.

450 Discussion. We apply principles of form taxonomy to the classification of Cochleatina, 

451 however, the distinctive and complex morphology of Cochleatina is sufficient to suggest true 

452 biological significance (i.e., Cochleatina likely forms a natural taxonomic group). Nevertheless, 

453 individual or clustered Cochleatina could in principle be subcomponents of an as yet unknown 

454 organism. Of the five described species, four are considered valid here based on their distinct 

455 ribbon morphologies (C. canilovica, C. rara, C. rudaminica and C. ingnalinica).
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456 The concept of distinct morphological zones across the ribbon (Fig. 7) was introduced by 

457 Paškevičiene (1980), and later modified by Burzin (1995; see fig. 3 of that study). Differences in 

458 the morphology of these zones forms much of the basis for the specific taxonomy of 

459 Cochleatina. For example, C. rudaminica and C. ingnalinica can be distinguished from other 

460 Cochleatina by their possession of sculpture on their outermost ribbon zone, and can be 

461 distinguished from each other by the presence (C. ingnalinica) or absence (C. rudaminica) of 

462 serrations. C. canilovica and C. rara both have pronounced serrations on the first ribbon zone. 

463 C. rara, however, exhibits a narrow, tightly coiled ribbon with no fourth zone, and a second 

464 zone which has a jagged sclerotized margin. C. rara differs from other Cochleatina in the 

465 orientation of the ribbon, which is coiled in a cylindrical fashion with respect to the bobbin axis. 

466 C. concentrica (Kolosov 1984) was a species initially assigned to Volyniella before assignment 

467 to Cochleatina by Jankauskas et al. (1989). This species, however, was rejected by Burzin 

468 (1995), since it appears to be a segmented filament (Cochleatina are not segmented), and unlike 

469 Cochleatina it can be found as a tangled mass, rather than a coil.

470

471 Cochleatina canilovica Aseeva, 1974 emend. Aseeva, 1983a, emend.

472 Material. 70 specimens from the Kotlin Formation (Estonia), 33 specimens from the 

473 Krushanovka Formation (Ukraine).

474 Emended diagnosis. A species of Cochleatina with a ribbon flattened perpendicular to the 

475 bobbin axis and subdivided into four lateral zones running the entire length of the ribbon. The 

476 innermost zone (with respect to the centre of the spiral) is optically dark and fringed with fine 

477 (5–20 µm length) marginal serrations that point away from the centre of the spiral. This first 

478 zone is usually the widest, and can reach up to approximately half of the total ribbon width 

479 (excluding serrations). The second zone, where preserved, is a thin, relatively translucent layer 

480 that is usually ~20% the total width of the ribbon. The third zone mirrors the darker, sclerotized 
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481 construction of the first zone but lacks serrations. It is of intermediate width between the first 

482 and second zones, but can be as wide as the first zone in open-coiled specimens. The outermost 

483 fourth zone is the narrowest (typically ~10% of the total ribbon width) and consists of a thin, 

484 filmy layer. It is often missing or has a ragged outer margin. At the tip, the ribbon structure is 

485 tightly bound with serrations abutting or overlapping the second and third zones of the ribbon. 

486 Towards the basal portion, the ribbon frequently tends to ‘unzip’, creating a parting (or 

487 ‘perforation zone’) between the serrated margin and remainder of the ribbon. The ribbon 

488 exhibits a continuum of tightly wound to open-coiled forms. Coils may occur in clusters.

489
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848 Figure 1. Examples of Cochleatina canilovica from the Ediacaran of the Volyn region of 

849 Ukraine. Courtesy of M. Burzin. Scale bar = 100 µm.

850

851 Figure 2. Palaeogeographic distribution of fossil occurrences of Cochleatina sp. A, Localities in 

852 Baltica where Cochleatina sp. have been recovered; 1. Outcrop, Finnmark, Norway; 2. Toila 77 

853 and Meriküla F169 drillcores, Estonia (this study); 3. Ludza drillcore, Latvia; 4. Vishki 

854 drillcore, Latvia; 5. Butkunay drillcore, Lithuania; 6. Svedasay drillcore, Lithuania; 7. 

855 Drukshyay drillcore, Lithuania; 8. Tverečius drillcore, Lithuania; 9. Stradech-17 drillcore, 

856 Belarus; 10. Various cores from Volyn, Ukraine (e.g., drillcore No. 1562, Il’pan); 11. Various 

857 cores and outcrops from Podillya, Ukraine (drillcores – Bolotino, Vapnyarka No. 18, Malaya 

858 Sloboda No. 4, Bagovitsy No. 3, Pechora No. 2, Krushanovka No. 1, Zarechanka No. 11664; 

859 outcrops – Studenitsa village No. 202, Bakota village No. 238); 12. Drillcore No. 700, Podillya, 

860 Ukraine (this study); (see Fig. 9 for locality data; reconstruction of Baltica after Cocks and 

861 Torsvik 2005). B, Distribution of palaeocontinents during the Ediacaran–Cambrian transition 

862 showing reported occurrences of Cochleatina sp., mainly from Baltica, but also Siberia, 

863 Avalonia, and peri-Gondwanan terranes (continental distribution after various sources, e.g. 

864 McKerrow et al. 1992; see Fig. 9 for details on occurrence data).

865

866 Figure 3. Ediacaran–Cambrian stratigraphy of Estonia and Ukraine (Podillya region). Red stars 

867 indicate position of samples analysed in this study.

868

869 Figure 4. Cochleatina from the Kotlin Formation, northeast Estonia. Specimens A–F, H–J, L–O, 

870 Q–S from 153 metres depth in Toila 77 drillcore; G from 180 metres depth in Maidla F-238 

871 drillcore; K and P from 187 metres in Maidla 75A drillcore. Tallinn University of Technology 
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872 acquisition numbers (GIT); A, 831; B, 842; C, 837; D, 838; E, 836; F, 843; G, 850; H, 841; I, 

873 828; J, 842; K, 851; L, 841; M, 829; N, 833; O, 838; P, 851; Q, 841; R, 839; S, 832. Scale bar = 

874 100 µm.

875

876 Figure 5. Cochleatina from the Kotlin Formation, northeast Estonia. D–L, specimens adhered to 

877 large sapropel sheets; D, F, H, K, and L are clustered Cochleatina, note that within each cluster 

878 coils are at approximately the same size, shape, and thickness. Specimens A, B, D, F, K, Q–S 

879 from 189 metres depth in Maidla 75A drillcore; C, E, G, H, J, L–P, T from 153 metres depth in 

880 Toila 77 drillcore; I from 180 metres depth in Maidla F-238 drillcore. Tallinn University of 

881 Technology acquisition numbers (GIT); A, 845; B, 846; C, 840; D, 848; E, 832; F, 853; G, 838; 

882 H, 835; I, 850; J, 852; K, 849; L, 854; M, 829; N, 842; O, 834; P, 830; Q, 845; R, 847; S, 844; 

883 T, 852. Scale bars; A–F and M–T = 100 µm; G–L = 200 µm.

884

885 Figure 6. Cochleatina from the Krushanovka Formation, Podillya, Ukraine. Specimens sourced 

886 from a productive layer at 184 metres depth within drillcore no. 700. Tallinn University of 

887 Technology acquisition numbers (GIT); A–G, 855; H–J, 856. Scale bar = 100 µm.

888

889 Figure 7. Schematic diagram of Cochleatina canilovica, including terminology of ribbon 

890 morphology used here. The ‘first zone’ comprises the dark innermost part of the coil, and is 

891 fringed with marginal serrations that point away from the centre of the spiral. The ‘second 

892 zone’, where preserved, is a thin, filmy part of the ribbon which is typically overlain by the 

893 spines emanating from the first zone. The ‘third zone’ is of similar construction to the first zone 

894 (dark, sclerotized), but lacks any serrations, and may be separated from the second zone by a 
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895 ‘perforation zone’ toward the basal portion of the ribbon. The ‘fourth zone’ (frequently damaged 

896 or missing) is a thin, filmy region, similar to the second zone.

897

898 Figure 8. Comparative extant and fossil analogues for Cochleatina. A. coiled elaters found in 

899 triplets on Elaterites triferens plant spores (Pennsylvanian) (see also figs. 1–8 of Good and 

900 Taylor 1974; figs. 1–18 of Baxter and Leisman 1967); B. SEM of dehisced helicosporidial cyst 

901 (parasitic green algae) showing uncoiled filamentous cell bearing barbed serrations; C. 

902 Reconstruction of the ribbon-like ejectosome of Cryptophyta algae (intracellular scale); D. SEM 

903 of the protozoan trapping structure of the corkscrew plant Genlisea repens (angiosperm); E. 

904 Close-up of D showing serrated coils where prey enters; F. Redkinia spinosa from the Ediacaran 

905 of northwest Russia, inset shows enlargement of serrations; G–H. Coiled organic sheets found in 

906 early Cambrian (Terreneuvian) cherts; I. Paired coiled radula of the extant mollusc Plawenia 

907 sphaera; J. Coiled anterior region of the ciliated protist Stentor. Images from; A (Taylor et al. 

908 2009), B (Boucias et al. 2001), C (based on diagram from Biocyclopedia; Cryptophyta), D–E 

909 (Rutishauser 2016), F (Golubkova et al. 2018), G–H (Yin et al. 2017), I (Scheltema and 

910 Schander 2000), J (Lanzoni et al. 2019). Scale bars; A = 225 μm, B = 7.5 μm, D = 1 mm, E = 

911 100 μm, F = 1 mm, G–H = 20 μm, I = 200 μm, J = 50 μm.

912

913 Figure 9. Global stratigraphic range of body-fossils known to span the Ediacaran–Cambrian 

914 boundary compared to the range of Cochleatina sp. Temporal ranges for Cochleatina sp. from; 

915 1. Estonia (this study); 2. Podillya, Ukraine (this study; Aseeva 1974, 1976, 1983a, 1983b, 

916 1988; Velikanov et al. 1983); 3. Volyn, Ukraine (Keller and Rozanov 1979; Burzin 1995, 1996); 

917 4. Belarus (Paškevičiene 1980); 5. Lithuania (Paškevičiene 1980); 6. Latvia (Paškevičiene 

918 1980); 7. Finnmark, Norway (Högström et al. 2013); 8. Burin Peninsula, Newfoundland 

919 (Palacios et al. 2018); 9. Alborz Mountains, northern Iran (Sabouri et al. 2013; Etemad-Saeed et 
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920 al. 2016); 10. Anabar Uplift, eastern Siberia (Rudavskaya and Vasilyeva 1989). Note that 

921 ‘Redkino’, ‘Kotlin’, and ‘Rovno’ are informal regional stages of Ediacaran–Cambrian 

922 chronostratigraphy used in Baltica and Siberia. Temporal ranges for other boundary-crossing 

923 body fossils compiled from various sources (McIlroy et al. 2001; Kontorovich et al. 2008; 

924 Palacios et al. 2018; Narbonne et al. 1997; Jensen et al. 1998; Hagadorn and Waggoner 2000; 

925 Hagadorn et al. 2000; Winchester-Seeto and McIlroy 2006; Moczydłowska et al. 2014; Budd 

926 and Jensen 2017; Zhuravlev et al. 2012; Yang et al. 2016; Han et al. 2017; Simón 2018; Wood 

927 et al. 2019).
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Figure 1. Examples of Cochleatina canilovica from the Ediacaran of the Volyn region of Ukraine. Courtesy of 
M. Burzin. Scale bar = 100 µm. 
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Figure 2. Palaeogeographic distribution of fossil occurrences of Cochleatina sp. A, Localities in Baltica where 
Cochleatina sp. have been recovered; 1. Outcrop, Finnmark, Norway; 2. Toila 77 and Meriküla F169 

drillcores, Estonia (this study); 3. Ludza drillcore, Latvia; 4. Vishki drillcore, Latvia; 5. Butkunay drillcore, 
Lithuania; 6. Svedasay drillcore, Lithuania; 7. Drukshyay drillcore, Lithuania; 8. Tverečius drillcore, 

Lithuania; 9. Stradech-17 drillcore, Belarus; 10. Various cores from Volyn, Ukraine (e.g., drillcore No. 1562, 
Il’pan); 11. Various cores and outcrops from Podillya, Ukraine (drillcores – Bolotino, Vapnyarka No. 18, 

Malaya Sloboda No. 4, Bagovitsy No. 3, Pechora No. 2, Krushanovka No. 1, Zarechanka No. 11664; outcrops 
– Studenitsa village No. 202, Bakota village No. 238); 12. Drillcore No. 700, Podillya, Ukraine (this study); 

(see Fig. 9 for locality data; reconstruction of Baltica after Cocks and Torsvik 2005). B, Distribution of 
palaeocontinents during the Ediacaran–Cambrian transition showing reported occurrences of Cochleatina sp., 
mainly from Baltica, but also Siberia, Avalonia, and peri-Gondwanan terranes (continental distribution after 

various sources, e.g. McKerrow et al. 1992; see Fig. 9 for details on occurrence data). 
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Figure 3. Ediacaran–Cambrian stratigraphy of Estonia and Ukraine (Podillya region). Red stars indicate 
position of samples analysed in this study. 
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Figure 4. Cochleatina from the Kotlin Formation, northeast Estonia. Specimens A–F, H–J, L–O, Q–S from 153 
metres depth in Toila 77 drillcore; G from 180 metres depth in Maidla F-238 drillcore; K and P from 187 

metres in Maidla 75A drillcore. Tallinn University of Technology acquisition numbers (GIT); A, 831; B, 842; 
C, 837; D, 838; E, 836; F, 843; G, 850; H, 841; I, 828; J, 842; K, 851; L, 841; M, 829; N, 833; O, 838; P, 

851; Q, 841; R, 839; S, 832. Scale bar = 100 µm. 
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Figure 5. Cochleatina from the Kotlin Formation, northeast Estonia. D–L, specimens adhered to large 
sapropel sheets; D, F, H, K, and L are clustered Cochleatina, note that within each cluster coils are at 

approximately the same size, shape, and thickness. Specimens A, B, D, F, K, Q–S from 189 metres depth in 
Maidla 75A drillcore; C, E, G, H, J, L–P, T from 153 metres depth in Toila 77 drillcore; I from 180 metres 

depth in Maidla F-238 drillcore. Tallinn University of Technology acquisition numbers (GIT); A, 845; B, 846; 
C, 840; D, 848; E, 832; F, 853; G, 838; H, 835; I, 850; J, 852; K, 849; L, 854; M, 829; N, 842; O, 834; P, 

830; Q, 845; R, 847; S, 844; T, 852. Scale bars; A–F and M–T = 100 µm; G–L = 200 µm. 
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Figure 6. Cochleatina from the Krushanovka Formation, Podillya, Ukraine. Specimens sourced from a 
productive layer at 184 metres depth within drillcore no. 700. Tallinn University of Technology acquisition 

numbers (GIT); A–G, 855; H–J, 856. Scale bar = 100 µm. 
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Figure 7. Schematic diagram of Cochleatina canilovica, including terminology of ribbon morphology used 
here. The ‘first zone’ comprises the dark innermost part of the coil, and is fringed with marginal serrations 

that point away from the centre of the spiral. The ‘second zone’, where preserved, is a thin, filmy part of the 
ribbon which is typically overlain by the spines emanating from the first zone. The ‘third zone’ is of similar 
construction to the first zone (dark, sclerotized), but lacks any serrations, and may be separated from the 
second zone by a ‘perforation zone’ toward the basal portion of the ribbon. The ‘fourth zone’ (frequently 

damaged or missing) is a thin, filmy region, similar to the second zone. 
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Figure 8. Comparative extant and fossil analogues for Cochleatina. A. coiled elaters found in triplets on 
Elaterites triferens spores (Pennsylvanian) (see also figs. 1–8 of Good and Taylor 1974; figs. 1–18 of Baxter 

and Leisman 1967); B. SEM of dehisced helicosporidial cyst showing uncoiled filamentous cell bearing 
barbed serrations; C. Reconstruction of the ribbon-like ejectosome of Cryptophyta (intracellular scale); D. 
SEM of the protozoan trapping structure of the corkscrew plant Genlisea repens; E. Close-up of D showing 
serrated coils where prey enters; F. Redkinia spinosa from the Ediacaran of northwest Russia, inset shows 
enlargement of serrations; G–H. Coiled organic sheets found in early Cambrian (Terreneuvian) cherts; I. 

Paired coiled radula of the extant mollusc Plawenia sphaera; J. Coiled anterior region of the ciliated protist 
Stentor. Images from; A (Taylor et al. 2009), B (Boucias et al. 2001), C (based on diagram from 

Biocyclopedia; Cryptophyta), D–E (Rutishauser 2016), F (Golubkova et al. 2018), G–H (Yin et al. 2017), I 
(Scheltema and Schander 2000), J (Lanzoni et al. 2019). Scale bars; A = 225 μm, B = 7.5 μm, D = 1 mm, E 

= 100 μm, F = 1 mm, G–H = 20 μm, I = 200 μm, J = 50 μm. 

166x183mm (300 x 300 DPI) 

Page 47 of 54

Palaeontology

Palaeontology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 9. Global stratigraphic range of body-fossils known to span the Ediacaran–Cambrian boundary 
compared to the range of Cochleatina sp. Temporal ranges for Cochleatina sp. from; 1. Estonia (this study); 
2. Podillya, Ukraine (this study; Aseeva 1974, 1976, 1983a, 1983b, 1988; Velikanov et al. 1983); 3. Volyn, 

Ukraine (Keller and Rozanov 1979; Burzin 1995, 1996); 4. Belarus (Paškevičiene 1980); 5. Lithuania 
(Paškevičiene 1980); 6. Latvia (Paškevičiene 1980); 7. Finnmark, Norway (Högström et al. 2013); 8. Burin 
Peninsula, Newfoundland (Palacios et al. 2018); 9. Alborz Mountains, northern Iran (Sabouri et al. 2013; 

Etemad-Saeed et al. 2016); 10. Anabar Uplift, eastern Siberia (Rudavskaya and Vasilyeva 1989). Note that 
‘Redkino’, ‘Kotlin’, and ‘Rovno’ are informal regional stages of Ediacaran–Cambrian chronostratigraphy used 

in Baltica and Siberia. Temporal ranges for other boundary-crossing body fossils compiled from various 
sources (McIlroy et al. 2001; Kontorovich et al. 2008; Palacios et al. 2018; Narbonne et al. 1997; Jensen et 

al. 1998; Hagadorn and Waggoner 2000; Hagadorn et al. 2000; Winchester-Seeto and McIlroy 2006; 
Moczydłowska et al. 2014; Budd and Jensen 2017; Zhuravlev et al. 2012; Yang et al. 2016; Han et al. 2017; 

Simón 2018; Wood et al. 2019). 
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