Group theoretical analysis of structural instability, vacancy ordering and magnetic transitions in the system troilite (FeS) pyrrhotite ($\mathbf{F e}_{1-x} \mathbf{S}$)

Authors
XCharles Robert Sebastian Haines ${ }^{\text {a }}$, Christopher J. Howard ${ }^{\text {b }}$, Richard J. Harrison ${ }^{\text {a }}$ and Michael A. Carpenter ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB3EQ, UK
${ }^{\mathrm{b}}$ School of Engineering, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia

Correspondence email: crsh2@cam.ac.uk

Funding information Leverhulme Trust.
ynopsis A group-theoretical framework to describe vacancy ordering and magnetism in the $\mathrm{Fe}_{1-\mathrm{x}} \mathrm{S}$ system is developed.
bstract A group-theoretical framework to describe vacancy ordering and magnetism in the $\mathrm{Fe}_{1-\mathrm{x}} \mathrm{S}$ system is developed. This framework is used to determine the sequence of crystal structures consistent with the observed magnetic structures of troilite (FeS), and to determine the crystallographic nature of the low-temperature Besnus transition in $\mathrm{Fe}_{0.875} \mathrm{~S}$. We conclude that the Besnus transition is a magnetically driven transition characterised by the rotation of the moments out of the crystallographic plane to which they are confined above the transition, accompanied by small atomic displacements that lower the symmetry from monoclinic to triclinic at low temperatures. Based on our phase diagram, we predict magnetically driven phase transitions at low temperatures in all the commensurate superstructures of pyrrhotite. The exact nature of the transition is determined by the symmetry of the vacancy ordered state and based on this we predict spin-flop transitions in 3C and 5C pyrrhotite and a transition akin to the Besnus transition in 6C pyrrhotite. Furthermore, we clarify that 3 C and 4 C pyrrhotite carry a ferrimagnetic moment whereas 5 C and 6 C are antiferromagnetic.

Keywords: Pyrrhotite; Group Theory; Besnus Transition, Vacancy Ordering, Magnetism

1. Introduction

The mineral pyrrhotite has compositions that are usually expressed in terms of an ideal formula, $\mathrm{Fe}_{1-x} \mathrm{~S}(0 \leq x \leq 0.15)$. It adopts the hexagonal NiAs structure at high temperatures, with an increasing concentration of vacancies on the metal cation site (increasing x). Such a simple description belies the remarkable diversity of superstructures and phase transitions that are observed in both natural and synthetic samples. This phenomenological richness is reflected in a complex subsolidus phase diagram (Figure 1; Grønvold and Stølen 1992). The hexagonal structure at high temperatures is labelled as 1 C . This gives way to four different commensurate superstructures with repeats along the crystallographic c-axis, corresponding to $3,4,5$ and 6 times that of the parent structure $(3 \mathrm{C}, 4 \mathrm{C}, 5 \mathrm{C}$, 6 C), and incommensurate superstructures in which a non-rational repeat varies with composition and temperature. Although other compilations differ in detail (Wang \& Salveson 2005; Bennett \&Graham 1980), it has long been understood that these complex structural relationships arise as a consequence of $\mathrm{Fe} /$ vacancy ordering, which, at particular stoichiometries, produce vacancy ordered phases that are more stable than the disordered continuous solid solution (Morimoto \& Nakazawa, 1968; Morimoto et al. 1970; Carpenter \& Desborough, 1964; Andresen et al. 1960; Andresen et al. 1967). The end member FeS (troilite) has no vacancies but has at least four potential structural instabilities with symmetries relating to the K, M, H and L points of the Brillouin zone of the parent primitive hexagonal lattice (Ricci \& Bousquet, 2016).

Figure 1 Schematic phase relations, following Grønvold \& Stølen (1992), for the system $\mathrm{Fe}_{1-x} \mathrm{~S}$. A and C represent lattice parameters of the parent hexagonal NiAs structure (1C). Commensurate superstructures have multiple repeats of these. Incommensurate superstructures can occur at a wide range of compositions and temperatures, including in the field labelled M (Nakazawa \& Morimoto 1971). The stability field at intermediate compositions and temperatures, labelled NA, NC by Grønvold \& Stølen (1992), is shown as 1C by Wang \& Salveson (2005). Selected magnetic transitions have been added. The red line running horizontally across the whole phase diagram is the magnetic ordering temperature, known in FeS as the β-transition. The red diagonal line shows the FeS spin-flop (Morin) transition at $\sim 450 \mathrm{~K}$, reducing to $\sim 170 \mathrm{~K}$ at $x=0.07$ (Horwood et al. 1976). T_{B} and the short red line at $\sim 35 \mathrm{~K}$ on the 4 C line mark the Besnus transition. The line phases for FeS as well as 4 C and 5 C have been extended to low temperature and a line at the ideal stoichiometry $\left(\mathrm{Fe}_{11} \mathrm{~S}_{12}\right)$ of 6 C has been added (---). Py is pyrite $\left(\mathrm{FeS}_{2}\right)$

An equivalent diversity of magnetic structures has also been observed in natural and synthetic pyrrhotite (e.g., Andresen \& Torbo 1967, Schwartz \& Vaughan 1972, Bennett \& Graham 1980, Wang \& Salveson 2005, Pearce et al. 2006). The first magnetic transition with falling temperature, known as the β-transition, occurs at $\sim 590 \mathrm{~K}$ and is from paramagnetic to antiferromagnetic in FeS or to ferrimagnetic or antiferromagnetic across the rest of the solid solution. Additional spin-reorientation transitions occur at lower temperatures and show a high sensitivity to structure type. The best characterised of the low-temperature transitions are a spin-flop (Morin type) transition at $\sim 450 \mathrm{~K}$ in
hexagonal FeS (Sparks et al. 1962, Andresen \& Torbo 1967, Takahashi 1973, Horwood et al. 1976, Grønvold, \& Stølen 1992), and the Besnus transition at $\sim 35 \mathrm{~K}$ in monoclinic $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ (Besnus \& Meyer 1964, Fillion \& Rochette 1988, Dekkers et al. 1989, Rochette et al. 1990). The spin-flop transition is a reorientation of individual moments from perpendicular to the crystallographic c-axis above the transition temperature to parallel to the c -axis below it. The transition temperature falls with decreasing Fe content (Horwood et al. 1976). The Besnus transition involves more subtle changes of spin orientation in the 4C superstructure (Powell et al. 2004, Wolfers et al. 2011, Kind et al. 2013, Koulialias et al. 2016, Volk et al. 2016, Koulialias et al. 2018, Volk et al. 2018) but is not observed in crystals with similar composition when the superstructure type is 3C (Horng \& Roberts 2018). Some of these transitions have been added to Figure 1, but the magnetic properties of the superstructure types have not all been determined.

In a geological context, pyrrhotite with stoichiometry $\sim \mathrm{Fe}_{7} \mathrm{~S}_{8}$ is an important carrier of palaeomagnetic remanence in terrestrial and extra-terrestrial rocks and has been proposed to be responsible for the strong remanent magnetic anomalies observed in the Martian crust (Rochette et al. 2005; Louzada et al. 2007). Its remarkable mix of structural transitions, vacancy ordering and magnetic properties, with the further possibility of a magnetoelectric effect (Ricci \& Bousquet 2016), makes it of interest in the broader context of multiferroic materials (Eerenstein et al. 2006) and in the topical field of domain boundary engineering (Salje 2009 and 2010). Phenomenological mean-field theories provide an effective theoretical framework for relating structural states and physical properties to external fields because of their rigour in defining the form and consequences of coupling between multiple order parameters. Underpinning this approach is the fundamental role of symmetry, as has been used to describe combinations of ferroelectric displacements, octahedral tilting, magnetic ordering, cation order and Jahn-Teller distortions in perovskites (Howard \& Stokes 1998; Stokes et al. 2002; Howard et al. 2003; Howard \& Stokes 2004; Carpenter \& Howard 2009; Howard \& Carpenter 2010; Senn \& Bristowe 2018).

The initial objective of the present study was to define the relationships between the crystallographic and magnetic structures of pyrrhotite from the perspective of symmetry. For this, the parental structure is taken to be FeS with the NiAs structure (Fig. 2a), space group $\mathrm{Pb}_{3} / m m c$, and the relevant Brillouin zone is that of a hexagonal P lattice (Fig. 2b). In this structure the Fe atom is set at Wyckoff $2 a, 0,0,0$ and the S atom at Wyckoff $2 d, 1 / 3,2 / 3,3 / 4$. Representative lattice parameters, determined for $\mathrm{Fe}_{0.88} \mathrm{~S}$ at 773 K (Powell et al. 2004) are $A=3.5165 \AA, C=5.7142 \AA$. The structure comprises a distorted hexagonal close packed array of S atoms with the Fe atoms located in the octahedral sites.

The distortions to be considered are of three types: i) purely displacive distortions; ii) vacancy ordering; and iii) magnetic ordering of moments on the Fe atoms. We attempt to associate an irreducible representation (irrep) and corresponding order parameter with each distortion encountered.

To this end we make use of the group theoretical tools available in the ISOTROPY Software Suite (Stokes \& Hatch 1988), making particular use of ISOCIF, ISOTROPY, ISODISTORT (Campbell et al. 2006) and INVARIANTS (Hatch \& Stokes, 2003) ${ }^{1}$. Once the primary and secondary irreps have been identified (using the notation of Miller \& Love, 1967, throughout), we list the space groups of the diverse distorted structures and examine the couplings between the different distortions involved. We demonstrate that the known superstructure types can be understood in terms of irreps associated with a line between L and M points of the Brillouin zone (Fig. 2b), the U-line of symmetry $(\boldsymbol{k}=$ $1 / 2,0, \gamma)$, while magnetically ordered structures can be understood in terms of magnetic irreps associated with the Brillouin zone centre. Analysis of the primary and secondary irreps, and the manner in which they can combine, leads to a model for the Besnus transition in 4C pyrrhotite and to a prediction of the likely magnetic behaviour of crystals with different $\mathrm{Fe} /$ vacancy ordering schemes. A set of Landau expansions to account for coupling between order parameters, and with strains which accompany the various phase transitions, is included in Appendix B. Group theory tables with the most directly relevant results are given within the text and the complete tables, labelled as Figures S1S12, are given as Supplementary Material. The magnetoelastic properties of single crystals with 4C and 5C superstructures are set out in two separate experimental papers (Haines et al. in preparation).

Figure 2 (a) NiAs parent structure of pyrrhotite, stable above $T_{\beta} \sim 590 \mathrm{~K}$. Hexagonally close packed sulphur atoms are shown in blue. Fe atoms filling the octahedral sites are shown in red. (b) Brillouin zone for the hexagonal P lattice, with labelling of high symmetry points (filled red circles) and the U-line used in the group theoretical analysis. The directions corresponding to the real space unit cell are shown in black. Points on the U line referenced in this work $\left(\boldsymbol{k}_{z}=\gamma=1 / 3,1 / 4,1 / 5\right.$ and $\left.1 / 6\right)$ are shown.

2. Structural relationships and vacancy ordering

Each of the main pyrrhotite superstructure types has lattice geometry that is only slightly distorted from that of the parent hexagonal structure with lattice parameters A and C. Their lattice parameters

[^0]can be represented as being hexagonal, $2 A, N C$, orthorhombic, $2 A, 2 \sqrt{3} A, N C$ or monoclinic, $2 A$, $2 \sqrt{3 A}, N C, \beta \sim 90^{\circ}$. From the perspective of group theory, the order parameter must have the symmetry properties of an irreducible representation (irrep) on the U-line, $\boldsymbol{k}=1 / 2,0, \gamma$, between the M point, $\boldsymbol{k}=1 / 2,0,0$, and L point, $\boldsymbol{k}=1 / 2,0,1 / 2$, of the Brillouin zone (Fig. 2b). Irrep U_{1} gives the correct structure in each case, with $\gamma=1 / 4$ for the 4 C superstructure, $1 / 3$ for the 3 C superstructure, etc. This automatically generates secondary irreps that represent different symmetry adapted combinations of atomic displacements and/or atomic order. It has been found that the observed configurations of vacancies among the crystallographic sites depend on a combination of these secondary irreps in particular proportions. By way of contrast, and as previously shown by Li \& Frantzen (1994), the $\sqrt{3} A$ by $2 C$ structure of FeS develops by the action of an order parameter which has the symmetry properties of an irrep at the H point $\boldsymbol{k}=1 / 3,1 / 3,1 / 2$ of the Brillouin zone (Ricci \& Bousquet 2016).

We start our analysis with the best known of the pyrrhotite structures: 4C. After describing the vacancy ordering in this system in terms of group theory, we apply the same methods to the other pyrrhotite superstructures (working from high to low vacancy concentration) before discussing the case of troilite, FeS , in which there are no vacancies.

2.1. 4C structure

The room temperature structure of 4 C pyrrhotite has crystallographic space group $C 2 / c$ (Fig. 3; Powell et al. 2004). The crystals in which this structure has been observed have stoichiometry close to $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ (e.g. Bertaut 1953; Powell et al. 2004). Close packed layers of S in the $a b$-plane alternate with layers of Fe atoms. Vacancies are located in alternate layers of Fe atoms, and within these layers they are found on alternate sites in alternate close-packed rows (Powell et al. 2004). This means that one site in four is vacant in the layers containing vacancies. There are four distinct sites for the vacancies: when referred to the parent structure - a vacancy can be located above the 0,$0 ; 1,0 ; 1,1$ or 0,1 positions on the base of the hexagonal unit cell. The layers containing vacancies are stacked up the hexagonal axis in a sequence involving all four distinct vacancy sites (e.g. ABCD), leading to a structure that has a repeat along that axis four times that of the hexagonal parent. This description of the vacancy ordering scheme in terms of stacking up vacancy containing and non-vacancy containing layers was first used by Bertaut (1953) for the 4C structure and subsequently developed for 3C (Fleet 1971, Nakano et al. 1979) and 6C (Koto et al. 1975) structures before being discussed in detail more generally by Yamamoto \& Nakazawa (1982). The 4C structure was first described by Bertaut (1953) in an unconventional space group $F 2 / d$, on a nearly orthorhombic $2 \sqrt{ } 3 A$ by $2 A$ by $4 C$ cell. It was subsequently refined from X-ray data in the same unconventional setting by Tokonami et al. (1972). The relationship to the parent NiAs structure is easily visualised (Fig. 3). It was however recognised that the 4 C structure could be described in the conventional space group $C 2 / c$ on a monoclinic cell
approximately $2 \sqrt{3} A$ by $2 A$ by $\sqrt{3 A^{2}+4 C^{2}}$ with $\tan (180-\beta)=2 C / \sqrt{3} A\left(\beta \sim 118^{\circ}\right)$, and the structure was refined in this setting by Powell et al. (2004).

Figure 3 A single unit cell of the structure of $4 \mathrm{C} \mathrm{Fe}_{7} \mathrm{~S}_{8}$ at room temperature, after Powell et al. (2004). Sulphur atoms are shown in blue. Fully occupied Fe layers alternate with layers in which the vacancies are ordered. The unit cell of the standard setting is also shown. There is a translation of $(0, A / 2,0)$ between the two cells. The left axes relate to the unconventional $F 2 / d$ cell and the right axes to the conventional $C 2 / c$ cell.

The order parameter which gives rise to the symmetry change $P 6_{3} / m m c \rightarrow C 2 / c$ has the symmetry properties of $U_{1}(1 / 2,0,1 / 4)$. It may be helpful to note that a distortion with this \boldsymbol{k}-vector, $(1 / 2,0,1 / 4)$, can be thought of as having two distinct effects: the first component ($k_{\mathrm{x}}=1 / 2$) gives the vacancy order within the plane and doubles the repeat in this plane, while the third component ($k_{z}=$ $1 / 4$) leads to the superstructure repeat along the c -axis of the parent. Table 1 lists possible subgroups, from which it is clear that the order parameter direction (OPD) is $\mathrm{P} 4,(\mathrm{a}, 0,0, \mathrm{a}, 0,0)$. The basis vector is $(2,-2,0),(2,2,0),(-1,1,2)$ and the origin is at $(0,1 / 2,0) . U_{4}$ is a secondary order parameter in this case, but the same result would be obtained if U_{4} was taken to be primary and U_{1} to be secondary. U_{1} and U_{4} do not appear to be interchangeable in this way for all values of γ, however, and it is therefore assumed that U_{1} provides the fundamental primary order parameter.

Table 1 Order parameter components and unit cell configurations for selected subgroups of $P 6_{3} / \mathrm{mmc}$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 4)$ is the active representation. The table has been curtailed at the final single component order parameter distortion, P8. The complete set of subgroups is given in Table S1. SGN = space group number. OPD = order parameter direction.

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
12	$C 2 / m$	P1	$(\mathrm{a}, 0,0,0,0,0)$	$(2,1,-4),(0,1,0),(2,1,0)$	$(0,0,0)$
44	$I m m 2$	P2	$(a,-0,414 \mathrm{a}, 0,0,0,0)$	$(0,0,4),(0,1,0),(-2,-1,0)$	$(-7 / 8,1 / 16,-7 / 4)$
12	$C 2 / m$	P3	$(\mathrm{a}, 0, \mathrm{a}, 0,0,0)$	$(2,-2,0),(2,2,0),(-1,1,2)$	$(0,0,0)$
15	$C 2 / c$	P4	$(\mathrm{a}, 0,0, \mathrm{a}, 0,0)$	$(0,-2,0),(2,2,0),(-1,1,2)$	$(0,1 / 2,0)$
42	$F m m 2$	P5	$(\mathrm{a},-0,414 \mathrm{a}, \mathrm{a},-0.414 \mathrm{a}, 0,0)$	$(0,0,4),(2,2,0),(-2,2,0)$	$(-1 / 8,1 / 8,1 / 4)$
43	$F d d 2$	P6	$(\mathrm{a},-0.414 \mathrm{a}, 0.414 \mathrm{a}, \mathrm{a}, 0,0)$	$(0,0,4),(2,2,0),(-2,2,0)$	$(-7 / 8,7 / 8,7 / 4)$
164	$P 3 ́ m 1$	P7	$(\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0)$	$(2,0,0),(0,2,0),(0,0,4)$	$(0,0,0)$
187	$P 6 ́ m 2$	P8	$(\mathrm{a},-0,414 \mathrm{a}, \mathrm{a},-0,414 \mathrm{a}, \mathrm{a},-0.414 \mathrm{a})$	$(0,-2,0),(2,2,0),(0,0,4)$	$(0,0,1 / 4)$

It remains to show that $U_{1}(\mathrm{P} 4)$ does indeed lead to the reported ordering scheme. $U_{1}(\mathrm{P} 4)$ can impact on the site occupancies, but it does not by itself lead to the observed disposition of vacancies. The space group symmetry allows a number of secondary distortions, some of which also affect the occupancies. It is necessary to invoke these occupation-affecting secondary modes, with amplitudes tied to the amplitude of $U_{1}(\mathrm{P} 4)$, to match the observed pattern of vacancy order. In another context, these secondary modes have been described as 'dependent modes' (Campbell et al. 2018). An example of the procedure used to determine the dependent modes using ISOTROPY is given in Appendix A. Firstly, all secondary modes related to the symmetry change $P 6_{3} / m m c \rightarrow C 2 / c$ (P4) were examined to determine which ones define atomic occupancy. Each of these secondary irreps was then examined, as illustrated in Figure A2, to find the set of ratios for their individual contributions which would yield the observed vacancy distribution. Contributions from irreps $U_{4}, L_{1}, \Gamma_{3}^{+i i}$ and $\Gamma_{1}^{+i i}$ in the combination $\frac{U 1-U 4}{4 \sqrt{2}}+\frac{L 1}{8}+\frac{\Gamma_{3}^{+i}}{8}+7 \frac{\Gamma_{1}^{+i}}{8} i i$ give the pattern of vacancy ordering in the 4 C structure.

2.2. 3C structure

3C pyrrhotite is metastable at room temperature and is obtained by quenching crystals with compositions in the vicinity of $\sim \mathrm{Fe}_{7} \mathrm{~S}_{8}$ from above $\sim 600 \mathrm{~K}$ (Fleet 2006). Nakano et al. (1979) were able to refine the structure for a $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ crystal that had been quenched from $300{ }^{\circ} \mathrm{C}$ as a single phase. They found it to be on a hexagonal cell of dimensions approximately $2 A$ by $3 C$ and concluded that the space group was $P 3_{1} 21$ (\#154) as did Keller-Besrest et al. (1983). As in the 4C structure, vacancies occur on alternate layers, and within the vacancy-containing layers the arrangements are the same as in the 4C structure. The difference is in the stacking of these layers. Again, there are four distinct
possible sites for the vacancies, but in this case the layers are stacked so only three of these are involved. When referred to the parent structure, the vacancies are located successively above the 1,0 ; 0,1 and $-1,-1$ (equivalent to 1,1) positions on the base of the hexagonal unit cell; there are no vacancies above the 0,0 position. We concur that this structure is better described in $P 3_{1} 21$ than in $P 3_{1}$ used by other authors (Fleet, 1971); all positions in $P 3_{1}$ are general and Fleet suggested an arrangement of vacancies on a subset of these positions, whereas in $P 3_{1} 21$ we can achieve the postulated structure by declaring vacancies to be on one set of Wyckoff $3 a$ sites.

The \boldsymbol{k}-vector that will describe this arrangement of vacancies is $\boldsymbol{k}=1 / 2,0,1 / 3$ on the U-line of symmetry. It follows that U_{1} and U_{4} are again the irreps of interest. Starting with irrep U_{1}, we can list details of the structures arising for different 'simple' order parameter directions (Table 2). We find one structure in $P 3_{1} 21$, from $U_{1}(\mathrm{P} 7)$, on a basis $(2,0,0),(0,2,0),(0,0,3)$ and at origin $(0,0,1 / 2)$. This makes the cell dimensions $2 A$ by $2 A$ by $3 C$, and we have the structure described just above. It may be worth pointing out that using the P 4 direction that describes the distortion in the 4 C case would give a symmetry of $P \dot{6} m 2$.

Table 2 Order parameter components and unit cell configurations for selected subgroups of $\mathrm{Pb}_{3} / \mathrm{mmc}$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 3)$ is the active representation. The table has been curtailed at the final single component order parameter direction, P8. The complete set of subgroups is given in Table S10.

SGN	Space Group	$\begin{aligned} & \text { OPD } \\ & \text { Nam } \\ & \mathrm{e} \end{aligned}$	OPD Vector	Basis Vectors	Origin
58	Pnnm	P1	(a,0,0,0,0,0)	(0,0,3),(2,1,0),(0,1,0)	(0,0,0)
59	Pmmn	P2	($0, \mathrm{a}, 0,0,0,0$)	$(0,0,3),(0,-1,0),(2,1,0)$	(1/2, 1/2,0)
164	$P 3$ Śm 1	P3	(a, $0, \mathrm{a}, 0, \mathrm{a}, 0$)	$(2,0,0),(0,2,0),(0,0,3)$	$(0,0,0)$
187	P6́m2	P4	(a,-0.577a,a,-0.577a,a,-.577a)	$(0,-2,0),(2,2,0),(0,0,3)$	(0,0,1/4)
64	Cmea	P5	($\mathrm{a}, 0,0,0, \mathrm{a}, 0$)	(2,0,0),(2,4,0), (0,0,3)	$(0,0,0)$
63	Cmcm	P6	($0, \mathrm{a}, 0,0,0,-\mathrm{a}$)	(2,0,0),(2,4,0),(0,0,3)	$(1 / 2,0,0)$
152	$P 3121$	P7	(a,1.732a,-2a, $0, \mathrm{a},-1.732 \mathrm{a}$)	$(2,0,0),(0,2,0),(0,0,3)$	(0,0,1/2)
151	$P 3112$	P8	($\mathrm{a}, 0.577 \mathrm{a}, \mathrm{a}, 0.577 \mathrm{a}, 0,-1.155 \mathrm{a}$)	$(0,-2,0),(2,2,0),(0,0,3)$	(0,0,3/4)

To check that we can reproduce the vacancy ordering scheme, we follow exactly the same procedure as in the 4 C case. The combination of model amplitudes indicated by $\frac{\sqrt{3} U 4-U 1}{12}+\frac{M 1-M 3}{24}-3 \frac{\Gamma_{3}^{+i}}{12}+\Gamma_{1}^{+i i} i$ gives the vacancy ordering arrangement as described.

2.3. 5C structure

De Villiers (2009) reported a Cmce (Cmса) structure (based on the earlier model of Morimoto et al. 1975), Elliot (2010) a $P 2_{1} / c$ structure, Liles \& De Villiers (2012) a $P 2_{1}$ structure, and finally recent
work by Haines et al. (2019) reports a structure in Cmce. The determinations were based on diffraction data from samples with a stoichiometry of approximately $\mathrm{Fe}_{9} \mathrm{~S}_{10}$. All these structures are in the table of possible subgroups arising from a U-line distortion (Table S 4). The most recent determination of the structure of 5C pyrrhotite is in space group $P 2_{1}$ (Liles \& de Villiers 2012) using a setting with cell parameters corresponding to $2 A, 5 C, 2 A, \beta \sim 120^{\circ}$. We have not determined the necessary combination of irreps that give the vacancy distribution reported because there remains significant uncertainty over the vacancy distribution. In all the other systems ($3 \mathrm{C}, 4 \mathrm{C}$ and 6 C) the occupancies are set at either 1,0 or $1 / 2$ and can then be exactly described by occupancies on specific Wyckoff sites. If there is a distribution of occupancy, akin to an 'occupancy wave', then a description starting from an incommensurate vacancy ordering structure may be more illuminating. Table 3 gives distortions described by a single component order parameter.

Table 3 Order parameter components and unit cell configurations for selected subgroups of $P 6_{3} / \mathrm{mmc}$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 5)$ is the active representation. The table has been curtailed at the final single component order parameter distortion, P6. The complete set of subgroups is given in Table S4.

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
58	Pnnm	P1	$(\mathrm{a}, 0,0,0,0,0)$	$(0,0,5),(2,1,0),(0,1,0)$	$(0,0,0)$
59	Pmmn	P2	$(0, \mathrm{a}, 0,0,0,0)$	$(0,0,5),(0,-1,0),(2,1,0)$	$(1 / 2,1 / 2,0)$
			$(\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0)$	$(2,0,0),(0,2,0),(0,0,5)$	$(0,0,0)$
164	P3́ $m 1$	P3	$(\mathrm{a},-0,325 \mathrm{a}, \mathrm{a},-0.325 \mathrm{a}, \mathrm{a},-$ P6́m2		$(0,-2,0),(2,2,0),(0,0,5)$
187		P4	$0.325 \mathrm{a})$	$(0,0,1 / 4)$	
64	$C m c a$	P5	$(\mathrm{a}, 0,0,0, \mathrm{a}, 0)$	$(2,0,0),(2,4,0),(0,0,5)$	$(0,0,0)$
63	$C m c m$	P6	$(0, \mathrm{a}, 0,0,0,-\mathrm{a})$	$(2,0,0),(2,4,0),(0,0,5)$	$(1 / 2,0,0)$

2.4. 6C structure

The 6C structure was first suggested from single crystal XRD by Koto et al. (1975) on a crystal of stoichiometry $\mathrm{Fe}_{11} \mathrm{~S}_{12}$. They proposed basis vectors $(2,0,0)(2,4,0)(0,0,6)$ and two possible unconventional space groups: $F d$ (conventional equivalent is $C c$) or $F 2 / d(C 2 / c)$. Koto et al. (1975) started with the former because it gave 12 independent Fe positions and the possibility of keeping just one of these vacant. However, their analysis suggested that two of these twelve, that is one in six, are half occupied, and that the structure is best described in $F 2 / d$. On the basis of this symmetry, the U_{1} irrep in direction P4 (Table 4) gives the correct distortion, and the ordering scheme of the vacancies (or in this case half-filled sites) matches the observed pattern. The combination of irreps needed to give the reported distribution of sites on the $C 2 / c$ setting with partial $\mathrm{Fe} /$ vacancy order is $\frac{(1+\sqrt{3}) U 1}{24}+\frac{(1-\sqrt{3}) U 4}{24}+\frac{\sqrt{3} U 1(1 / 2,0,1 / 3)}{12}+\frac{\Delta 4}{4}-\frac{L 1}{24}+11 \frac{\Gamma_{1}^{+6}}{12} i$.

Table 4 Order parameter components and unit cell configurations for selected subgroups of $P 6_{3} / \mathrm{mmc}$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 6)$ is the active representation. The table has been curtailed at the final single component order parameter distortion, P10. The complete set of subgroups is given in Table S7.

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
12	C2/m	P1	(a, $0,0,0,0,0$)	(2,1,-6),(0,1,0),(2,1,0)	(0,0,0)
44	Imm 2	P2	(a,-0.268a, $0,0,0,0$)	$(0,0,6),(0,1,0),(-2,-1,0)$	(-11/12,1/24,-11/4)
12	C2/m	P3	(a, $0, \mathrm{a}, 0,0,0$)	$(2,-2,0),(2,2,0),(-1,1,3)$	$(0,0,0)$
15	C2/c	P4	(a, $0,0, \mathrm{a}, 0,0$)	$(2,2,0),(-2,2,0),(1,1,3)$	(0,1/2,0)
43	$F d d 2$	P5	(a,-0.268a, $0.268 \mathrm{a}, \mathrm{a}, 0,0$)	$(0,0,6),(-2,2,0),(-2,-2,0)$	(-4/3,-1/3,1)
42	Fmm2	P6	(a,-0.268a,a,-0.268a, 0,0)	$(0,0,6),(2,2,0),(-2,2,0)$	(-1/12,1/12,1/4)
164	$P 3$ 3́m1	P7	($\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0$)	$(2,0,0),(0,2,0),(0,0,6)$	$(0,0,0)$
187	P6́m2	P8	(a,-0.268a,a,-0.268a,a,-0.268a)	(0,-2,0),(2,2,0),(0,0,6)	(0,0,1/4)
152	$P 3{ }_{1} 21$	P9	(a,1.732a,-2a, $0, \mathrm{a},-1.732 \mathrm{a}$)	$(2,0,0),(0,2,0),(0,0,6)$	$(0,0,1)$
151	$P 3{ }_{1} 12$	P10	$\begin{aligned} & (a, a,-1.366 a, 0.366 a, 0.366 a, \\ & 1.366 a) \end{aligned}$	(0,-2,0),(2,2,0),(0,0,6)	(0,0,5/4)

We note that de Villiers \& Liles (2010) refined the 6C structure from single crystal X-ray data, intending to start from the Koto model but in fact assuming the lower $F d$ (or $C c$) symmetry. The $C c$ structure would be obtained from the U_{1} irrep with one more independent parameter in 2 ways: OPDs C7 and C9 (see Table S7).

2.5. Incommensurate structures

Incommensurate repeat distances in the range $\sim 3.2 C-5.75 C$ have been observed in crystals with a range of compositions at room temperature and in-situ at high temperatures. There is a tendency for the repeat distance to increase with decreasing vacancy concentration (Nakazawa \& Morimoto 1971; Morimoto et al. 1975; Yamamoto \& Nakazawa 1982). Yamamoto \& Nakazawa (1982) proposed an incommensurate model with an $11 C$ repeat for the structure of a crystal with composition $\mathrm{Fe}_{0.91} \mathrm{~S}$ which had a repeat distance of 5.54. Use of a U_{1} irrep with $\boldsymbol{k}=1 / 2,0, \gamma$ and an irrational value of $1 / \gamma$ gives the space group of the basic cell as Cmcm, in agreement with Yamamoto \& Nakazawa (1982). Nakazawa \& Morimoto (1971) also reported an incommensurate structure with a range of repeat distances in the $a b$-plane corresponding to $\sim 40-90 \AA$. This requires irreps associated with points close to the Γ-point along the line between Γ and M and is not considered further here.

2.6. Troilite, FeS

The paramagnetic-antiferromagnetic transition at $T_{\mathrm{N}} \sim 590 \mathrm{~K}$ in troilite is accompanied by a change in crystallographic symmetry. An orthorhombic space group, Pnma ($a \sim C, b \sim A, c \sim \sqrt{ } 3 A$), was proposed by King and Prewitt (1982) on the basis of refinement of diffraction data collected at 463 K ,
and a hexagonal space group, $P 6_{3} m c(2 A, 1 C)$, by Keller-Besrest $\&$ Collin (1990) on the basis of data collected at 453 and 429 K . The active irrep for both reductions in symmetry from $P 6_{3} / m m c$ is $M_{2}^{-i 6}$ and a list of possible subgroups for different order parameter directions is given in Table 5. Inspection of the OPDs in Table 5 shows that a transition from Pnma to $P 6_{3} m c$ would be first order. The magnetic structure has individual magnetic moments aligned perpendicular to the c-axis from T_{N} down to $T_{\mathrm{S}} \sim 450 \mathrm{~K}$, where a spin-flop (Morin) transition occurs and the orientation switches to being parallel to the c-axis (Hirahara \& Murakami 1958, Andresen 1960, Sparks et al. 1962, Andresen \& Torbo 1967, Horwood et al. 1976). An ordered arrangement of spins within the (001) plane would preclude hexagonal symmetry, favouring the orthorhombic structure, while spins aligned parallel to [001] would fit with hexagonal symmetry. Any distortions from hexagonal lattice geometry are small and the two reported structures may be correct for the temperatures at which the data were collected.

Table 5 Subgroups of space group $P 6_{3} / m m c$ obtained with M_{2}^{-}as the active representation.

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
62	$P n m a$	P1	$(\mathrm{a}, 0,0)$	$(0,0,1),(0,-1,0),(2,1,0)$	$(1 / 2,0,0)$
64	$C m c a$	P2	$(\mathrm{a}, 0, \mathrm{a})$	$(2,0,0),(2,4,0),(0,0,1)$	$(1 / 2,1,0)$
186	$P 6_{3} m c$	P3	$(\mathrm{a}, \mathrm{a}, \mathrm{a})$	$(2,0,0),(0,2,0),(0,0,1)$	$(0,0,0)$
14	$P 2_{1} / \mathrm{c}$	C 1	$(\mathrm{a}, 0, \mathrm{~b})$	$(0,2,0),(0,0,1),(2,0,0)$	$(1 / 2,0,0)$
36	$C m c 21$	C2	$(\mathrm{a}, \mathrm{b}, \mathrm{a})$	$(2,0,0),(2,4,0),(0,0,1)$	$(0,0,0)$
4	$P 2_{1}$	S1	$(\mathrm{a}, \mathrm{b}, \mathrm{c})$	$(0,2,0),(0,0,1),(2,0,0)$	$(0,0,0)$

An additional structural transition at $\sim 420 \mathrm{~K}$ in troilite involves the symmetry change $P 6_{3} m c-$ $P^{\overline{6}} 2 c(\sqrt{3} A, 2 C)$ (Keller-Besrest \& Collin 1990). $P^{\prime}{ }_{2 c}$ is a subgroup of $P 6_{3} / m m c$ but not of $P 6_{3} m c$, so the transition is necessarily first order. The order parameter for $P 6_{3} / m m c-P 6$ b $2 c$ belongs to the H point of the Brillouin zone, representing a different distortion to the U-line distortion being considered here (Li \& Frantzen 1994; Ricci \& Bousquet 2016). There are three H-point irreps which will give the observed space group, although only H_{1} produces the reported atomic displacements, i.e. sulphur displaced in the c-axis and iron displaced within the $a b$-plane. Table 6 lists all structures arising from a distortion to the parent NiAs structure with the active irrep H_{1}. The first entry is the structure reported for FeS at room temperature.

Table 6 Structures derived from NiAs structure of FeS with active irrep H1

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
190	$P 622 c$	P1	$(0,0,0, \mathrm{a})$	$(2,1,0),(-1,1,0),(0,0,2)$	$(2 / 3,1 / 3,1 / 4)$
189	$P 62 m$	P2	$(0, \mathrm{a}, 0,0)$	$(2,1,0),(-1,1,0),(0,0,2)$	$(2 / 3,1 / 3,3 / 4)$
15	$C 2 / c$	P4	$(0,0, \mathrm{a},-\mathrm{a})$	$(1,2,0),(3,0,0),(0,0,-2)$	$(2,0,0)$
12	$C 2 / m$	P8	$(\mathrm{a}, \mathrm{a}, 0,0)$	$(1,2,0),(3,0,0),(0,0,-2)$	$(2,0,0)$
174	$P 6$	C1	$(0, \mathrm{a}, 0, \mathrm{~b})$	$(2,1,0),(-1,1,0),(0,0,2)$	$(-1 / 3,1 / 3,3 / 4)$
9	$C c$	C2	$(0,0, \mathrm{a}, \mathrm{b})$	$(1,2,0),(3,0,0),(0,0,-2)$	$(1,1,0)$
5	$C 2$	C3	$(\mathrm{a}, 0,0, \mathrm{~b})$	$(3,0,0),(1,2,0),(0,0,2)$	$(1 / 2,0,1 / 4)$

8	$C m$	C 4	$(\mathrm{a}, \mathrm{b}, 0,0)$	$(1,2,0),(3,0,0),(0,0,-2)$	$(1,1,0)$
2	$P 1$	C 10	$(\mathrm{a}, \mathrm{a}, \mathrm{b},-\mathrm{b})$	$(1,-1,0),(1,2,0),(0,0,2)$	$(1,1,0)$
5	$C 2$	C 11	$(\mathrm{a},-\mathrm{a}, \mathrm{b},-\mathrm{b})$	$(1,2,0),(3,0,0),(0,0,-2)$	$(0,0,1 / 2)$
1	$P 1$	4 D 1	$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$	$(1,-1,0),(1,2,0),(0,0,2)$	$(0,0,0)$

There had been some discussion in the literature that FeS could be ferroelectric, implying that the room temperature structure has a polar space group (e.g., Van Den Berg et al. 1969; Li and Frantzen 1996), but Gosselin et al. (1976) demonstrated that this is not the case.

3. Magnetism

Powell et al. (2004) determined that the magnetic unit cell of 4C pyrrhotite is the same as the crystallographic cell. Layers of Fe atoms in the $a b$-plane have moments order ferromagnetically with orientations that are reversed between alternate layers to give the antiferromagnetic structure. Ferrimagnetism occurs when vacancies order preferentially onto only one of the sets of layers. Our group theoretical analysis demonstrates that the magnetic ordering is associated with a combination of two Γ-point magnetic irreps, $\mathrm{m} \Gamma_{4}^{+i 6}$ and $\mathrm{m} \Gamma_{5}^{+i 6}$, of the space group of the parent structure, $P 6_{3} / \mathrm{mmc}$. In order to explore the implications of magnetic order parameters with these symmetries more widely, magnetic structures that would arise as a consequence of magnetic order parameters with all the magnetic Γ-point irreps, $\mathrm{m} \Gamma_{2}^{+i b}, \mathrm{~m} \Gamma_{4}^{+i b}, \mathrm{~m} \Gamma_{5}^{+i b}$ and $\mathrm{m} \Gamma_{6}^{+i b}$, are listed in Table 7. Irrep $\mathrm{m} \Gamma_{2}^{+i b}$ allows alignment of moments parallel to the crystallographic c-axis, but gives only ferromagnetic structures, while $\mathrm{m} \Gamma_{6}^{+i i}$ gives ferromagnetic structures with moments predominantly in the $a b$-plane. On their own, $\mathrm{m} \Gamma_{4}^{+}$and $\mathrm{m} \Gamma_{5}^{+i b}$ would give antiferromagnetic structures that are hexagonal $\left(\mathrm{m} \Gamma_{4}^{+i i}\right)$, with moments perpendicular to the $a b$-plane, or orthorhombic ($\mathrm{m} \Gamma_{5}^{+i i}$), with moments aligned within the $a b$-plane. The latter can also give a monoclinic structure in which a ferromagnetic component perpendicular to the $a b$-plane is allowed due to $\mathrm{m} \Gamma_{2}^{+i b}$ as a secondary irrep. The magnetic gamma point distortions are shown in Figure 4, in which six subfigures correspond to the six independent order parameter directions allowed. The distortions characterised by a C 1 order parameter direction in Table 7 are combinations of the two single parameter distortions allowed for that irrep.

Table 7 Magnetic structures arising from Γ-point irreps of the parent $P 6_{3} / m m c$ space group. "Layers" refer to planes of Fe atoms perpendicular to the crystallographic c -axis. Crystallographic directions are given with respect to the parent hexagonal cell. $\mathrm{FM}=$ ferromagnetic, $\mathrm{AFM}=$ antiferromagnetic.

Active Irrep	OPD	Space Group	Basis Vectors	Magnetic structure
$\mathrm{m} \Gamma_{2}^{+}$	P1 (a)	$P 6_{3} / m m^{\prime} c^{\prime}$	$(0,-1,0),(1,1,0),(0,0,1)$	FM moments parallel to c-axis
$\mathrm{m} \Gamma_{4}^{+}$	$\mathrm{P} 1(\mathrm{a})$	$P 6_{3}{ }^{\prime} / m^{\prime} m^{\prime} c$	$(0,-1,0),(1,1,0),(0,0,1)$	FM layers, moments parallel to c-axis, AFM between layers
$\mathrm{m} \Gamma_{5}^{+}$	$\mathrm{P} 1(\mathrm{a},-$			
	Cmcm	$(0,1,0),(-2,-1,0),(0,0,1)$	FM layers, moments parallel to [010], P 2	

	(a,0.577a) C1 (a,b)	$P 2{ }_{1} / m$	$(-1,0,0),(0,0,1),(0,1,0)$	(100), AFM between layers. $\mathrm{m} \Gamma_{2}{ }^{+}$as secondary order parameter gives FM component along c-axis FM layers, moments have components parallel to [010] and perpendicular to (100), AFM between layers. $\mathrm{m} \Gamma_{2}{ }^{+}$as secondary order parameter gives FM component along c -axis
$\mathrm{m} \Gamma_{6}^{+}$	$\begin{aligned} & \hline \text { P1 (a,- } \\ & 1.732 \mathrm{a}) \end{aligned}$	$\mathrm{Cm}^{\prime} \mathrm{cm}^{\prime}$	(0,1,0),(-2,-1,0),(0,0,1)	FM, moments perpendicular to (100). $\mathrm{m} \Gamma_{4}{ }^{+}$as secondary order parameter gives AFM component along c-axis
	$\begin{aligned} & \text { P2 } \\ & (\mathrm{a}, 0.577 \mathrm{a}) \end{aligned}$	Cmc'm'	$(0,1,0),(-2,-1,0),(0,0,1)$	FM, moments parallel to [010]
	C1 (a,b)	$P 2{ }_{1}{ }^{\prime} / m^{\prime}$	$(-1,0,0),(0,0,1),(0,1,0)$	FM, moments have components parallel to [010] and perpendicular to (100). m_{4}^{+}as secondary order parameter gives AFM component along c-axis

(100), AFM between layers. $\mathrm{m}_{2}{ }^{+}$as secondary order parameter gives FM component along c-axis
nents (100), AFM between layers. m^{+} secondary order parameter gives FM component along c -axis $\mathrm{m} \Gamma_{4}{ }^{+}$as secondary order parameter gives AFM component along c-axis FM, moments parallel to [010]

FM, moments have components parallel to [010] and perpendicular to parameter gives AFM component along c-axis

Figure 1 Visualisation of all the allowed gamma point magnetic distortions for FeS with the NiAs structure. Sulphur atoms have been omitted for clarity. $m \Gamma_{2}^{+i i}$ and $m \Gamma_{4}^{+i i}$ do not change the unit cell from the parent NiAs structure (shown in outline). $m \Gamma_{5}^{+i 6}$ and $m \Gamma_{6}^{+i 6}$ lead to centred structures with doubling in the plane. All views are down the a^{*}-axis with a 15° rotation around the b -axis.

3.1. FeS, troilite

The orientation of individual moments in troilite below T_{N} is reported as being within the $a b$-plane (Hirahara \& Murakami 1958, Andresen 1960, Sparks et al. 1962, Andresen \& Torbo 1967, Horwood et al. 1976), requiring that the relevant magnetic irrep is $m \Gamma_{5}^{+i 6}$. As set out in Table 8, combining m $\Gamma_{5}^{+i b}$ with $M_{2}^{-i 6}$ gives two possibilities that are consistent with the Pnma structure reported by King \& Prewitt (1982). These are Pnma, and Pnm'a' from directions P1 (a,-1.732a) and P2 (a,0.577a) of m $\Gamma_{5}^{+i i}$, respectively. Moments are lined up parallel to the crystallographic b-axis of the Pnma structure ($\left[0 \overline{1}_{0}\right.$] of the parent hexagonal structure) or to the crystallographic c-axis of the Pnm'a' structure ([210] of the hexagonal parent). In the latter case, the ferromagnetic moment allowed by $\mathrm{m} \Gamma_{2}^{+i 6}$ as a secondary irrep could still be zero for thermodynamic reasons. If the $m \Gamma_{5}^{+i 6}$ direction is $\mathrm{C} 1(\mathrm{a}, \mathrm{b})$, the magnetic space group is $P 2_{1} / c$ and the moments are not constrained to any particular orientation within the $a b$-plane of the parent structure.

Table 8 Selected subgroups arising from coupling of irreps $m \Gamma_{5}^{+i 6}$ and the P1 direction of $M_{2}^{-i 6}$, with respect to the parent space group $P 6_{3} / m m c$. SGN.M $=$ magnetic space group number.

$\begin{aligned} & \text { SGN. } \\ & \text { M } \end{aligned}$	Space Group	OPD Name m $\Gamma_{5}^{+66} M_{2}^{-6 b}$	$\begin{array}{ll} \hline \text { OPD Vector } & \mathrm{m} \\ \Gamma_{5}^{+i \zeta}, M_{2}^{-i \epsilon} & \end{array}$	Basis Vector	Origin
62.441	Pnma	P 1 (1)P1(1)	(a,-1.732a),(b,0,0)	(0,0,1),(0,-1,0),(2,1,0)	(1/2,0,0)
62.447	Prm'a'	P2(1)P1(1)	(a,0.577a),(b,0,0)	$(0,0,1),(0,-1,0),(2,1,0)$	$(1 / 2,0,0)$
14.75	$P 2{ }_{1} / c$	C 1 (1)P1(1)	(a,b),(c,0,0)	$(0,1,0),(0,0,1),(2,0,0)$	$(1 / 2,0,0)$

Below the spin-flop transition at $\sim 450 \mathrm{~K}$ moments lie perpendicular to the $a b$-plane and the structure remains antiferromagnetic (Hirahara \& Murakami 1958, Andresen 1960, Sparks et al. 1962, Andresen \& Torbo 1967, Horwood et al. 1976) with spin configurations that are consistent with m $\Gamma_{4}^{+i 6}$. Combining $\mathrm{m} \Gamma_{4}^{+i b}$ with the P3 direction of $M_{2}^{-i 6}$, gives the structure in Table $9, P 6_{3}{ }^{\prime} m^{\prime} c$, which is consistent with the $P 6_{3} m c$ crystal structure reported by Keller-Besrest \& Collin (1990). $P 6_{3}{ }^{\prime} m^{\prime} c$ is not a subgroup of Pnma, Pnm'a' or $P 2_{1} / c$ so the spin-flop transition is necessarily first order in character.

Table 9 Order parameter information for subgroup $P 6_{3}{ }^{\prime} m^{\prime} c$ arising from coupling of irreps $m \Gamma_{4}^{+i 6}$ and the P3 direction of $M_{2}^{-i 6}$, with respect to the parent space group $P 6_{3} / \mathrm{mmc}$.

SGN.M	Space Group	OPD	OPD Vector	Basis Vectors	Origin
		Name m	$\mathrm{m} \Gamma_{4}^{+i, i}$		
	$\Gamma_{4}^{+i,}$	$M_{2}^{-i,}$			

$M_{2}^{-i 6}$					
186.205	$P 6_{3}{ }^{\prime} m^{\prime} c$	$\mathrm{P} 1(1) \mathrm{P} 3(1)$	(a),(b,b,b)	$(0,-2,0),(2,2,0),(0,0,1)$	$(0,0,0)$

The room temperature structure of troilite is also antiferromagnetic, with individual moments parallel to the crystallographic c-axis (Hirahara \& Murakami 1958; Andresen 1960; Bertaut 1980). Combining m_{4}^{+}with H_{1} (as identified in Section 2.6) gives $P^{\prime} 6^{\prime} 2 c^{\prime}$ as the most likely magnetic space group with properties set out in Table 10.

Table 10 Subgroups arising from coupling of irreps $m \Gamma_{4}^{+i i}$ and the $P 1$ direction of H_{1}, with respect to the parent space group $\mathrm{Pb}_{3} / \mathrm{mmc}$.

SGN.M	Space Group	OPD Name $\mathrm{H}_{1} \mathrm{~m} \Gamma_{4}^{+i \iota}$	OPD Vector $\mathrm{H}_{1}, \mathrm{~m} \Gamma_{4}^{+i \iota}$	Basis Vector	Origin
190.23	$P 6^{\prime} 2 c^{\prime}$	$\mathrm{P} 1(1) \mathrm{P} 1(1)$	$(0,0,0, \mathrm{a}),(\mathrm{b})$	$(1,-1,0),(1,2,0),(0,0,2)$	$(2 / 3,1 / 3,1 / 4)$

3.2. 4C Pyrrhotite

3.2.1. Ferrimagnetism below ~ 590 K

If the antiferromagnetic ordering which occurs below $\sim 590 \mathrm{~K}$ in FeS is essentially the same as occurs at the same temperature all across the $\mathrm{Fe}_{1-x} \mathrm{~S}$ solid solution, it should be possible to obtain the magnetic structure of 4C pyrrhotite reported by Powell et al. (2004) by combining $\mathrm{m} \Gamma_{5}^{+i 6}$ with $U_{1}(1 / 2,0,1 / 4)$. Table 11 contains selected subgroups of $P 6_{3} / m m c$ that arise by coupling of these two irreps and includes $C 2^{\prime} / c^{\prime}$ (row 2) as the most appropriate magnetic space group for the reported structure. This has direction P 4 of the six component U_{1} order parameter, which has one non-zero component as ($\mathrm{a}, 0,0, \mathrm{a}, 0,0$), and direction P 2 of the two component $\mathrm{m} \Gamma_{5}^{+i b}$ order parameter, which has one non-zero component as ($-b, 0.577 \mathrm{~b}$). The latter gives the alignment of moments at an angle of 30° to [100] of the hexagonal parent structure, which is also the direction of the crystallographic a-axis of the monoclinic structure (Fig. 3).

Because the symmetry is reduced to monoclinic by the pattern of $\mathrm{Fe} /$ vacancy ordering, $\mathrm{m} \Gamma_{4}^{+i \dot{i}}$ is a secondary order parameter once the magnetic symmetry is broken by $\mathrm{m} \Gamma_{5}^{+i \iota}$. This allows moments to have a component out of the $a b$-plane, though still constrained to be within the $a c$-plane of the monoclinic structure (Fig. 3). There is a similarity to behaviour observed in hematite with similar group theory underpinnings (Harrison et al. 2010). By analogy with the magnetic behaviour of FeS , it should be expected that there will an energetic advantage in a realignment of these moments from parallel to the $a b$-plane at high temperatures $\left(\mathrm{m} \Gamma_{5}^{+i i}\right)$ to perpendicular to it at low temperatures $\left(\mathrm{m} \Gamma_{4}^{+i i}\right)$. In this case, all that is required is an increase in the magnitude of the $\mathrm{m} \Gamma_{4}^{+i b}$ component as temperature reduces. The observed angle of rotation of the ferrimagnetic moment out of the $a b$-plane increases from $\sim 6^{\circ}$ at room temperature to $25-30^{\circ}$ at $\sim 10-30 \mathrm{~K}$ (Powell et al. 2004, Koulialias 2018).

Table 11 Selected magnetic subgroups arising from coupling of irreps $\mathrm{m} \Gamma_{5}^{+i \iota}$ and the P 4 and C5 directions of $U_{1}(1 / 2,0,1 / 4)$, with respect to the parent space group $P 6_{3} / m m c$. The complete set of subgroups is given in Table S3.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 4)$ $\mathrm{m} \Gamma_{5}^{+i \iota}$	OPD Vector $U_{1}(1 / 2,0,1 / 4), \mathrm{m} \Gamma_{5}^{+i 6}$	Basis Vectors	Origin
		P4(1)P1(3)	$(\mathrm{a}, 0,0, \mathrm{a}, 0,0),(\mathrm{b}, 1.732 \mathrm{~b})$	$(2,-2,0),(2,2,0),(-$ 15.85	$C 2 / c$
15.89	$C 2^{\prime} / c^{\prime}$	$\mathrm{P} 4(1) \mathrm{P} 2(3)$	$(\mathrm{a}, 0,0, \mathrm{a}, 0,0),(-\mathrm{b}, 0.577 \mathrm{~b})$	$1,1,2)$ $(2,-2,0),(2,2,0),(-$ $1,1,2)$ $(1,1,2),(0,2,0),(-$ $2,0,0)$	$(0,1 / 2,0)$
2.4	$P 1$	$\mathrm{C} 5(1) \mathrm{C} 1(1)$	$(\mathrm{a}, 0,0, \mathrm{~b}, 0,0),(\mathrm{c}, \mathrm{d})$		

Table 12 contains a full list of the magnetic Γ-point irreps which are allowed by symmetry to have non-zero values in the $C 2^{\prime} / c^{\prime}$ structure. In principle, $\mathrm{m} \Gamma_{2}^{+i b}(a)$ and $\mathrm{m} \Gamma_{6}^{+i b}(a, 1.732 a)$ allow ferromagnetic moments parallel to the crystallographic c^{*} - and b-axes of the monoclinic structure, respectively. These have not been observed and must be effectively zero for reasons of thermodynamic stability.

Table 12 Non-zero magnetic irreps arising from the symmetry changes $P 6_{3} / m m c \rightarrow C 2^{\prime} / c^{\prime}$ and $P 6_{3} / m m c \rightarrow P \overline{1}$

	$U_{1}(1 / 2,0,1 / 4)$	$\mathrm{m}^{2} \Gamma_{2}^{+i b}$	$\mathrm{~m}^{2} \Gamma_{4}^{+i i}$	$\mathrm{~m}_{5}^{+i i}$	$\mathrm{~m}^{+i b}$
$C 2^{\prime} / c^{\prime}$	$\mathrm{P} 4(\mathrm{a}, 0,0, \mathrm{a}, 0,0)$	$\mathrm{P} 1(\mathrm{a})$	$\mathrm{P} 1(\mathrm{a})$	$\mathrm{P} 2(-\mathrm{a}, 0.577 \mathrm{a})$	$\mathrm{P} 1(\mathrm{a}, 1.732 \mathrm{a})$
$P 1$	$\mathrm{C} 5(\mathrm{a}, 0,0, \mathrm{~b}, 0,0)$	$\mathrm{P} 1(\mathrm{a})$	$\mathrm{P} 1(\mathrm{a})$	$\mathrm{C} 1(\mathrm{a}, \mathrm{b})$	$\mathrm{C} 1(\mathrm{a}, \mathrm{b})$

The full sets of subgroups which arise by coupling of $U_{1}(1 / 2,0,1 / 4)$ with $m \Gamma_{4}^{+i b}$ and $m \Gamma_{5}^{+i b}$ are listed in Tables S2 and S3, respectively.

3.2.2. Besnus transition in 4C Pyrrhotite

The Besnus transition near 35 K in 4 C pyrrhotite $\left(\sim \mathrm{Fe}_{7} \mathrm{~S}_{8}\right)$ is associated with changes in magnetic properties (Fillion \& Rochette 1988, Dekkers et al. 1989, Rochette et al. 1990, Kind et al. 2013; Baranov et al. 2015, Koulialias et al. 2016, Volk et al. 2016, Bazaeva et al. 2016, Koulialias et al. 2018, Horng \& Roberts 2018), an anomaly in heat capacity (Grønvold et al. 1959, Volk et al. 2018), an anomaly in resistivity (Besnus \& Meyer 1964, Charilaou et al. 2015), apparently continuous changes in the temperature dependence of lattice parameters (Fillion et al. 1992, Koulialias et al. 2018), together with small adjustments of $\mathrm{Fe}-\mathrm{Fe}$ bond lengths and $\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$ bond angles (Koulialias et al. 2018). The evidence from Mössbauer spectroscopy is that the transition is marked by splitting of at least one of the Fe sites into two equally populated subsites (Jeandey et al. 1991, Oddou et al. 1992, Ferrow et al. 2006). In combination, these features are consistent with a phase transition between structures with a group-subgroup relationship. $P 1$ and $P 1$ have been suggested for the crystallographic space group of the low temperature structure (Wolfers et al. 2011).

The pattern of vacancy ordering must remain essentially unchanged through the transition because of the slowness of Fe /vacancy diffusion at low temperatures, which implies crystallographic space group P1́ (Table 11) as the only possible subgroup of $C 2^{\prime} / c^{\prime}$ in Table S3. This has order parameter direction $\mathrm{C} 5(\mathrm{a}, 0,0, \mathrm{~b}, 0,0)$, for $U_{1}(1 / 2,0,1 / 4), \mathrm{C} 1$ (c,d) for $\mathrm{m} \Gamma_{5}^{+i b}$ and the additional secondary magnetic Γ-point irreps listed in Table 12. Non-zero values of $\mathrm{m} \Gamma_{2}^{+i 6}$ and $\mathrm{m} \Gamma_{6}^{+i 6}$ allow ferromagnetic moments parallel to the crystallographic c^{*} and b -axes of the monoclinic structure but there is no experimental evidence suggesting that these develop. In terms of the magnetic structure alone, the transition can be understood as a rotation of the direction of individual moments out of the ac-plane of the monoclinic structure. There are no symmetry constraints on the orientation of antiferromagnetic/ferrimagnetic moments in the P1 structure but, because of the slowness of $\mathrm{Fe} /$ vacancy reordering, the U_{1} order parameter will effectively remain (a, $0,0, \mathrm{a}, 0,0$) instead of relaxing to (a,0,0,b,0,0).

This symmetry analysis does not depend on identification of the driving mechanism for the transition, which might be due primarily to a change in electronic structure (e.g., Besnus \& Meyer 1964; Fillion \& Rochette 1988; Ferrow et al. 2006; Koulialias et al. 2016; Koulialias et al. 2018) or, more simply, to the normal interactions between spins which give rise to changes in the easy axis of magnetisation.

The sequence of spin orientations is summarised in Figure 5. The magnetic structures at $\mathrm{T} \sim$ 300 K and $\mathrm{T} \sim 590 \mathrm{~K}$ are from Powell et. al (2004). The magnetic structure shown for $\mathrm{T}<\mathrm{T}_{\mathrm{B}}$ is illustrative and based on the allowed freedom that the moments have in the triclinic structure at low temperature.

Figure 2 Temperature dependence of the spin orientation in 4C pyrrhotite. Sulphur atoms have been removed for clarity. Iron atoms are red with red arrows for the moment direction. Vacant sites are shown in black.

3.3. Magnetism in 3C pyrrhotite

The 3C structure of pyrrhotite in space group $P 3_{1} 21$ is similar to that of the 4 C structure in the sense that vacancies are confined to alternate Fe-layers. There appears to be little information in the literature for its magnetic structure, but the equivalent phase in $\mathrm{Fe}_{7} \mathrm{Se}_{8}$ is ferrimagnetic (Kawaminami \& Okazaki 1970), as would be expected for this distribution of vacancies. Horng \& Roberts (2018) presented magnetic data on 3C pyrrhotite that suggested a remanence of the same order as 4C. This would make sense on the basis of our group theory results as the remanence will come from the imbalance in the distribution of vacancies between the two antiferromagnetic sublattices. This imbalance is the same in both the 3 C and 4 C structures: one in eight iron sites are vacant and all are situated on one sublattice. Furthermore, it is interesting to note that in all of their samples (which are all multiphase) there are none with both 3C and 4C. They did not observe a transition in 3C pyrrhotite in the range $5-300 \mathrm{~K}$.

Combinations of $U_{1}(1 / 2,0,1 / 3) \mathrm{m} \Gamma_{5}^{+i 6}$ and $\mathrm{m} \Gamma_{4}^{+i 6}$ yield the possible magnetic space groups listed in Tables 13 and 14. Magnetic moments within the $a b$-plane would be produced by $\mathrm{m} \Gamma_{5}^{+i 6}$, giving one of the structures seen in Table 13 as the most likely symmetry immediately below $\sim 590 \mathrm{~K}$. The most likely magnetic structure with moments perpendicular to the $a b$-plane would have space group $P 3_{1} 2^{\prime} 1$ (Table 14). Unlike the case of the monoclinic 4C structure, $\mathrm{m} \Gamma_{4}^{+i 6}$ does not become a secondary irrep when the symmetry is broken by $\mathrm{m} \Gamma_{5}^{+66}$. A change in the orientation of moments with falling temperature from parallel to perpendicular to the $a b$-plane would therefore be expected to occur by a discrete spin-flop transition. This occurs at $\sim 130 \mathrm{~K}$ in $3 \mathrm{C} \mathrm{Fe}_{7} \mathrm{Se}_{8}$ (Andresen \& Leciejewicz 1964; Kawaminami \& Okazaki 1970; Ericsson et al. 1997). The room temperature structure is only compatible with a magnetic structure in which the moments are perpendicular to the $a b$-plane. On the basis of the sequence of magnetic structures seen in troilite and 4C pyrrhotite, in which the moments lie within the $a b$-plane below 590 K before a transition to a state in which they are perpendicular to it at lower temperature, we would suggest that immediately below $\sim 590 \mathrm{~K}$ we might expect a structure other than the $P 3_{1} 21$ reported. The most likely structures are those listed in Table 13. The single parameter order parameter directions of the combined $m \Gamma_{5}^{+i i}$ and U_{1} irreps produce these structures and none of them contains the $\mathrm{m} \Gamma_{4}^{+i b}$ irrep as a secondary. We therefore predict a first order spin-flop transition between the two magnetic states above room temperature.

Table 13 Selected magnetic subgroups arising from coupling of irreps $\mathrm{m} \Gamma_{5}^{+i i}$ and $U_{1}(1 / 2,0,1 / 3)$, with respect to the parent space group $\mathrm{P6}_{3} / \mathrm{mmc}$. Only distortions with single parameter order parameter directions have been included. The complete set of subgroups is given in Table S12.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 3) \mathrm{m}$ $\Gamma_{5}^{+6 i}$	OPD Vector $U_{1}(1 / 2,0,1 / 3), \mathrm{m} \Gamma_{5}^{+6 i}$	Basis Vectors	Origin
58.393	Pnnm	P1(1)P1(1)	$(\mathrm{a}, 0,0,0,0,0),(\mathrm{b},-1.732 \mathrm{~b})$	$(-2,-1,0),(0,0,3),(0,1,0)$	$(0,0,0)$

59.405	Pmmn	P2(1)P1(1)	$(0, \mathrm{a}, 0,0,0,0),(\mathrm{b},-1.732 \mathrm{~b})$	$(0,1,0),(0,0,3),(2,1,0)$	$(1 / 2,0,0)$
64.469	Cmca	P5(1)P1(2)	$(\mathrm{a}, 0,0,0, \mathrm{a}, 0),(-2 \mathrm{~b}, 0)$	$(2,0,0),(2,4,0),(0,0,3)$	$(0,0,0)$
63.457	Cmcm	P6(1)P1(2)	$(0, \mathrm{a}, 0,0,0,-\mathrm{a}),(-2 \mathrm{~b}, 0)$	$(2,0,0),(2,4,0),(0,0,3)$	$(1 / 2,0,0)$
58.398	Pnn'm$^{\prime}$	P1(1)P2(1)	$(\mathrm{a}, 0,0,0,0,0),(\mathrm{b}, 0.577 \mathrm{~b})$	$(0,0,3),(2,1,0),(0,1,0)$	$(0,0,0)$
59.41	Pmm'n' $^{\prime}$	P2(1)P2(1)	$(0, \mathrm{a}, 0,0,0,0),(\mathrm{b}, 0.577 \mathrm{~b})$	$(0,0,3),(0,-1,0),(2,1,0)$	$(1 / 2,1 / 2,0)$
64.474	Cm'c'a	P5(1)P2(2)	$(\mathrm{a}, 0,0,0, \mathrm{a}, 0),(0,-1.155 \mathrm{~b})$	$(2,0,0),(2,4,0),(0,0,3)$	$(0,0,0)$
63.462	Cm'c'm	P6(1)P2(2)	$(0, \mathrm{a}, 0,0,0,-\mathrm{a}),(0,-1.155 \mathrm{~b})$	$(2,0,0),(2,4,0),(0,0,3)$	$(1 / 2,0,0)$

Table 14 Selected magnetic subgroups arising from coupling of irreps $m \Gamma_{4}^{+i i}$ and $U_{1}(1 / 2,0,1 / 3)$, with respect to the parent space group $P 6_{3} / m m c$. Only distortions with single parameter order parameter directions have been included. The complete set of subgroups is given in Table S11.

SGN.M	Space Group	$\begin{aligned} & \text { OPD Name } \\ & U_{1}(1 / 2,0,1 / 3) \mathrm{m} \\ & \Gamma_{4}^{+66} \\ & \hline \end{aligned}$	OPD Vector $U_{1}(1 / 2,0,1 / 3), \mathrm{m} \Gamma_{4}^{+\zeta 6}$	Basis Vectors	Origin
58.398	Pnn'm'	P1(1)P1(1)	(a,0,0,0,0,0),(b)	$\begin{aligned} & (-2,-1,0),(0,0,3), \\ & (0,1,0) \end{aligned}$	(0,0,0)
59.409	Pm'm'n	P2(1)P1(1)	(0,a, $0,0,0,0$),(b)	(0,0,3),(0,-1,0), (2,1,0)	(1/2,1/2,0)
164.89	$P 3 m^{\prime} 1$	P3(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0),(\mathrm{b}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{a},-0.577 \mathrm{a}, \mathrm{a},- \end{aligned}$	(0,-2,0),(2,2,0),(0,0,3)	($0,0,0$)
187.211	P6'm'2	P4(1)P1(1)	0.577a),(b)	(2,2,0),(-2,0,0),(0,0,3)	(0,0,1/4)
64.476	$\mathrm{Cm}^{\prime} \mathrm{ca}^{\prime}$	P5(1)P1(1)	(a,0,0,0,a,0),(b)	(2,0,0), (2,4,0), (0,0,3)	$(0,0,0)$
63.464	$\mathrm{Cm}^{\prime} \mathrm{cm}^{\prime}$	P6(1)P1(1)	$\begin{aligned} & (0, a, 0,0,0,-a),(b) \\ & (a, 1.732 a,-2 a, 0, a,- \end{aligned}$	$(2,0,0),(2,4,0),(0,0,3)$	$(1 / 2,0,0)$
152.35	P312'1	P7(1)P1(1)	$\begin{aligned} & 1.732 \mathrm{a}),(\mathrm{b}) \\ & (\mathrm{a}, 0.577 \mathrm{a},-\mathrm{a}, 0.577 \mathrm{a}, 0,- \end{aligned}$	(0,-2,0),(2,2,0),(0,0,3)	$(0,0,0)$
151.29	P3112	P8(1)P1(1)	1.155a),(b)	$(2,2,0),(-2,0,0),(0,0,3)$	(0,0,1/4)

3.4. Magnetism in 5C pyrrhotite

The crystallographic space groups of the structures of pyrrhotite with 5 C and 6 C superstructures are perhaps less certain than those of the better-understood 3 C and 4 C structures. Both are reported to have partially ordered $\mathrm{Fe} /$ vacancy sites and monoclinic symmetry: $C c$ for the 6 C structure (Koto et al. 1975; de Villiers \& Liles 2010) and $P 2_{1}$ as the most recent proposal for the 5C structure (Liles \& de Villiers 2012). The expected pattern with respect to their magnetic properties would be antiferromagnetic (or ferrimagnetic, depending on the distribution of vacancies), with moments in the $a b$-plane at high temperatures and perpendicular to the $a b$-plane at low temperatures. Whether the change in orientation during cooling occurs by a continuous rotation or abruptly at a spin-flop transition depends on whether the combination of the U_{1} order parameter for $\mathrm{Fe} /$ vacancy ordering and $\mathrm{m} \Gamma_{5}^{+i \iota}$ for magnetic ordering gives $\mathrm{m} \Gamma_{4}^{+i b}$ as a secondary order parameter. $U_{1}(1 / 2,0,1 / 5)$ combined with $\mathrm{m} \Gamma_{5}^{+i 6}$ does not. $U_{1}(1 / 2,0,1 / 6)$ combined with $\mathrm{m} \Gamma_{5}^{+i 6}$ does. The energetically preferred orientation of moments within the $a b$-plane will be described, as for the other superstructure types, by $\mathrm{P} 1, \mathrm{P} 2$ or C 1 directions of irrep $\mathrm{m} \Gamma_{5}^{+66}$.

In none of the reported 5C structures (nor indeed in any but the triclinic structures) is it possible to have both $\mathrm{m} \Gamma_{4}^{+i \zeta}$ and $\mathrm{m} \Gamma_{5}^{+i b}$ allowed together. Therefore, it seems likely that 5C pyrrhotite will show an abrupt spin-flop transition from having spins in the $a b$-plane to having the spins
perpendicular to that plane. Evidence for such an abrupt low temperature magnetic transition has recently been reported (Haines et al. 2019). The reported structures are all compatible with coupling of the vacancy ordering to either $\mathrm{m} \Gamma_{4}^{+i \delta}$ or $\mathrm{m} \Gamma_{5}^{+i \omega}$. The most likely scenario would be a phase transition from one of the higher symmetry structures, $C m c a$ or $P 2_{1} / c$ to the $P 2_{1}$ structure reported by Liles \& de Villiers (2012) predominantly using data collected at 120 K . The higher symmetry structure would be due to coupling of the U_{1} irrep with the $\mathrm{m} \Gamma_{5}^{+i \omega}$ irrep and Table 15 shows some of the possible distortions. The third entry shows the possible Cmca structure whilst the $P 2_{1} / c$ structure is seen in the 5 th, 8 th and 10th entries. The lower temperature, low symmetry structure would arise from coupling of the U_{1} irrep with the $\mathrm{m} \Gamma_{4}^{+i \omega}$ irrep (last entry of Table 16).

Table 15 Selected magnetic subgroups arising from coupling of irreps $\mathrm{m} \Gamma_{5}^{+i \zeta}$ and $U_{1}(1 / 2,0,1 / 5)$, with respect to the parent space group $P 6_{3} / m m c$. Some entries have been omitted for clarity and brevity. The complete set of subgroups is given in Table S6.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 5)$ $\mathrm{m} \Gamma_{5}^{+i 6}$	OPD Vector $U_{1}(1 / 2,0,1 / 5), \mathrm{m} \Gamma_{5}^{+\zeta 6}$	Basis Vectors	Origin
58.393	Pnnm	P1(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0,0,0,0,0),(\mathrm{b},- \\ & 1.732 \mathrm{~b}) \\ & (0, \mathrm{a}, 0,0,0,0),(\mathrm{b},- \end{aligned}$	$\begin{aligned} & (-2,-1,0),(0,0,5), \\ & (0,1,0) \end{aligned}$	($0,0,0$)
59.405	Pmmn	P2(1)P1(1)	1.732 b)	$(0,1,0),(0,0,5),(2,1,0)$	(1/2,0,0)
64.469	Cmca	P5(1)P1(2)	(a, $0,0,0, \mathrm{a}, 0),(-2 \mathrm{~b}, 0)$	$(2,0,0),(2,4,0),(0,0,5)$	$(0,0,0)$
63.457	Cmam	P6(1)P1(2)	(0,a,0,0,0,-a),(-2b,0)	$(2,0,0),(2,4,0),(0,0,5)$	(1/2,0,0)
14.75	$P 2{ }_{1} / \mathrm{c}$	P1(1)C1(1)	(a, $0,0,0,0,0),(\mathrm{b}, \mathrm{c})$	$(0,1,0),(0,0,5),(2,0,0)$	$(0,0,0)$
11.5	$P 21 / m$	P2(1)C1(1)	(0,a, $0,0,0,0),(\mathrm{b}, \mathrm{c})$	$(-2,0,0),(0,0,5),(0,1,0)$	(-1/2,0,0)
4.7	$P 2_{1}$	$\mathrm{C} 1(1) \mathrm{C} 1$ (1)	(a,b, , 0, 0, 0), (c, d)	$(-2,0,0),(0,0,5),(0,1,0)$	(-1/2,0,0)
14.75	$P 2{ }_{1} / \mathrm{c}$	$\mathrm{C} 4(1) \mathrm{C} 1(1)$	(0,0,a, $0, \mathrm{~b}, 0),(\mathrm{c}, \mathrm{d})$	(-2,0,0),(0,0,5),(0,2,0)	$(0,0,0)$
11.5	$P 21 / m$	C5(1)C1(1)	(0,0,0,a,0,b), (c,d)	$(-2,0,0),(0,0,5),(0,2,0)$	(0,1/2,0)
14.75	$P 2{ }_{1} / \mathrm{c}$	C6(1)C1(1)	(a, $0,0,0,0, b),(\mathrm{c}, \mathrm{d})$	$(-2,0,0),(0,0,5),(2,2,0)$	(0,1/2,0)
4.7	$P 2_{1}$	4D1(1)C1(1)	(0,0,a,b,c,d),(e,f)	$(-2,0,0),(0,0,5),(0,2,0)$	(0,1/2,0)

Table 16 Selected magnetic subgroups arising from coupling of irreps $\mathrm{m} \Gamma_{4}^{+i \delta}$ and $U_{1}(1 / 2,0,1 / 5)$, with respect to the parent space group $P 6_{3} / m m c$. Some entries have been omitted for clarity and brevity. The complete set of subgroups is given in Table S5.

SGN.M	Space group	$\begin{aligned} & \text { OPD Name } \\ & U_{1}(1 / 2,0,1 / 5) \\ & \mathrm{m} \Gamma_{4}^{+i 6} \end{aligned}$	$\begin{aligned} & \text { OPD vector } \\ & U_{1}(1 / 2,0,1 / 5), \mathrm{m} \\ & \Gamma_{4}^{+6 i} \end{aligned}$	Basis Vectors	Origin
58.398	Pnn'm'	P1(1)P1(1)	(a,0,0,0,0,0),(b)	(-2,-1,0),(0,0,5),(0,1,0)	(0,0,0)
59.409	Pm'm'n	P2(1)P1(1)	(0,a, $0,0,0,0),(\mathrm{b})$	(0,0,5),(0,-1,0),(2,1,0)	$\begin{aligned} & (1 / 2,1 / 2 \\ & 0) \end{aligned}$
164.89	P3́m'1	P3(1)P1(1)	(a,0,a,0,a,0), (b)	(0,-2,0),(2,2,0),(0,0,5)	$(0,0,0)$
	P6́'m'2		$\begin{aligned} & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{a},- \\ & 0.325 \mathrm{a}, \mathrm{a},-0.325 \mathrm{a}), \end{aligned}$		
187.211		P4(1)P1(1)	(b)	(2,2,0),(-2,0,0),(0,0,5)	(0,0,1/4)
64.476	$C^{\prime}{ }^{\prime}{ }^{\prime}$	P5(1)P1(1)	(a, $0,0,0, \mathrm{a}, 0$), (b)	(2,0,0),(2,4,0),(0,0,5)	$(0,0,0)$
63.464	Cm'cm'	P6(1)P1(1)	($0, a, 0,0,0,-\mathrm{a}$), (b)	(2,0,0), (2,4,0),(0,0,5)	(1/2,0,0)
		emoved. Sele	d higher order OP	entries listed below	

14.79	$P 21^{\prime} / c^{\prime}$	C4(1)P1(1)	$(0,0, \mathrm{a}, 0, \mathrm{~b}, 0),(\mathrm{c})$	$(-2,0,0),(0,0,5),(0,2,0)$	$(0,0,0)$
11.54	$P 2^{\prime} / m^{\prime}$	C5(1)P1(1)	$(0,0,0, \mathrm{a}, 0, \mathrm{~b}),(\mathrm{c})$	$(-2,0,0),(0,0,5),(0,2,0)$	$(0,1 / 2,0)$
14.79	$P 2^{\prime} / c^{\prime}$	C6(1)P1(1)	$(\mathrm{a}, 0,0,0,0, \mathrm{~b}),(\mathrm{c})$	$(-2,0,0),(0,0,5),(2,2,0)$	$(0,1 / 2,0)$
4.9	$P 2^{\prime}{ }^{\prime}$	4D1(1)P1(1)	$(0,0, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}),(\mathrm{e})$	$(-2,0,0),(0,0,5),(0,2,0)$	$(0,1 / 2,0)$

3.5. Magnetism in 6C

The magnetic phase diagram for 6 C pyrrhotite could follow very closely that observed in 4 C pyrrhotite. The $C 2^{\prime} / c^{\prime}$ structure attained from the coupled vacancy ordering (the P4 direction of the U_{1} distortion) and magnetism (the P2 direction of the $\mathrm{m} \Gamma_{5}^{+i,}$ distortion), line 10 of Table 17, can then have a transition to the same P í structure (second last entry in Table 17), as seen below the Besnus transition in 4C pyrrhotite. Magnetically this is identical. The $\mathrm{m} \Gamma_{4}^{+i \omega}$ irrep is a secondary distortion, which means that the moments are allowed by symmetry to rotate out of the $a b$-plane. Indeed, similarly to 4 C pyrrhotite, the moments can in principle line up parallel to the c -axis of the parent structure. There is therefore no need for an abrupt Morin-type transition. Instead, a transition like the Besnus transition is expected at which moments confined to the $a c$-plane above the transition are free to rotate out of it below the transition. However due to the nature of the vacancy ordering, a vacancycontaining bi-layer separated by a non-vacancy containing layer, the vacancies are evenly distributed on both of the antiferromagnetic sublattices and the overall structure is antiferromagnetic above and below the low-temperature transition.

Table 17 Selected magnetic subgroups arising from coupling of irreps $\mathrm{m} \Gamma_{5}^{+i \zeta}$ and $U_{1}(1 / 2,0,1 / 6)$, with respect to the parent space group $P 6_{3} / m m c$. Some entries have been omitted for clarity and brevity. The complete set of subgroups is given in Table S9.

SGN	Space Group	OPD Name $U_{1}(1 / 2,0,1 /$ $6) \mathrm{m} \Gamma_{5}^{+c i}$	OPD Vector $U_{1}(1 / 2,0,1 / 6), \mathrm{m} \Gamma_{5}^{+i 6}$	Basis Vectors	Origin

	'		b, 0.577b)	2,0)	1/12,1/4)
Entries removed					
9.37	Cc	C9(1)P1(3)	(a,b,b,-a,0,0), (c, 1.732c)	(2,2,0),(-2,2,0),(1,1,3)	$(0,3 / 2,0)$
9.39	$C c^{\prime}$	C9(1)P2(3)	(a,b,b,-a, 0,0),(-c, 0.577c)	$(2,2,0),(-2,2,0),(1,1,3)$	$(0,3 / 2,0)$
				(-2,-2,0), (0,0,6),(-	(-7/12,-
9.37	Cc	C7(1)C1(1)	(a,-0.268a,b,3.732b,0,0),(c,d)	2,0,0)	7/12,7/4)
Entries removed					
2.4	$P 1$	C5(1)C1(1)	(a, $0,0, b, 0,0),(\mathrm{c}, \mathrm{d})$	$(1,1,3),(0,2,0),(-2,0,0)$	$(0,1 / 2,0)$
1.1	P1	4D1(1)C1(1)	(a,b,c,d,0,0),(e,f)	$(1,1,3),(0,2,0),(-2,0,0)$	$(0,0,0)$
Entries removed					

Three different combinations of the U_{1} and $\mathrm{m} \Gamma_{5}^{+i b}$ irreps could give the vacancy ordered state with a structure in space group $C c$ as suggested by de Villiers \& Liles (2010) (see Table 17). Of these three possibilities, one has $\mathrm{m} \Gamma_{4}^{+i \omega}$ as a secondary order parameter (OPD Name: C9(1)P1(3)) and the other two do not. As the vacancy order will not change at the suggested low-temperature spin reorientation transition, the OPD for the vacancy ordering must stay basically unchanged. This suggests $P 1$ as the low temperature structure with, OPD Name 4D1(1)C1(1) and OPD Vector (a,b,c,d,0,0),(e,f) (Table 17).

4. Discussion and conclusions

4.1. Fe/vacancy ordering

From the perspective of symmetry, the apparent diversity of pyrrhotite structures observed across the solid solution $\mathrm{FeS} \sim \sim \mathrm{Fe}_{7} \mathrm{~S}_{8}$ fits with the coherent pattern of structural and magnetic behaviour summarised schematically in Figure 6. $\mathrm{Pb}_{3} m c$ and Pnma structures of FeS represent one end-member, and the series as a whole can be thought of as a combination of the M-point instability, $M_{2}^{-i 6} \boldsymbol{k}=$ $(1 / 2,0,0)$, combined with vacancy ordering to give a repeat along c^{*}. Divergence from the M-point, corresponding to increasing values of γ in irreps of the form $U_{1}(1 / 2,0, \gamma)$ along the line between the M and L-points, occurs with increasing vacancy concentration. Commensurate ordering schemes develop at particular stoichiometries with values of $\gamma=1 / 6,1 / 5,1 / 4$ or $1 / 3$. The precise distribution of vacancies in each case can be described using ratios of the amplitudes of selected secondary irreps. Incommensurate ordering schemes, defined as those with irrational values of $1 / \gamma$, appear to be favoured at high temperatures and in crystals with compositions which fall between the nominally rational stoichiometries. Crystals with compositions in between the ideal stoichiometries for commensurate Fe /vacancy ordering schemes are expected to develop exsolution textures and/or stacking mistakes in the $a b$-plane layers.

Figure 4 Schematic phase relationships for different structures in the $\mathrm{Fe}_{1-\mathrm{x}} \mathrm{S}$ solid solution after our group theoretical analysis. The phase lines from Fig. 1 have been included to aid comparison. The pink area is antiferromagnetic (AFM), the blue area is paramagnetic (PM) and the green area is ferrimagnetic (FiM). Space groups in rectangles are those known from diffraction experiments and are placed at approximately the temperature that the data used in the refinements were collected. Space groups in ellipses are those we predict based on our group theory framework. Magnetic structures are represented by cartoons showing the three different magnetic ordering schemes: antiparallel vertical arrows represent $m \Gamma_{4}^{+i \zeta}$ ordering, the antiparallel horizontal arrows represent the P2 direction of the $m \Gamma_{5}^{+i i}$ pattern and the two arrows in and two out symbols represent the P 1 direction of the $m \Gamma_{5}^{+i \hbar}$ pattern. The horizontal red line at 595 K is the Néel temperature. The red line at the low vacancy concentrations is the spin-flop transition according to Horwood et al. (1976). The structural phase transition to the room temperature structure of troilite is associated with an H-point instability rather than the U-line irrep, which describes the rest of the phase diagram, as, described in the text. The dashed red line shows the approximate temperatures of the magnetically driven phase transitions predicted for 5C and 6 C pyrrhotite.

According to Ricci \& Bousquet (2016), there are other possible structural instabilities in this system, but the only one which occurs at low pressures is associated with the H-point, rather than the M-point, of the Brillouin zone, giving the P'6́6c structure of FeS. The FeS phase diagram with respect to pressure and temperature displays considerable phenomenological richness (Fei et al. 1995; Terranova \& de Leeuw 2017), and the additional possibilities might perhaps be contributing factors to this.

4.2. Magnetic ordering

The overall pattern of magnetic ordering can also be rationalised in a relatively simple manner. Below the Néel point of $\sim 590 \mathrm{~K}$, the stable magnetic structures have moments lined up within the $a b$-plane of the parent hexagonal structure, as represented by the magnetic irrep, $m \Gamma_{5}^{+i b}$. The orientation of moments within this plane generally remains to be determined but there are three possibilities, represented by the order parameter directions P1, P2 and C1 listed in Table 7. The favoured direction in the 4 C structure is P 2, in which the moments are parallel to the a -axis of the monoclinic cell (or the [120] direction of the parent hexagonal cell). The magnetic space groups shown in Figure 6 are based on the assumption that this will also be preferred in structures with different $\mathrm{Fe} /$ vacancy ordering schemes. At low temperatures, the alignment of magnetic moments is perpendicular to the $a b$-plane, as represented by the magnetic irrep, $m \Gamma_{4}^{+i i}$, which has only one direction, P1.

With falling temperature there will be a Morin-type spin-flop transition in structures which do not have $m \Gamma_{4}^{+i \delta}$ as a secondary order parameter resulting from the combination of $U_{1}(1 / 2,0, \gamma)$ and $m \Gamma_{5}^{+66}$. Two examples of this are the transition near 450 K in FeS and near 130 K in $3 \mathrm{C} \mathrm{Fe}_{7} \mathrm{Se}_{8}$. In structures where the symmetry is broken by vacancy and magnetic ordering such that $m \Gamma_{4}^{+i b}$ is a secondary irrep, rotation of the moments out of the $a b$-plane can occur continuously, as is observed in $4 \mathrm{CFe}_{7} \mathrm{~S}_{8}$. The subsequent Besnus transition can be understood in terms of a symmetry change $C 2^{\prime} / c^{\prime}-$ $P 1$, arising by the change from direction P 2 to C 1 of irrep $m \Gamma_{5}^{+6 i}$ when the moments rotate out of the ac-plane of the monoclinic cell. The 6C structure bears a strong similarity to that seen in the 4C case. We expect to see a similar continuous rotation of the spins out of the $a c$-plane. 6 C has been reported in the $C c$ structure but inspection of the original determination suggests that the true space group is $C 2 / c$. Therefore, we predict that the magnetic structure is $C 2^{\prime} / c^{\prime}$ and that the low temperature transition will be to $P 1$, in the same way as for the Besnus transition in 4 C pyrrhotite. We would also predict that the transition temperature will fall between 170 K (seen for off-stoichiometry FeS) and 35 K (the Besnus transition in $\mathrm{Fe}_{7} \mathrm{~S}_{8}$).

The magnetic properties of 5C pyrrhotite will be most closely related to those seen in the 3C case, with an abrupt spin-flop transition. In 5C pyrrhotite the spin-flop transition would be between two antiferromagnetic states, whereas in 3C it is between ferrimagnetic states. The 5C structure is less conclusively determined, however. Cmca (Cmce in new notation), $P 2_{1} / c$ and $P 2_{1}$ have all been reported. All of these possibilities appear in the Table 15 for the distortions arising from coupled U_{1} and $\mathrm{m} \Gamma_{5}^{+}$irreps. Cmca and $P 2_{1} / \mathrm{c}$ arise from a single order parameter distortion and $P 2_{1}$ from a higher order distortion. We therefore suggest that there is a transition from one of Cmca or $P 2_{1} / \mathrm{c}$ to $P 2_{1}$. We would then expect this transition to occur at a lower temperature than the transition in 6 C pyrrhotite but above 35 K of the Besnus transition.

4.3. Coupling between Fe /vacancy and magnetic ordering

The overall superposition of structure types in Figure 6 involves interactions between $\mathrm{Fe} /$ vacancy and magnetic ordering. In this context, the key issue is the form and strength of coupling between order parameters with symmetries determined by $U_{1}(1 / 2,0, \gamma), m \Gamma_{4}^{+i 6}$ and $m \Gamma_{5}^{+i b}$. If the coupling is expressed in terms of two order parameters, Q_{V} to represent vacancy ordering and $M_{\Gamma 5+i i}$ to represent magnetic ordering on the basis of $m \Gamma_{5}^{+i i}$, the lowest order term permitted by symmetry is biquadratic, $\lambda_{\Gamma 5+i Q_{V}^{2} M_{\Gamma 5+\varepsilon i_{i}} i}$. The total excess free energy is given by $G_{\mathrm{V}}+G_{\mathrm{M}}+\lambda_{\Gamma 5+i Q_{V}^{2} M_{\Gamma 5+2 i} i}$, where G_{V} is the contribution from vacancy ordering alone and G_{M} is due to the magnetisation alone. It is notable that the Néel temperature does not vary significantly with composition across the solid solution. There also does not appear to be any correlation between magnetisation on the basis of $m \Gamma_{5}^{+i 6}$ and the distribution of phase boundaries for the different structure types at high temperatures in the phase diagram (Fig. 1). As a first approximation, therefore, it would appear that the evolution of $M_{\Gamma 5+66}$ is overwhelmingly dominated by G_{M}, ie by interactions between spins in the classic manner for a paramagnetic - antiferromagnetic/ferromagnetic transition.

By way of contrast with the behaviour at the Néel point, subsequent changes in magnetic structure differ between structure types and thus appear to be sensitive to the precise distribution of vacancies. This has been seen, for example, as a change of transition temperature for an antiferromagnetic - ferrimagnetic transition in a hexagonal sample with composition $\mathrm{Fe}_{9} \mathrm{~S}_{10}$ due to changes in the degree of vacancy order (Bennett \& Graham 1981). The driving energy for a spin-flop transition or a continuous rotation of moments out of the $a b$-plane is the difference between $G_{\mathrm{V}}+G_{\mathrm{M}}$ $+\lambda_{\Gamma 5+i Q_{V}^{2} M_{\Gamma 5+i i} i}$, and $G_{V}+G_{\mathrm{M}}+\lambda_{\Gamma 5+i Q_{V}^{2} M_{\Gamma 4+2 i}^{2} i}$. Even if small, the coupling energies can presumably provide a subtle influence on the overall thermodynamic stability of different magnetically ordered structures.

The only possibility for linear-quadratic coupling is associated with the Besnus transition. If it is driven simply by interactions between spins, the coupling is still biquadratic and the monoclinic triclinic transition will be improper ferroelastic. If, on the other hand, the driving mechanism is a change in electronic structure, a new order parameter, Q_{E}, would need to be specified. This will have the symmetry of a zone centre irrep, the transition could be pseudoproper ferroelastic, ie with bilinear coupling between Q_{E} and a symmetry breaking strain and coupling with the magnetic order parameter could be of the form $\lambda Q_{E} M^{2}$.

4.4. Coupling with strain

An important mechanism for coupling between two order parameters is by overlap of strains associated with one order parameter and strains associate with the other. Inspection of the lattice
parameters given by Powell et al. (2004) for a 4 C sample of $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ and by Li and Franzen (1996) or Tenailleau et al. (2005) for FeS show changes in linear strains on the order of $\sim 1-3 \%$ associated with the transition at $\sim 590 \mathrm{~K}$. In anticipation of a formal strain analysis, selected Landau expansions which include the lowest order coupling terms allowed by symmetry have been set out in Appendix B. Strain coupling with the spin-flop transition at $\sim 450 \mathrm{~K}$ in FeS and the Besnus transition near 35 K in $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ is very much weaker, based on the very much smaller changes in lattice parameters given by Li and Franzen (1996), Fillion et al. (1992) and Koulialias et al. (2018)

Strain coupling effects are also detectable through their influence on elastic constants. For example, an experimental method for distinguishing between linear-quadratic and biquadratic coupling at the Besnus transition, would be to observe the temperature dependence of single-crystal elastic constants. A transition in which the monoclinic symmetry is broken by a structural order parameter, Q, could have coupling with the symmetry-breaking shear strain, e_{sb}, as $\lambda e_{\mathrm{sb}} Q$. If the symmetry is broken by a magnetic order parameter, M, the coupling would be $\lambda e_{s b} M^{2}$. A transition driven by Q would therefore be pseudoproper ferroelastic while a transition driven by M would be improper ferroelastic, and the difference would give rise to quite distinct patterns of evolution for elastic constants C_{44} and C_{66} (see, for example, Figure 4 of Carpenter \& Salje 1998). Even the most recent diffraction measurements (Koulialias et al. 2018) have not resolved a distortion from monoclinic lattice geometry, however, implying that coupling with $e_{\text {sb }}$ is weak.

4.5. Multiferroicity

As an ongoing matter of interest with respect to possible multiferroic sulphides, it is worth noting that structures with $P 6$ 6 $2 c$ (FeS at room temperature) and $P 3_{1} 21$ (3 C pyrrhotite at room temperature) symmetry are expected to be piezoelectric while those with $P 6_{3} m c$ (FeS between $\sim 420 \mathrm{~K}$ and 460 K) or $P 2_{1}$ (5C pyrrhotite at low temperature) symmetry could be ferroelectric.

Appendix A. Examples of input/output information for ISOTROPY.

As an example, we consider the 4C structure described in Section 2.1. In that Section we concluded that the structure derived from the parent structure in space group $P_{3} / m m c$ (\#.194) using irrep U_{1} at \boldsymbol{k} $=1 / 2,0,1 / 4$, was in space group $C 2 / c(\# 15)$. To proceed we need first to compile a list of distortions, including secondary distortions. Knowing the space groups of the parent and product structures, and the basis vectors and origin of the product structure in terms of those of the parent (see entries in Table 1) we can use ISOTROPY to compile this list. The dialogue is reproduced in Figure A1, with input choices indicated by the letter v at the start of the line. The output shows all the contributing irreps, including irrep U_{1}, that we take to effect the primary distortion, along with all the secondary
irreps. The list of irreps shows the pertinent OPD's, along with the subgroups that would develop if each of them acted alone.

```
Isotropy, Version 9.4.1, December 2015
Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell
Brigham Young University
*DISPLAY SETTING
Current setting is International (new ed.) with conventional basis vectors.
*DISPLAY SETTING IRREP
Current irrep version is 2011
Use "VALUE IRREP VERSION" to change version
*v par 194
*V sub 15
*V bas 2,-2,0 2,2,0 -1,1,2
*v ori 0,1/2,0
*d dir
Irrep (ML) k params Dir Subgroup Size
GM1+ (a) 194 P6_3/mmc 1
GM3+ (a) 164 P-3m1 1
GM5+ (a,1.732a) 63 Cmcm 1
GM6+ (a,-0.577a) 12 C2/m 1
A2 (a,a) 165 P-3c1 2
A3 (a,0.577a,-0.577a,a) 15 C2/c 2
L1 (0,0,0,0,a,a) 12 C2/m 2
M1- (0,0,a) 52 Pnna 2
M3- (0,0,a) 57 Pbcm 2
U1 1/4 (a,0,0,a,0,0) 15 C2/c 8
U2 1/4 (0,a,a,0,0,0) 15 c2/c 8
U3 1/4 (a,0,0,a,0,0) 15 c2/c 8
U4 1/4 (0,a,a,0,0,0) 15 C2/c 8
```

Figure A1 Example of input/output dialogue from ISOTROPY for determining the irreps responsible for a distortion characterised by a known parent, subgroup and unit cell.

Not all of these irreps relate to the site occupancy and, in order to determine which irreps can influence occupancy, we specify the relevant Wyckoff site (a) and use ISOTROPY to give the effect of the irrep on the occupancy by using "show microscopic scalar" (sh mic scal). This is used because the occupancy is a scalar. Figure A2 shows the dialogue for irrep U_{1} at $\boldsymbol{k}=1 / 2,0 \frac{1}{4}$ with OPD P4. In the event that the irrep does not affect the occupancy at the Wyckoff a site, the output list is empty. By following this procedure for all the irreps listed in Figure A1, we find that only $U_{1}, U_{4}, \mathrm{~L}_{1}, \Gamma_{3}{ }^{+}$and $\Gamma_{1}{ }^{+}$can change occupancy on the relevant iron site. Setting OPD's as appropriate, we can find their effects in the same manner as seen in Figure A2 and, when combined in selected proportions, they give the occupancy of interest. In the case of the 4C structure we add the irreps with mode amplitudes in the following ratios: $\frac{U 1-U 4}{4 \sqrt{2}}+\frac{L 1}{8}+\frac{\Gamma_{3}^{+i}}{8}+7 \frac{\Gamma_{1}^{+i}}{8} i i$. In this case the contributions of U_{1} and U_{4} must be opposite and equal.

```
Isotropy, Version 9.4.1, December 2015
Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell
Brigham Young University
*DISPLAY SETTING
Current setting is International (new ed.) with conventional basis vectors.
*DISPLAY SETTING IRREP
Current irrep version is 2011
Use "VALUE IRREP VERSION" to change version
*v par 194
*v sub 15
*v irrep ul
*v kv 1,1/4
*v dir p4
*v bas 2,-2,0 2,2,0 -1,1,2
*v ori 0,1/2,0
*v wy a
*sh par
*sh sub
*sh mic sc
*v cell 2,0,0 0,2,0 0,0,4
*d dis
Parent Point Projected Order Functions
194 P6_3/mmc
(0,0,0) f
    (0,0,1) -f
(0,0,2) -f
(0,0,3) f
(0,1,0) f
(0,1,1) f
(0,1,2) -f
(0,1,3) -f
(1,0,0) -f
(1,0,1) -f
(1,0,2) f
(1,0,3) f
(1,1,0) -f
(1,1,1) f
(1,1,2) f
(1,1,3) -f
(0,0,1/2) 0
(0,0,3/2) -1.414f
(0,0,5/2) 0
(0,0,7/2) 1.414f
(0,1,1/2) 1.414f
(0,1,3/2) 0
(0,1,5/2) -1.414f
(0,1,7/2) 0
(1,0,1/2) -1.414f
(1,0,3/2) 0
(1,0,5/2) 1.414f
(1,0,7/2) 0
(1,1,1/2) 0
(1,1,3/2) 1.414f
(1,1,5/2) 0
(1,1,7/2) -1.414f
```

Figure A2 Input/output dialogue showing how ISOTROPY can be used to display the effect of an irrep on the occupancy of specific Wyckoff sites within either the conventional cell or any unconventional cell desired. Here, "v bas 2,-2,0 2,2,0-1,1,2" specifies the unit cell (basis vectors) of the distorted structure and the command "v cell $2,0,00,2,00,0,4$ " ensures that the effect of the irrep on the occupancy is listed for all the specified Wyckoff sites within a representative hexagonal column, i.e. all the sites directly above the points within the basal plane of the parent structure. This makes it more intuitive to track the vacancy-ordering scheme through the layers.

Appendix B. Landau expansions for strain and order parameter coupling

The INVARIANTS tool, part of the ISOTROPY suite, gives symmetry allowed terms in the Landau free energy expansion for a phase transition. Here we give an example of the Landau expansion for $U_{1}(1 / 2,0,1 / 4)$ coupled with $m \Gamma_{5}^{+i \iota}$, as is applicable to 4 C pyrrhotite. The chosen (orthogonal) reference axes follow the convention of Nye: $\mathrm{X} / / \boldsymbol{a}$ ([100] direction), $\mathrm{Z} / / \boldsymbol{c}$ ([001) direction] and Y perpendicular to both ([120] direction). The expansion is given in terms of a vacancy order parameter, Q_{Vac}, a magnetic order parameter, Q_{Mag}, the six components, e_{i}, of the spontaneous strain tensor, and elastic constants, $\quad C_{i k}^{0}$, of the parent hexagonal structure:
$G=G\left(Q_{M a g}\right)+G\left(Q_{V a c}\right)+G\left(Q_{M a g}, Q_{V a c}\right)+G\left(Q_{M a g}, e\right)+G\left(Q_{V a c}, e\right)+G\left(Q_{M a g}, Q_{V a c}, e\right)+\frac{1}{2} \sum_{i, k} C_{i k}^{o} e_{i} e_{k}$, where
$G\left(Q_{M a g}\right)=\frac{1}{2} a\left(T-T_{C M}\right)\left(M_{1}^{2}+M_{2}^{2}\right)+\frac{1}{4} b\left(M_{1}^{2}+M_{2}^{2}\right)^{2}+\frac{1}{6} c\left(M_{1}^{2}+M_{2}^{2}\right)^{3}$
$G\left(Q_{V a c}\right)=\frac{1}{2} u\left(T-T_{C V}\right) Q_{V a c}^{2}+\frac{1}{4} v Q_{V a c}^{4}+\frac{1}{6} w Q_{V a c}^{6}$.

The lowest order coupling term for the two order parameters is biquadratic:
$G\left(Q_{M a g}, Q_{V a c}\right)=\lambda_{M V}\left(M_{1}^{2}+M_{2}^{2}\right) Q_{V a c}^{2}$
The lowest order allowed coupling terms for strain and the magnetic order parameter are:

$$
\begin{aligned}
& \lambda_{e M 1}\left(e_{1}+e_{2}\right)\left(M_{1}^{2}+M_{2}^{2}\right)+\lambda_{e M 2} e_{3}\left(M_{1}^{2}+M_{2}^{2}\right)+\lambda_{e M 2}\left(\left(e_{1}-e_{2}\right)\left(M_{1}^{2}-M_{2}^{2}\right)+4 e_{6} M_{1} M_{2}\right) \\
& \lambda_{e M 3}\left(e_{4}^{2}+e_{5}^{2}\right)\left(M_{1}^{2}+M_{2}^{2}\right)+\lambda_{e M 4}\left(\left(e_{4}^{2}+3 e_{5}^{2}\right) M_{1}^{2}+\left(3 e_{4}^{2}+e_{5}^{2}\right) M_{2}^{2}+4 e_{4} e_{5} M_{1} M_{2}\right)
\end{aligned}
$$

The lowest order terms for coupling between strain and the order parameter for vacancy ordering are

$$
\begin{aligned}
& \lambda_{e V 1}\left(e i \dot{i} 1+e_{2}\right) Q_{V a c}^{2}+\lambda_{e V 2} e_{3} Q_{V a c}^{2}+\lambda_{e V 3}\left(\frac{1}{\sqrt{3}}\left(e_{1}-e_{2}\right)-2 e_{6}\right) Q_{V a c}^{2} i \\
& \lambda_{e V 4}\left(e_{4}^{2}+e_{5}^{2}\right) Q_{V a c}^{2}+\lambda_{e V 5}\left(\left(2-\frac{\sqrt{2}}{12}\right) e_{4}^{2}+2 e_{5}^{2}-\frac{\sqrt{2}}{4 \sqrt{3}} e_{4} e_{5}\right) Q_{V a c}^{2}+\lambda_{e V 6}\left(e_{5}-\frac{e_{4}}{\sqrt{3}}\right) Q_{V a c}^{4}
\end{aligned}
$$

The lowest order allowed terms for coupling of strain with both order parameters are

$$
\lambda_{e V M 1}\left(e i i 1+e_{2}\right) Q_{V a c}^{2} Q_{\text {Mag }}^{2}+\lambda_{e V M 2} e_{3} Q_{V a c}^{2} Q_{M a g}^{2}+\lambda_{e V M 3}\left(\frac{1}{\sqrt{3}}\left(e_{1}-e_{2}\right)-2 e_{6}\right) Q_{V a c}^{2}\left(M_{1}^{2}+M_{2}^{2}\right)+\lambda_{e V M 4}\left((e _ { 1 } - e _ { 2 }) \left(\frac{M_{1}^{2}}{\sqrt{3}}+M_{1}\right.\right.
$$

and triquadratic for the remaining two:

$$
\lambda_{e V M 6}\left(e_{4}^{2}+e_{5}^{2}\right)\left(M_{1}^{2}+M_{2}^{2}\right) Q_{V a c}^{2}+\lambda_{\text {eVM } 7}\left(e_{4}^{2}+e_{5}^{2}\right)\left(M_{1} M_{2}+\frac{M_{2}^{2}}{\sqrt{3}}\right) Q_{V a c}^{2}+\lambda_{\text {eVM } 8}\left(e_{4} e_{5}+\frac{e_{4}^{2}}{\sqrt{3}}\right)\left(M_{1}^{2}+M_{2}^{2}\right) Q_{V a c}^{2}+\lambda_{e V M 9}\left(e_{4}^{2} M_{1}^{2}+e_{5}^{2}\right.
$$

Taking these coupling terms and adding the standard Landau expansion terms for the two independent order parameters as well as the elastic energy contribution the final expression becomes

$$
G=\frac{1}{2} a\left(T-T_{C M}\right)\left(M_{1}^{2}+M_{2}^{2}\right)+\frac{1}{4} b\left(M_{1}^{2}+M_{2}^{2}\right)^{2}+\frac{1}{6} c\left(M_{1}^{2}+M_{2}^{2}\right)^{3}+\frac{1}{2} u\left(T-T_{C V}\right) Q_{V a c}^{2}+\frac{1}{4} v Q_{V a c}^{4}+\frac{1}{6} w Q_{V a c}^{6}+\lambda_{M V}\left(M_{1}^{2}+M\right.
$$

For the case of 4C pyrrhotite in the monoclinic phase above T_{B} the two components of the magnetic order parameter are related. In particular $M_{1}=-Q_{\text {Mag }}$ and $M_{2}=Q_{\text {Mag }} / 3^{1 / 2}$ for the P2(3) direction of the $\mathrm{m} \Gamma_{5}{ }^{+}$distortion. In this case, the expansion simplifies to:
$G=\frac{1}{2} a\left(T-T_{C}\right) Q_{M a g}^{2}+\frac{1}{4} b Q_{M a g}^{4}+\frac{1}{6} c Q_{M a g}^{6}+\frac{1}{2} u\left(T-T_{C}\right) Q_{\mathrm{Vac}}^{2}+\frac{1}{4} v Q_{\mathrm{Vac}}^{4}+\frac{1}{6} w Q_{\mathrm{Vac}}^{6}+\lambda_{M V} Q_{\mathrm{Mag}}^{2} Q_{\mathrm{Vac}}^{2}+\lambda_{e M 1}\left(e i<i+e_{2}\right)$

The exact form of the expansion is dependent on the axes chosen. The expressions given here relate to the basis vectors and axis choices used in all the discussion of the 4C structure above.
cknowledgements The authors acknowledge funding from the Leverhulme Foundation, grant number RPG-2016-298.

References

Andresen, A. F., Hofman-Bang, N., Bak, T. A., Varde, E. \& Westin, G. (1960). Acta Chemica Scandinavica, 14, 919-926.
Andresen, A., \& Leciejewicz, J. (1964). Journal De Physique, 25(5), 574-578.
Andresen, A. F., Torbo, P., Ostlund, E., Bloom, G. \& Hagen, G. (1967). Acta Chemica Scandinavica, 21, 2841-2848.

Baranov, N V., Ibrahim, P. N. G., Selezneva, N. V., Gubkin, A. F., Volegov, A. S., Shishkin, D. A.,
Keller, L., Sheptyakov, D. \& Sherstobitova, E. A. (2015). Journal of Physics: Condensed
Matter, 27(28), 12.

Bennett, C. E. G. \& Graham, J. (1980) American Mineralogist 65 800-807
Bennett, C. E. G. \& Graham, J. (1981) American Mineralogist; 66 (11-12): 1254-1257
Bertaut, E. F. (1953). Acta Crystallographica, 6, 557-561
Bertaut, E. F. (1980). Pure and Applied Chemistry, 52(1), 73-92
Besnus, M. J. \& Meyer, A. J. P. (1964) Proceedings of the International Conference on Magnetism Nottingham 507-511
Bezaeva, N. S., Chareev, D. A., Rochette, P., Kars, M., Gattacceca, J., Feinberg, J. M., Sadykov, R. A., Kuzina, D. M \& Axenov, S. N. (2016). Physics of the Earth and Planetary Interiors, 257, 79-90. Campbell, B. J., Stokes, H. T., Tanner, D. E. \& Hatch, D. M. (2006). Journal of Applied Crystallography, 39(4), 607-614.

Carpenter, M. A, \& Salje, E. (1998). European Journal of Mineralogy, 10(4), 693-812.
Carpenter, M. A. \& Howard, C. J. (2009). Acta Crystallographica Section B, 65(2), 134-146.
*https://doi.org/10.1107/S0108768109000974
Carpenter, R. \& Desborough, G. (1964). American Mineralogist, 49(9-1), 1350-\&.
Charilaou, M., Kind, J., Koulialias, D., Weidler, P. G., Mensing, C., Löffler, J. F. \& Gehring. A. U. (2015). Journal of Applied Physics, 118083903

Dekkers, M. J., Mattéi, J.-L., Fillion, G. and Rochette, P. (1989). Geophysical Research Letters 16 855-858.

De Villiers, J. P. R. \& Liles, D. C. \& Becker, M. (2009). American Mineralogist, 94(10), 1405-1410.
De Villiers, J. P. R. \& Liles, D. C. (2010). American Mineralogist, 95(1), 148-152.
Eerenstein, W., Mathur, N. D. \& Scott, J. F. (2006). Nature, 442(7104), 759-765.
Elliot, A. D. (2010). Acta Crystallographica Section B, 66(3), 271-279.
Ericsson, T., Amcoff, Ö. \& Nordblad, P. (1997). European Journal of Mineralogy, 9(6), 1131-1146.
Fei, Y., Prewitt, C., Mao, H., \& Bertka, C. (1995). Science, 268(5219), 1892-1894.
Ferrow, E., Adetunji, J., \& Nkoma, J. (2006). European Journal of Mineralogy, 18(5), 653-664.
Fillion, G. \& Rochette, P. (1988) Journal de Physique Colloques 49 C8 907-908.
Fillion, G., Mattei, J., Rochette, P. \& Wolfers, P. (1992). Journal of Magnetism and Magnetic
Materials, 104-107, 1985 - 1986.
*http://www.sciencedirect.com/science/article/pii/0304885392916335
Fleet, M. E. (1971). Acta Crystallographica Section B, 27(10), 1864-1867.
Fleet, M. (2006). Reviews in Mineralogy and Geochemistry, 61(1), 365-419.
Gosselin, J. R., Townsend, M. G. \& Tremblay, R. J. (1976). Solid State Communications, 19(8), 799803.

Grønvold, F. \& Westrum Jr, E. F. (1959). The Journal of Chemical Physics 30 528-531
Grønvold, F. \& Stølen, S. (1992). The Journal of Chemical Thermodynamics 24 913-936

* https://doi.org/10.1016/S0021-9614(05)80003-5

Haines, C. R. S., Lampronti G. I., Klooster W. T., Coles S. J., Dutton S. E. \& Carpenter, M. A. C. (2019) American Mineralogist, Submitted

Harrison, R. J., Mcenroe, S. A., Robinson, P. \& Howard, C. J., (2010). American Mineralogist 95, 974-979.
Stokes, H. T., \& Hatch, D. M. (2003). Journal of Applied Crystallography, 36(3-2), 951-952.
Hirahara, E. \& Murakami, M. (1958). Journal of Physics and Chemistry of Solids, 7(4), 281-289.
Horng, C., \& Roberts, A. (2018). Geochemistry, Geophysics, Geosystems, 19(9), 3364-3375.
Horwood, J. L., Townsend, M. G. \& Webster, A. H. (1976) Journal of Solid State Chemistry 17 1742.

Howard, C., \& Stokes, H. (1998). Acta Crystallographica, Section B: Structural Science, 54, 782-789.
Howard, C. J. \& Carpenter, M. A. (2010). Acta Crystallographica Section B, 66(1), 40-50.
*https://doi.org/10.1107/S0108768109048010
Howard, C. J., Kennedy, B. J. \& Woodward, P. M. (2003). Acta Crystallographica Section B, 59(4), 463-471.
*https://doi.org/10.1107/S0108768103010073
Howard, C. J. \& Stokes, H. T. (2004). Acta Crystallographica Section B, 60(6), 674-684.
*https://doi.org/10.1107/S0108768104019901
Jeandey, C., Oddou, J., Mattei, J. \& Fillion, G. (1991). Solid State Communications, 78(3), 195 - 198.
*http://www.sciencedirect.com/science/article/pii/003810989190282Z
Kawaminami, M. \& Okazaki, A. (1967). Journal of the Physical Society of Japan, 22(3), 924-924.
*https://doi.org/10.1143/JPSJ.22.924
Kawaminami, M. \& Okazaki, A. (1970). Journal of the Physical Society of Japan, 29(3), 649-655.
*https://doi.org/10.1143/JPSJ. 29.649
Keller-Besrest, F., Collin, G. \& Comes, R. (1983). Acta Crystallographica Section B 39, 296-303.
Keller-Besrest, F. \& Collin, G. (1990). Journal of Solid State Chemistry, 84(2), 194 - 210.
*http://www.sciencedirect.com/science/article/pii/002245969090319S
Kind, J., García-Rubio, I., Charilaou, M., Nowaczyk, N., Löffler, J., \& Gehring, A.
(2013). Geophysical Journal International, 195(1), 192-199.

King, Jnr, H. E. \& Prewitt, C. T. (1982). Acta Crystallographica Section B, 38(7), 1877-1887.
*https://doi.org/10.1107/S0567740882007523
Koto, K., Morimoto, N., \& Gyobu, A. (1975). Acta Crystallographica Section B, 31(12), 2759-2764. Koulialias, D., Kind, J., Charilaou, M., Weidler, P., Löffler, J., \& Gehring, A. (2016). Geophysical Journal International, 204(2), 961-967.

Koulialias, D., Schäublin, R., Kurtuldu, G., Weidler, P. G., Löffler, J. F., \& Gehring, A. U. (2018). Journal of Geophysical Research: Solid Earth, 123, 6236-6246.
*https://doi.org/10.1029/2018JB015548
Li, F. \& Franzen. H. F. (1994). Journal of Alloys and Compounds, 215(1), L3-L6.

Li, F. \& Franzen. H. F. (1996). Journal of Alloys and Compounds, 238(1), 73-80.
Liles, D. C. \& De Villiers, J. P. R. (2012). American Mineralogist, 97(2), 257-261.
Louzada, K. L., S. T. Stewart, \& B. P. Weiss (2007), Geophyics. Research Letters, 34, L05204, *doi:10.1029/2006GL027685.
Miller, S. C. \& Love W. F. (1967). Boulder, Colo.: Pruett Press.
Morimoto, N. \& Nakazawa, H. (1968). Science, 161(3841), 577-579.
*http://science.sciencemag.org/content/161/3841/577
Morimoto, N., Nakazawa, H., Nishigucmi, K. \& Tokonami, M. (1970). Science, 168(3934), 964-966.
*http://science.sciencemag.org/content/168/3934/964
Morimoto, N., Gyobu, A, Tsukuma, K, \& Koto, K. (1975). The American Mineralogist., 60(3-4), 240248.

Morimoto, N., Gyobu, A., Mukaiyama, H., \& Izawa, E. (1975). Economic Geology and the Bulletin of the Society of Economic Geologists, 70(4), 824-833.
Nakano, A., Tokonami, M. \& Morimoto, N. (1979). Acta Crystallographica Section B, 35(3), 722724.
*https://onlinelibrary.wiley.com/doi/abs/10.1107/S0567740879004532
Nakazawa, H. \& Morimoto, N. (1971). Material Research Bulletin Morimoto, 6 345-358.
Oddou, J. L., Jeandey, C., Mattei, J. L. \& Fillion. G. (1992). Journal of Magnetism and Magnetic Materials, 104(3), 1987-1988.

Okazaki, A. (1961). Journal of the Physical Society of Japan, 16(6), 1162-1170.
*https://doi.org/10.1143/JPSJ.16.1162
Pearce, C. I., Pattrick, R. \& Vaughan, D. J. (2006) Reviews in Mineralogy and Geochemistry 61 127180.

Powell, A., Vaqueiro, P., Knight, K., Chapon, L. \& Sanchez, R. (2004). Physical Review B, 70(1).
Ricci, F. \& Bousquet, E. (2016). Physical Review Letters 116227601
Rochette, P., Fillion, G., Mattéi, J. \& Dekkers, M. J. (1990) Earth and Planetary Science Letters 98 319-328.

Rochette, P., Gattacceca, J., Chevrier, V., Hoffmann, V., Lorand, J., Funaki, M., \& Hochleitner, R. (2005). Meteoritics \& Planetary Science, 40(4), 529-540.

Salje, E., \& Zhang, H. (2009). Phase Transitions, 82(6), 452-469.
Salje, E. (2010). Phase Transitions, 83(9), 657-669.
Schwarz, E. J. \& Vaughan, D. J. (1972) Journal of Geomagnetism and Geoelectricity 24 441-458.
Senn, M., \& Bristowe, N. (2018). Acta Crystallographica Section A, 74(4), 308-321.
Sparks, J. T., Mead, W., Kirschbaum, A. J. \& Marshall, W. (1960). Journal of Applied Physics, 31(5), S356-S357.

Sparks, J. T., Mead, W. \& Komoto, T. (1962) Journal of the Physical Society of Japan 17(Suppl. B-I) 249-252.

Stokes H. T. and Hatch, D. M. (1988) Isotropy Subgroups of the 230 Crystallographic Space Groups (World Scientific, Singapore), 624 pages.

Stokes, H., Kisi, E., Hatch, D., \& Howard, C. (2002). Acta Crystallographica Section B, 58(6), 934938.

Takahashi, T. (1973) Solid State Communications 13 1335-1337.
Tenailleau, C., Etschmann, B., Wang, H., Pring, A., Grguric, B. A. \& Studer, A. (2015)
Mineralogical Magazine, 69, 205-216.
Terranova, U. \& De Leeuw, N. H. (2017). Journal of Physics and Chemistry of Solids, 111(C), 317323.

Van den Berg, C. B., Van Delden, J. \& Bouman, J. (1969). Physica Status Solidi (b), 36(2), K89-K93.
Van Den Berg, C. B. (1972). Ferroelectrics, 4(1), 117-120.
*https://doi.org/10.1080/00150197208235752
Volk, M. W., Gilder, S. A. \& Feinberg, J. M. (2016). Geophysical Journal International, 207(3), 1783-1795.
*http://dx.doi.org/10.1093/gji/ggw376
Volk, M. W., McCall, E., Voigt, B., Manno, M. A., Leighton, C. \& Feingerg J. M. (2018) American Mineralogist, 103, 1674-1689.

Wang, H. \& Salveson, I. (2005) Phase Transitions 78 547-567
Wolfers, P., Fillion, G., Ouladdiaf, B., Ballou, R. \& Rochette, P. (2011). In Solid Compounds of Transition Elements, vol. 170 of Solid State Phenomena, pp. 174-179. Trans Tech Publications.

Yamamoto, A. \& Nakazawa, H. (1982). Acta Crystallographica Section A, 38(1), 79-86.
*https://doi.org/10.1107/S0567739482000151

Supplementary Material

S1. Tables in full

S2. 4C

S3. 4C $\boldsymbol{U}_{1}(1 / 2,0,1 / 4)$

Table S1 Order parameter components and unit cell configurations for subgroups of $P 6_{3} / m m c$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 4)$ is the active representation. $\mathrm{SGN}=$ space group number.

SGN	Space Group	NOPD NName	OPD Vector	Basis Vectors	Origin
12	C2/m	P1	(a, 0,0,0,0,0)	(2,1,-4),(0,1,0),(2,1,0)	(0,0,0)
44	Imm 2	P2	(a,-0.414a, $0,0,0,0$)	$(0,0,4),(0,1,0),(-2,-1,0)$	(-7/8,1/16,-7/4)
12	C2/m	P3	(a, $0, \mathrm{a}, 0,0,0$)	$(2,-2,0),(2,2,0),(-1,1,2)$	$(0,0,0)$
15	C2/c	P4	(a, $0,0, \mathrm{a}, 0,0$)	$(2,-2,0),(2,2,0),(-1,1,2)$	(0,1/2,0)
42	Fmm2	P5	(a,-0.414a,a,-0.414a, 0,0)	$(0,0,4),(2,2,0),(-2,2,0)$	(-1/8,1/8,1/4)
43	$F d d 2$	P6	($\mathrm{a},-0.414 \mathrm{a}, 0.414 \mathrm{a}, \mathrm{a}, 0,0)$	(0,0,4),(2,2,0),(-2,2,0)	$(-7 / 8,7 / 8,7 / 4)$
164	P З́m1	P7	(a, $0, \mathrm{a}, 0, \mathrm{a}, 0$)	$(2,0,0),(0,2,0),(0,0,4)$	$(0,0,0)$
187	P6́m2	P8	$\begin{aligned} & (a,-0.414 a, a,-0.414 a, a,- \\ & 0.414 a) \end{aligned}$	(0,-2,0), (2,2,0), (0,0,4)	(0,0,1/4)
8	Cm	C1	(a,b, $, 0,0,0$)	(2,1,-4),(0,1,0),(2,1,0)	$(0,0,0)$
5	$C 2$	C2	(a,b,a,-b,0,0)	$(2,-2,0),(2,2,0),(-1,1,2)$	$(0,0,0)$
5	C2	C3	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, 0.707 \mathrm{a} 0.707 \mathrm{~b},- \\ & 0.707 \mathrm{a} 0.707 \mathrm{~b}, 0,0) \end{aligned}$	$(2,2,0),(-2,2,0),(1,1,2)$	(1/8,15/8,1/4)
2	$P{ }^{\prime}$	C4	(a, $0, \mathrm{~b}, 0,0,0$)	(1,1,2),(0,2,0),(-2,0,0)	(0,0,0)
2	$P 1$	C5	(a, $0,0, b, 0,0$)	(1,1,2),(0,2,0),(-2,0,0)	(0,1/2,0)
8	Cm	C6	(a,-0.414a, b,-0.414b, 0,0)	$(-2,-2,0),(0,0,4),(-2,0,0)$	(-1/8,-1/8,1/4)
9	Cc	C7	(a,-0.414a,b,2.414b, 0, 0)	$(-2,-2,0),(0,0,4),(-2,0,0)$	$(-5 / 8,-5 / 8,5 / 4)$
8	Cm	C8	(a,b,a,b,0,0)	$(2,-2,0),(2,2,0),(-1,1,2)$	$(0,0,0)$
9	Cc	C9	(a,b,b,-a,0,0)	$(2,-2,0),(2,2,0),(-1,1,2)$	$(3 / 2,0,0)$
156	P3m1	C10	(a,b,a,b,a,b)	$(2,0,0),(0,2,0),(0,0,4)$	$(0,0,0)$
12	C2/m	C11	(a, $0, \mathrm{~b}, 0, \mathrm{a}, 0$)	(-2,-4,0),(2,0,0),(0,0,4)	$(0,0,0)$
12	C2/m	C12	(0,a,b, 0, 0,-a)	(-2,-4,0),(2,0,0),(0,0,4)	$(1 / 2,0,0)$
38	Amm 2	C13	$\begin{aligned} & (a,-0.414 a, b,-0.414 b, b,- \\ & 0.414 b) \end{aligned}$	$(0,0,4),(0,2,0),(-4,-2,0)$	($0,0,1 / 4$)
39	$A \mathrm{bm} 2$	C14	$\begin{aligned} & (a,-0.414 a, b, 2.414 b,- \\ & b, 2.414 b) \end{aligned}$	$(0,0,4),(0,2,0),(-4,-2,0)$	(0,0,1/4)
5	C2	S1	(a,b,c, 0, a,-b)	(-2,-4,0),(2,0,0),(0,0,4)	(0,0,0)
5	C2	S2	$\begin{aligned} & (\mathrm{a},- \\ & 0.414 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.707 \mathrm{~b} 0.707 \mathrm{c},- \\ & 0.707 \mathrm{~b} 0.707 \mathrm{c}) \end{aligned}$	(0,-2,0),(4,2,0),(0,0,4)	($0,0,1 / 4$)
2	$P 1$	S3	(a, $0, \mathrm{~b}, 0, \mathrm{c}, 0$)	(0,0,4),(0,2,0),(-2,0,0)	(0,0,0)
2	$P 1$	S4	(a, $0,0, b, 0, \mathrm{c}$)	$(0,0,4),(0,2,0),(-2,0,0)$	(0,1/2,0)

6	$P m$	S5	$(\mathrm{a},-0.414 \mathrm{a}, \mathrm{b},-$ $0.414 \mathrm{~b}, \mathrm{c},-0.414 \mathrm{c})$	$(-2,0,0),(0,0,4),(0,2,0)$	$(0,0,1 / 4)$
7	$P c$	S6	(a,-	$(-2,0,0),(0,0,4),(0,2,0)$	$(0,0,1 / 4)$
			$0.414 \mathrm{a}, \mathrm{b}, 2,414 \mathrm{~b}, \mathrm{c}, 2.414 \mathrm{c})$		
1	$P 1$	4D1	$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, 0,0)$	$(1,1,2),(0,2,0),(-2,0,0)$	$(0,0,0)$
8	$C m$	4D2	$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{b})$	$(-2,-4,0),(2,0,0),(0,0,4)$	$(0,0,0)$
1	$P 1$	6D1	$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f})$	$(0,0,4),(0,2,0),(-2,0,0)$	$(0,0,0)$

S4. $4 \mathrm{C} \mathrm{m} \Gamma_{4}^{+}$with \boldsymbol{U}_{1}

Table S2 Magnetic subgroups arising from coupling of irreps $m \Gamma_{4}^{+i i}$ and $U_{1}(1 / 2,0,1 / 4)$, with respect to the parent space group $P_{3} / m m c$. SGN.M = magnetic space group number.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 4)$ $m \Gamma_{4}^{+i 6}$	OPD Vector $U_{1}(1 / 2,0,1 / 4)$, $m \Gamma_{4}^{+i 6}$	Basis Vectors	Origin
12.62	C2'/m'	P1(1)P1(1)	(a, 0, 0, 0, 0, 0), (b)	$\begin{aligned} & (2,1,-4),(0,1,0), \\ & (2,1,0) \\ & (0,0,4),(0,1,0),(-2,- \end{aligned}$	$\begin{aligned} & (0,0,0) \\ & (-7 / 8,1 / 16,- \end{aligned}$
44.232	Im'm'2	P2(1)P1(1)	(a,-0.414a, $0,0,0,0),(\mathrm{b})$	$\begin{aligned} & 1,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	7/4)
12.62	C2'/m'	P3(1)P1(1)	(a,0,a,0,0,0),(b)	$\begin{aligned} & 1,1,2) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	(0,0,0)
15.89	C2'/c' Fm'm'	P4(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0,0, \mathrm{a}, 0,0),(\mathrm{b}) \\ & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{a},-0.414 \mathrm{a}, 0,0) \end{aligned}$	$\begin{aligned} & 1,1,2) \\ & (0,0,4),(2,2,0),(- \end{aligned}$	$\begin{aligned} & (0,1 / 2,0) \\ & (- \end{aligned}$
42.222	2	P5(1)P1(1)	(b) $(a,-0.414 a, 0.414 a, a, 0,0)$	$\begin{aligned} & 2,2,0) \\ & (0,0,4),(2,2,0),(- \end{aligned}$	$\begin{aligned} & 1 / 8,1 / 8,1 / 4) \\ & (- \end{aligned}$
43.227	Fd'd'2	P6(1)P1(1)	(b)	2,2,0)	7/8,7/8,7/4)
164.89	P3́m'1 PG' $m^{\prime} 2$	P7(1)P1(1)	($\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0),(\mathrm{b})$	$\begin{aligned} & (0,-2,0),(2,2,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
187.211		P8(1)P1(1)	$\begin{aligned} & (a,-0.414 a, a,-0.414 a, a,- \\ & 0.414 a),(b) \end{aligned}$	$\begin{aligned} & (2,2,0),(-2,0,0), \\ & (0,0,4) \\ & (2,1,-4),(0,1,0), \end{aligned}$	(0,0,1/4)
8.34	Cm'	C1(1)P1(1)	(a,b, $0,0,0,0),(\mathrm{c})$	$\begin{aligned} & (2,1,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	$(0,0,0)$
5.15	C2'	$\mathrm{C} 2(1) \mathrm{P} 1$ (1)	(a,b,a,-b, 0, 0),(c)	1,1,2)	$(0,0,0)$
5.13	C2	C3(1)P1(1)	$\begin{aligned} & (a, b, 0.707 a-0.707 \mathrm{~b},-0.707 \mathrm{a}- \\ & 0.707 \mathrm{~b}, 0,0),(\mathrm{c}) \end{aligned}$	$\begin{aligned} & (2,2,0),(-2,2,0), \\ & (1,1,2) \end{aligned}$	$\begin{aligned} & (1 / 8,15 / 8,1 / \\ & 4) \end{aligned}$
2.4	P1́	C4(1)P1(1)	(a,0,b,0,0,0),(c)	$\begin{aligned} & (1,1,2),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	(0,0,0)
2.4	P1́	C5(1)P1(1)	(a, 0, 0, b, 0, 0), (c)	$\begin{aligned} & (1,1,2),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	(0,1/2,0)
8.34	Cm'	C6(1)P1(1)	$(a,-0.414 a, b,-0.414 b, 0,0)$ (c)	$\begin{aligned} & (-2,-2,0),(0,0,4),(- \\ & 2,0,0) \end{aligned}$	$\begin{aligned} & (-1 / 8,- \\ & 1 / 8,1 / 4) \end{aligned}$
9.39	Cc'	C7(1)P1(1)	$(a,-0.414 a, b, 2.414 b, 0,0),$ (c)	$\begin{aligned} & (-2,-2,0),(0,0,4),(- \\ & 2,0,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	$\begin{aligned} & (-5 / 8,- \\ & 5 / 8,5 / 4) \end{aligned}$
8.34	Cm'	C8(1)P1(1)	(a,b,a,b, 0,0$),(\mathrm{c})$	$\begin{aligned} & 1,1,2) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	(0,0,0)
9.39	Cc^{\prime}	C9(1)P1(1)	(a,b,b,-a, 0, 0), (c)	$\begin{aligned} & 1,1,2) \\ & (0,-2,0),(2,2,0), \end{aligned}$	$(3 / 2,0,0)$
156.51	P3m'1	C10(1)P1(1)	(a,b,a,b,a,b),(c)	$\begin{aligned} & (0,0,4) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	$(0,0,0)$
12.62	C2'/m'	C11(1)P1(1)	(a, $, \mathrm{b}, 0, \mathrm{a}, 0),(\mathrm{c})$	$\begin{aligned} & (0,0,4) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	$(0,0,0)$
12.62	C2'/m'	C12(1)P1(1)	(0,a,b,0,0,-a),(c)	$(0,0,4)$	$(1 / 2,0,0)$
38.191	Am'm'	C13(1)P1(1)	(a,-0.414a,b,-0.414b,b,-	(0,0,4),(0,2,0),(-4,-	(0,0,1/4)

	2		0.414b),(c)	$\begin{aligned} & 2,0) \\ & (0,0,4),(0,2,0),(-4,- \end{aligned}$	(0,0,1/4)
39.199	Ab'm'2	C14(1)P1(1)	$\begin{aligned} & (a,-0.414 a, b, 2.414 b,-b,- \\ & 2.414 b),(c) \end{aligned}$		
39.19	Ab'm 2	C14(1)P1(1)		$(-2,-4,0),(2,0,0)$	
5.15	C2'	S1(1)P1(1)	(a,b,c, $0, \mathrm{a},-\mathrm{b}),(\mathrm{d})$	$(0,0,4)$	$(0,0,0)$
			(a,-0.414a,b,c, $0.707 \mathrm{~b}-$	(0,-2,0), (4,2,0),	
5.13	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{P} 1 \end{aligned}$	S2(1)P1(1)	$0.707 \mathrm{c},-0.707 \mathrm{~b}-0.707 \mathrm{c})$,(d)	$(0,0,4)$	(0,0,1/4)
				(0,0,4),(0,2,0),(-	
2.4		S3(1)P1(1)	(a,0,b,0,c,0),(d)	2,0,0)	$(0,0,0)$
	Pí	S4(1)P1(1)	(a, $0,0, b, 0, \mathrm{c})$,(d)	(0,0,4),(0,2,0),(-	
2.4				2,0,0)	(0,1/2,0)
			(a,-0.414a,b,-0.414b,c,-	(-2,0,0), (0,0,4),	
6.2	Pm'	S5(1)P1(1)	$\begin{aligned} & 0.414 \mathrm{c}),(\mathrm{d}) \\ & (\mathrm{a},- \end{aligned}$	$(0,2,0)$	(0,0,1/4)
7.26	Pc'	S6(1)P1(1)	$0.414 \mathrm{a}, \mathrm{~b}, 2.414 \mathrm{~b}, \mathrm{c}, 2.414 \mathrm{c})$ (d)	$\begin{aligned} & (-2,0,0),(0,0,4), \\ & (0,2,0) \end{aligned}$	(0,0,1/4)
				(1,1,2), (0,2,0),(-	
1.1	P1	4D1(1)P1(1)	(a,b,c,d,0,0),(e)	$2,0,0)$	$(0,0,0)$
8.34	Cm'	4D2(1)P1(1)	(a,b,c,d,a,b),(e)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	$(0,0,0)$
				(0,0,4),(0,2,0),(-	
1.1	P1	6D1(1)P1(1)	(a,b,c,d,e,f), (g)	2,0,0)	$(0,0,0)$

S5. 4C $\mathrm{m}^{5}{ }_{5}^{+}$and $\boldsymbol{U}_{\mathbf{1}}$

Table S3 Magnetic subgroups arising from coupling of irreps $m \Gamma_{5}^{+i 6}$ and $U_{1}(1 / 2,0,1 / 4)$, with respect to the parent space group $\mathrm{P6}_{3} / \mathrm{mmc}$.

$\begin{aligned} & \text { SGN. } \\ & \text { M } \end{aligned}$	Space Group	$\begin{aligned} & \hline \text { OPD Name } \\ & U_{1}(1 / 2,0,1 / 4) \\ & m \Gamma_{5}^{+b i} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OPD Vector } U_{1}(1 / 2,0,1 / 4), \\ & m \Gamma_{5}^{+6 i} \end{aligned}$	Basis Vectors	Origin
12.58	C2/m	P1(1)P1(1)	(a, $, 0,0,0,0,0),(\mathrm{b},-1.732 \mathrm{~b})$	$\begin{aligned} & (2,1,-4),(0,1,0), \\ & (2,1,0) \end{aligned}$	(0,0,0)
44.229	Imm 2	P2(1)P1(1)	(a,-0.414a, 0, 0, 0, 0), (b,-1.732b)	$\begin{aligned} & (0,1,0),(0,0,4), \\ & (2,1,0) \end{aligned}$	(0,0,1/4)
12.58	C2/m	P3(1)P1(3)	(a, $0, \mathrm{a}, 0,0,0),(\mathrm{b}, 1.732 \mathrm{~b})$	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	$(0,0,0)$
15.85	C2/c	P4(1)P1(3)	(a, $0,0, a, 0,0),(b, 1.732 \mathrm{~b})$	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	(0,1/2,0)
42.219	Fmm2	P5(1)P1(3)	$\begin{aligned} & (a,-0.414 a, a,-0.414 a, 0,0), \\ & (b, 1.732 b) \end{aligned}$	$\begin{aligned} & (2,2,0),(0,0,4),(2,- \\ & 2,0) \end{aligned}$	(1/8,-1/8,1/4)
43.224	$F d d 2$	P6(1)P1(3)	$\begin{aligned} & (a,-0.414 a, 0.414 a, a, 0,0), \\ & (b, 1.732 b) \end{aligned}$	$\begin{aligned} & (2,2,0),(0,0,4),(2,- \\ & 2,0) \end{aligned}$	$\begin{aligned} & (11 / 8,- \\ & 3 / 8,3 / 4) \end{aligned}$
8.32	Cm	C 1 (1)P1(1)	(a,b, $0,0,0,0),(\mathrm{c},-1.732 \mathrm{c})$	$\begin{aligned} & (2,1,-4),(0,1,0), \\ & (2,1,0) \end{aligned}$	$(0,0,0)$
5.13	C2	C2(1)P1(3)	(a,b,a,-b,0,0),(c, 1.732c)	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	($0,0,0$)
5.13	C2	C3(1)P1(3)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, 0.707 \mathrm{a}-0.707 \mathrm{~b},-0.707 \mathrm{a}- \\ & 0.707 \mathrm{~b}, 0,0),(\mathrm{c}, 1.732 \mathrm{c}) \end{aligned}$	$\begin{aligned} & (2,2,0),(-2,2,0), \\ & (1,1,2) \end{aligned}$	$\begin{aligned} & (1 / 8,15 / 8,1 / 4 \\ &) \end{aligned}$
8.32	Cm	C8(1)P1(3)	(a,b,a,b,0,0),(c, 1.732c)	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	(0,0,0)
9.37	Cc	C9(1)P1(3)	(a,b,b,-a, 0,0), (c, 1.732c)	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	$(3 / 2,0,0)$
12.58	C2/m	C11(1)P1(2)	(a,0,b, $0, \mathrm{a}, 0),(-2 \mathrm{c}, 0)$	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
12.58	C2/m	C12(1)P1(2)	(0,a,b,0,0,-a), (-2c, 0)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(1/2,0,0)
38.187	Amm 2	C13(1)P1(1)	$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b},-0.414 \mathrm{~b}, \mathrm{~b},- \\ & 0.414 \mathrm{~b}),(\mathrm{c},-1.732 \mathrm{c}) \end{aligned}$	$\begin{aligned} & (0,0,4),(0,2,0),(-4,- \\ & 2,0) \end{aligned}$	(0,0,1/4)
39.195	Abm 2	C14(1)P1(1)	(a,-0.414a,b,2.414b,-b,-	(0,0,4),(0,2,0),(-4,-	(0,0,1/4)

5.13	C2	S1(1)P1(2)	$\begin{aligned} & 2.414 \mathrm{~b}),(\mathrm{c},-1.732 \mathrm{c}) \\ & (\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0, \mathrm{a},-\mathrm{b}),(-2 \mathrm{~d}, 0) \end{aligned}$	$\begin{aligned} & 2,0) \\ & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
5.13	C2	S2(1)P1(1)	$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.707 \mathrm{~b}-0.707 \mathrm{c},- \\ & 0.707 \mathrm{~b}-0.707 \mathrm{c}),(\mathrm{d},-1.732 \mathrm{~d}) \end{aligned}$	$\begin{aligned} & (0,-2,0),(4,2,0), \\ & (0,0,4) \end{aligned}$	(0,0,1/4)
8.32	Cm	4D2(1)P1(2)	(a,b,c,d,a,b),(-2e,0)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
12.62	$C 2^{\prime} /{ }^{\prime}$	P 1 (1)P2(1)	(a, $0,0,0,0,0),(\mathrm{b}, 0.577 \mathrm{~b})$	$\begin{aligned} & (2,1,-4),(0,1,0), \\ & (2,1,0) \end{aligned}$	$(0,0,0)$
44.231	Im'm2'	P2(1)P2(1)	(a,-0.414a, $0,0,0,0),(\mathrm{b}, 0.577 \mathrm{~b})$	$\begin{aligned} & (0,1,0),(0,0,4), \\ & (2,1,0) \end{aligned}$	(0,0,1/4)
12.62	$C 2^{\prime} / m^{\prime}$	P3(1)P2(3)	(a, $0, \mathrm{a}, 0,0,0),(-b, 0.577 \mathrm{~b})$	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	(0,0,0)
15.89	$C 2^{\prime} / c^{\prime}$	P4(1)P2(3)	(a, $0,0, \mathrm{a}, 0,0),(-\mathrm{b}, 0.577 \mathrm{~b})$	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	(0,1/2,0)
42.221	Fm'm2	P5(1)P2(3)	$\begin{aligned} & (a,-0.414 a, a,-0.414 a, 0,0),(- \\ & b, 0.577 \mathrm{~b}) \end{aligned}$	$\begin{aligned} & (2,2,0),(0,0,4),(2,- \\ & 2,0) \end{aligned}$	(1/8,-1/8,1/4)
43.226	$F d^{\prime} d 2^{\prime}$	P6(1)P2(3)	$\begin{aligned} & (a,-0.414 a, 0.414 a, a, 0,0),(- \\ & b, 0.577 b) \end{aligned}$	$\begin{aligned} & (2,2,0),(0,0,4),(2,- \\ & 2,0) \end{aligned}$	$\begin{aligned} & (11 / 8,- \\ & 3 / 8,3 / 4) \end{aligned}$
8.34	Cm'	C 1 (1)P2(1)	(a,b,0,0,0,0), (c, 0.577c)	$\begin{aligned} & (2,1,-4),(0,1,0), \\ & (2,1,0) \end{aligned}$	$(0,0,0)$
5.15	C2'	$\mathrm{C} 2(1) \mathrm{P} 2$ (3)	(a,b,a,-b,0,0),(-c,0.577c)	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	(0,0,0)
5.15	C2 ${ }^{\prime}$	C3(1)P2(3)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, 0.707 \mathrm{a}-0.707 \mathrm{~b},-0.707 \mathrm{a}- \\ & 0.707 \mathrm{~b}, 0,0),(-\mathrm{c}, 0.577 \mathrm{c}) \end{aligned}$	$\begin{aligned} & (2,2,0),(-2,2,0), \\ & (1,1,2) \end{aligned}$	$)^{(1 / 8,15 / 8,1 / 4}$
8.34	Cm'	C8(1)P2(3)	(a,b,a,b,0,0),(-c, 0.577c)	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	(0,0,0)
9.39	$C c^{\prime}$	C9(1)P2(3)	(a,b,b,-a, 0, 0),(-c,0.577c)	$\begin{aligned} & (2,-2,0),(2,2,0),(- \\ & 1,1,2) \end{aligned}$	$(3 / 2,0,0)$
12.62	$C 2^{\prime} / m^{\prime}$	C11(1)P2(2)	(a,0,b,0,a,0),(0,-1.155c)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
12.62	$C 2^{\prime} / m^{\prime}$	C12(1)P2(2)	(0,a,b, 0, 0,-a), (0,-1.155c)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(1/2,0,0)
38.19	$A m m^{\prime} 2$	C13(1)P2(1)	$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b},-0.414 \mathrm{~b}, \mathrm{~b},- \\ & 0.414 \mathrm{~b}),(\mathrm{c}, 0.577 \mathrm{c}) \end{aligned}$	$\begin{aligned} & (0,0,4),(0,2,0),(-4,- \\ & 2,0) \end{aligned}$	(0,0,1/4)
39.198	Abm'2'	C14(1)P2(1)	$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b}, 2.414 \mathrm{~b},-\mathrm{b},- \\ & 2.414 \mathrm{~b}),(\mathrm{c}, 0.577 \mathrm{c}) \end{aligned}$	$\begin{aligned} & (0,0,4),(0,2,0),(-4,- \\ & 2,0) \end{aligned}$	(0,0,1/4)
5.15	C2 ${ }^{\prime}$	S1(1)P2(2)	(a,b,c, $0, \mathrm{a},-\mathrm{b}),(0,-1.155 \mathrm{~d})$	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
5.15	C2'	S2(1)P2(1)	$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.707 \mathrm{~b}-0.707 \mathrm{c},- \\ & 0.707 \mathrm{~b}-0.707 \mathrm{c}),(\mathrm{d}, 0.577 \mathrm{~d}) \end{aligned}$	$\begin{aligned} & (0,-2,0),(4,2,0), \\ & (0,0,4) \end{aligned}$	(0,0,1/4)
8.34	Cm'	4D2(1)P2(2)	(a,b,c,d,a,b),(0,-1.155e)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,4) \end{aligned}$	(0,0,0)
2.4	$P 1$	P1(1)C1(1)	($\mathrm{a}, 0,0,0,0,0$), (b, c)	$\begin{aligned} & (1,0,2),(0,1,0),(- \\ & 2,0,0) \end{aligned}$	(0,0,0)
8.32	Cm	P2(1)C1(1)	(a,-0.414a, $0,0,0,0),(\mathrm{b}, \mathrm{c})$	$\begin{aligned} & (-2,0,0),(0,0,4), \\ & (0,1,0) \end{aligned}$	(-1/8,0,1/4)
1.1	P1	$\mathrm{C} 1(1) \mathrm{C} 1$ (1)	(a,b, $0,0,0,0),(\mathrm{c}, \mathrm{d})$	$\begin{aligned} & (1,0,2),(0,1,0),(- \\ & 2,0,0) \end{aligned}$	(0,0,0)
2.4	$P 1$	C4(1)C1(1)	($\mathrm{a}, 0, \mathrm{~b}, 0,0,0$), (c, d)	$\begin{aligned} & (1,1,2),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	(0,0,0)
2.4	$P 1$	C5(1)C1(1)	($\mathrm{a}, 0,0, \mathrm{~b}, 0,0$), c, d)	$\begin{aligned} & (1,1,2),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	(0,1/2,0)
8.32	Cm	C6(1)C1(1)	(a,-0.414a,b,-0.414b, 0,0), (c,d)	$\begin{aligned} & (-2,-2,0),(0,0,4),(- \\ & 2,0,0) \end{aligned}$	$\begin{aligned} & (-1 / 8,- \\ & 1 / 8,1 / 4) \end{aligned}$
9.37	Cc	C7(1)C1(1)	(a,-0.414a,b,2.414b, 0,0),(c,d)	$\begin{aligned} & (-2,-2,0),(0,0,4),(- \\ & 2,0,0) \end{aligned}$	$\begin{aligned} & (-5 / 8,- \\ & 5 / 8,5 / 4) \end{aligned}$
2.4	$P 1$	S3(1)C1(1)	($\mathrm{a}, 0, \mathrm{~b}, 0, \mathrm{c}, 0),(\mathrm{d}, \mathrm{e})$	$\begin{aligned} & (0,0,4),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	$(0,0,0)$
2.4	$P 1$	S4(1)C1(1)	(a, $0,0, \mathrm{~b}, 0, \mathrm{c}$), (d, e)	(0,0,4),(0,2,0),(-	(0,1/2,0)

6.18	Pm	S5(1)C1(1)		$2,0,0)$	
			$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b},-0.414 \mathrm{~b}, \mathrm{c},- \\ & 0.414 \mathrm{c}),(\mathrm{d}, \mathrm{e}) \end{aligned}$	$\begin{aligned} & (-2,0,0),(0,0,4), \\ & (0,2,0) \end{aligned}$	(0,0,1/4)
7.24	Pc	S6(1)C1(1)	$\begin{aligned} & (\mathrm{a},-0.414 \mathrm{a}, \mathrm{~b}, 2.414 \mathrm{~b}, \mathrm{c}, 2.414 \mathrm{c}) \\ & (\mathrm{d}, \mathrm{e}) \end{aligned}$	$\begin{aligned} & (-2,0,0),(0,0,4), \\ & (0,2,0) \end{aligned}$	(0,0,1/4)
1.1	$P 1$	4D1(1)C1(1)	(a,b,c,d,0,0),(e,f)	$\begin{aligned} & (1,1,2),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	(0,0,0)
1.1	P1	6D1(1)C1(1)	(a,b,c,d,e,f),(g,h)	$\begin{aligned} & (0,0,4),(0,2,0),(- \\ & 2,0,0) \end{aligned}$	(0,0,0)

S6. 5C
S7. \boldsymbol{U}_{1}
Table S4 Order parameter components and unit cell configurations for subgroups of $P 6_{3} / m m c$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 5)$ is the active representation.

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
58	Pnnm	P1	(a, , , , 0, 0, 0)	(0,0,5),(2,1,0),(0,1,0)	(0,0,0)
59	Pmmn	P2	(0,a, $, 0,0,0$)	(0,0,5),(0,-1,0),(2,1,0)	(1/2,1/2,0)
164	PЗ́m1	P3	($\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0$)	$(2,0,0),(0,2,0),(0,0,5)$	$(0,0,0)$
187	P6m2	P4	$\begin{aligned} & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{a},-0.325 \mathrm{a}, \mathrm{a},- \\ & 0.325 \mathrm{a}) \end{aligned}$	(0,-2,0),(2,2,0),(0,0,5)	(0,0,1/4)
64	Cmca	P5	(a, $0,0,0, \mathrm{a}, 0$)	(2,0,0), (2,4,0), (0,0,5)	$(0,0,0)$
63	Cmcm	P6	(0,a, $0,0,0,-\mathrm{a}$)	$(2,0,0),(2,4,0),(0,0,5)$	$(1 / 2,0,0)$
31	Pmn2 ${ }_{1}$	C1	(a,b, , 0, 0, 0)	(0,-1,0), (2, 1,0), (0,0,5)	(1/2,1/4, $)$
156	P3m1	C2	(a,b,a,b,a,b)	(2,0,0),(0,2,0),(0,0,5)	(0,0,0)
20	C222 ${ }_{1}$	C3	(a,b,0,0,a,-b)	(2,0,0),(2,4,0),(0,0,5)	$(1 / 2,0,0)$
14	$P 21 / c$	C4	($0,0, \mathrm{a}, 0, \mathrm{~b}, 0$)	(-2,0,0),(0,0,5),(0,2,0)	$(0,0,0)$
11	$P 2_{1} / m$	C5	(0,0,0,a, $0, \mathrm{~b}$)	(-2,0,0),(0,0,5),(0,2,0)	(0,1/2,0)
14	$P 2{ }_{1} / \mathrm{c}$	C6	(a, , , , , 0, 0, b)	(-2,0,0),(0,0,5),(2,2,0)	(0,1/2,0)
12	C2/m	C7	(a,, , b, $0, \mathrm{a}, 0$)	(-2,-4,0),(2,0,0),(0,0,5)	(0,0,0)
12	C2/m	C8	$\begin{aligned} & (0, a, b, 0,0,-a) \\ & (a,-0.325 a, b,-0.325 b, b,- \end{aligned}$	$(-2,-4,0),(2,0,0),(0,0,5)$	(1/2,0,0)
38	Amm2	C9	$\begin{aligned} & 0.325 b) \\ & (a,-0.325 a, b, 3.078 b,-b,- \end{aligned}$	(0,0,5),(0,2,0),(-4,-2,0)	(0,0,1/4)
39	Abm2	C10	3.078b)	$(0,0,5),(0,2,0),(-4,-2,0)$	(0,0,1/4)
36	Cmc2 ${ }_{1}$	C11	(a,b, $, 0, \mathrm{a}, \mathrm{b}$)	$(2,0,0),(2,4,0),(0,0,5)$	(1/2,-1,0)
5	$C 2$	S1	$\begin{aligned} & (a, b, c, 0, a,-b) \\ & (a,-0.325 a, b, c, 0.809 b- \end{aligned}$	$(-2,-4,0),(2,0,0),(0,0,5)$	(0,0,0)
5	C2	S2	$0.588 \mathrm{c},-0.588 \mathrm{~b}-0.809 \mathrm{c}$)	(0,-2,0),(4,2,0),(0,0,5)	($0,0,1 / 4$)
2	$P{ }^{\prime}$	S3	(a,0,b,0,c,0)	(0,0,5),(0,2,0),(-2,0,0)	(0,0,0)
2	$P 1$	S4	(a, $0,0, b, 0, \mathrm{c}$)	$(0,0,5),(0,2,0),(-2,0,0)$	(0,1/2,0)
6	Pm	S5	$\begin{aligned} & \text { (a,-0.325a,b,-0.325b,c,- } \\ & 0.325 \mathrm{c}) \\ & (\mathrm{a},- \end{aligned}$	(-2,0,0),(0,0,5),(0,2,0)	(0,0,1/4)
7	Pc	S6	0.325a,b,3.078b,c,3.078c)	(-2,0,0),(0,0,5),(0,2,0)	(0,0,1/4)
4	$P 2_{1}$	4D1	(0,0,a,b,c,d)	(-2,0,0),(0,0,5),(0,2,0)	(0,1/2,0)

8	$C m$	4 D 2	$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{b})$	$(-2,-4,0),(2,0,0),(0,0,5)$	$(0,0,0)$
1	P1	6D1	$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f})$	$(0,0,5),(0,2,0),(-2,0,0)$	$(0,0,0)$
58	Pnnm	P1	$(\mathrm{a}, 0,0,0,0,0)$	$(0,0,5),(2,1,0),(0,1,0)$	$(0,0,0)$
59	Pmmn	P2	$(0, \mathrm{a}, 0,0,0,0)$	$(0,0,5),(0,-1,0),(2,1,0)$	$(1 / 2,1 / 2,0)$
164	PЗ́m1	P3	$(\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0)$	$(2,0,0),(0,2,0),(0,0,5)$	$(0,0,0)$

S8. U_{1} and $\mathbf{m} \Gamma_{4}^{+}$

Table S5 Magnetic subgroups arising from coupling of irreps $m \Gamma_{4}^{+i \epsilon}$ and $U_{1}(1 / 2,0,1 / 5)$, with respect to the parent space group $\mathrm{Pb}_{3} / \mathrm{mmc}$.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 5)$ $m \Gamma_{4}^{+i \epsilon}$	OPD Vector $U_{1}(1 / 2,0,1 / 5)$, $m \Gamma_{4}^{+i \zeta}$	Basis Vectors	Origin
58.398	Pnn'm'	P1(1)P1(1)	(a, $0,0,0,0,0$),(b)	(-2,-1,0),(0,0,5),(0,1,0)	$\begin{aligned} & (0,0,0) \\ & (1 / 2,1 / 2 \end{aligned}$
59.409	Pm'm'n	P2(1)P1(1)	(0,a, $0,0,0,0),(\mathrm{b})$	(0,0,5),(0,-1,0),(2,1,0)	$0)$
164.89	$P 3{ }^{\prime} m^{\prime} 1$	P3(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0),(\mathrm{b}) \\ & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{a},- \\ & 0.325 \mathrm{a}, \mathrm{a},-0.325 \mathrm{a}) \end{aligned}$	(0,-2,0),(2,2,0),(0,0,5)	(0,0,0)
187.211	P6'm'2	P4(1)P1(1)	(b)	$(2,2,0),(-2,0,0),(0,0,5)$	$(0,0,1 / 4)$
64.476	Cm' ${ }^{\prime}{ }^{\prime}$	P5(1)P1(1)	($\mathrm{a}, 0,0,0, \mathrm{a}, 0$), (b)	(2,0,0), (2,4,0),(0,0,5)	$(0,0,0)$
63.464	$\mathrm{Cm}^{\prime} \mathrm{cm}^{\prime}$	P6(1)P1(1)	(0,a, $0,0,0,-\mathrm{a}$), (b)	$(2,0,0),(2,4,0),(0,0,5)$	$(1 / 2,0,0)$
31.125	Pm'n21'	C 1 (1)P1(1)	(a,b,0,0,0,0),(c)	(0,-1,0),(2,1,0),(0,0,5)	$\begin{aligned} & (1 / 2,1 / 4, \\ & 0) \end{aligned}$
156.51	$P 3 m^{\prime} 1$	C2(1)P1(1)	(a,b,a,b,a,b),(c)	(0,-2,0),(2,2,0),(0,0,5)	$\begin{aligned} & (0,0,0) \\ & (3 / 2,2,5 / \end{aligned}$
20.34	C22'21'	C3(1)P1(1)	(a,b, $0,0, a,-b$), (c)	$(2,4,0),(-2,0,0),(0,0,5)$	4)
14.79	$P 21_{1} / c^{\prime}$	C4(1)P1(1)	(0,0,a,0,b,0),(c)	(-2,0,0),(0,0,5),(0,2,0)	(0,0,0)
11.54	$P 2_{1}{ }^{\prime} / m^{\prime}$	C5(1)P1(1)	(0,0,0,a, $0, \mathrm{~b}$),(c)	(-2,0,0),(0,0,5),(0,2,0)	$(0,1 / 2,0)$
14.79	$P 2{ }_{1} / c^{\prime}$	C6(1)P1(1)	(a,0,0,0,0,b),(c)	(-2,0,0),(0,0,5),(2,2,0)	(0,1/2,0)
12.62	$C 2^{\prime} / m^{\prime}$	C7(1)P1(1)	(a,0,b,0,a,0),(c)	$(-2,-4,0),(2,0,0),(0,0,5)$	(0,0,0)
12.62	$C 2^{\prime} / m^{\prime}$	C8(1)P1(1)	$\begin{aligned} & (0, a, b, 0,0,-a),(c) \\ & (a,-0.325 a, b,- \\ & 0.325 b, b,-0.325 b) \end{aligned}$	$(-2,-4,0),(2,0,0),(0,0,5)$	$(1 / 2,0,0)$
38.191	Am'm'2	C9(1)P1(1)	(c) (a,- $0.325 a, b, 3.078 b,-$	$(0,0,5),(0,2,0),(-4,-2,0)$	(0,0,1/4)
39.199	Ab'm'2	C10(1)P1(1)	b,-3.078b),(c)	$(0,0,5),(0,2,0),(-4,-2,0)$	(0,0,1/4)
36.174	Cm'c2 ${ }^{\prime}{ }^{\prime}$	C11(1)P1(1)	(a,b, $0,0, a, b),(c)$	(2,0,0), (2,4,0),(0,0,5)	(1/2,-1,0)
5.15	$C 2^{\prime}$	S1(1)P1(1)	(a,b,c,0,a,-b),(d)	$(-2,-4,0),(2,0,0),(0,0,5)$	(0,0,0)
			(a,- $0.325 \mathrm{a}, \mathrm{b}, \mathrm{c}, 0.809 \mathrm{~b}$ -0.588c,-0.588b-		
5.13	C2	S2(1)P1(1)	0.809c),(d)	(0,-2,0),(4,2,0),(0,0,5)	(0,0,1/4)
2.4	$P 1$	S3(1)P1(1)	(a,0,b, 0, c, 0),(d)	(0,0,5),(0,2,0),(-2,0,0)	(0,0,0)
2.4	$P 1$	S4(1)P1(1)	(a, $0,0, b, 0, \mathrm{c}$),(d)	$(0,0,5),(0,2,0),(-2,0,0)$	(0,1/2, $)$
6.2	Pm'	S5(1)P1(1)	$\begin{aligned} & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{~b},- \\ & 0.325 \mathrm{~b}, \mathrm{c},-0.325 \mathrm{c}) \\ & \text { (d) } \end{aligned}$	$(-2,0,0),(0,0,5),(0,2,0)$	(0,0,1/4)

S9. U_{1} and $\mathbf{m} \Gamma_{5}{ }^{+}$

Table S6 Magnetic subgroups arising from coupling of irreps $m \Gamma_{5}^{+i 6}$ and $U_{1}(1 / 2,0,1 / 5)$, with respect to the parent space group $P 6_{3} / \mathrm{mmc}$.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 5)$ $m \Gamma_{5}^{+i}$	OPD Vector $U_{1}(1 / 2,0,1 / 5), m \Gamma_{5}^{+i 6}$	Basis Vectors	Origin
58.393	Pnnm	P1(1)P1(1)	(a,0,0,0,0,0),(b,-1.732b)	(-2,-1,0),(0,0,5),(0,1,0)	$(0,0,0)$
59.405	Pmmn	P2(1)P1(1)	(0,a, $0,0,0,0),(\mathrm{b},-1.732 \mathrm{~b})$	(0,1,0),(0,0,5),(2,1,0)	(1/2,0,0)
64.469	Cmca	P5(1)P1(2)	($\mathrm{a}, 0,0,0, \mathrm{a}, 0),(-2 \mathrm{~b}, 0)$	$(2,0,0),(2,4,0),(0,0,5)$	$(0,0,0)$
63.457	Cmcm	P6(1)P1(2)	(0,a,0,0,0,-a), (-2b, 0)	(2,0,0), (2,4,0), (0,0,5)	(1/2,0,0)
31.123	Pmn 1_{1}	C1(1)P1(1)	(a,b,0,0,0,0),(c,-1.732c)	(0,-1,0), (2,1,0), (0,0,5)	(1/2,1/4,0)
20.31	C2221	C3(1)P1(2)	(a,b,0,0,a,-b), (-2c,0)	(2,0,0), (2,4,0),(0,0,5)	(1/2,0,0)
12.58	C2/m	C7(1)P1(2)	(a,0,b,0,a, 0), (-2c,0)	$(-2,-4,0),(2,0,0),(0,0,5)$	$(0,0,0)$
12.58	C2/m	C8(1)P1(2)	$\begin{aligned} & (0, a, b, 0,0,-a),(-2 c, 0) \\ & (a,-0.325 a, b,-0.325 b, b,- \end{aligned}$	$(-2,-4,0),(2,0,0),(0,0,5)$	(1/2,0,0)
38.187	Amm2	C9(1)P1(1)	$\begin{aligned} & 0.325 \mathrm{~b}),(\mathrm{c},-1.732 \mathrm{c}) \\ & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{~b}, 3.078 \mathrm{~b},-\mathrm{b},- \end{aligned}$	$(0,0,5),(0,2,0),(-4,-2,0)$	(0,0,1/4)
39.195	Abm2	C10(1)P1(1)	3.078b),(c,-1.732c)	(0,0,5),(0,2,0),(-4,-2,0)	(0,0,1/4)
36.172	Cmc 2_{1}	C11(1)P1(2)	(a,b,0,0,a,b),(-2c,0)	(2,0,0),(2,4,0),(0,0,5)	(1/2,-1,0)
5.13	C2	S1(1)P1(2)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0, \mathrm{a},-\mathrm{b}),(-2 \mathrm{~d}, 0) \\ & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.809 \mathrm{~b}- \\ & 0.588 \mathrm{c},-0.588 \mathrm{~b}-0.809 \mathrm{c}),(\mathrm{d},- \end{aligned}$	$(-2,-4,0),(2,0,0),(0,0,5)$	$(0,0,0)$
5.13	C2	S2(1)P1(1)	1.732d)	(0,-2,0),(4,2,0),(0,0,5)	(0,0,1/4)
8.32	Cm	4D2(1)P1(2)	(a,b,c,d,a,b),(-2e,0)	(-2,-4,0),(2,0,0), (0,0,5)	$(0,0,0)$
58.398	Pnn'm'	P1(1)P2(1)	(a, , , , 0, 0, 0), (b, 0.577b)	(0,0,5), (2,1,0), (0,1,0)	$(0,0,0)$
59.41	Pmm'n'	P2(1)P2(1)	(0,a, $, 0,0,0),(\mathrm{b}, 0.577 \mathrm{~b})$	$(0,0,5),(0,-1,0),(2,1,0)$	(1/2,1/2,0)
64.474	$C m^{\prime} c^{\prime} a$	P5(1)P2(2)	(a, 0, 0, 0, a, 0), (0,-1.155b)	$(2,0,0),(2,4,0),(0,0,5)$	$(0,0,0)$
63.462	Cm'c'm	P6(1)P2(2)	(0,a, $0,0,0,-\mathrm{a}),(0,-1.155 b)$	(2,0,0), (2,4,0),(0,0,5)	(1/2,0,0)
31.127	Pm'n'21	C1(1)P2(1)	(a,b, $, 0,0,0),(\mathrm{c}, 0.577 \mathrm{c})$	(0,-1,0),(2,1,0),(0,0,5)	(1/2,1/4,0)
20.33	C2'2'21	C3(1)P2(2)	(a,b,0,0,a,-b),(0,-1.155c)	(2,0,0),(2,4,0),(0,0,5)	(1/2,0,0)
12.62	$C 2^{\prime} / m^{\prime}$	C7(1)P2(2)	(a,0,b,0,a,0,0),(-1.155c)	$(-2,-4,0),(2,0,0),(0,0,5)$	$(0,0,0)$
12.62	$C 2^{\prime} / m^{\prime}$	C8(1)P2(2)	(0,a,b, $0,0,-\mathrm{a}),(0,-1.155 \mathrm{c})$	$(-2,-4,0),(2,0,0),(0,0,5)$	(1/2,0,0)
38.19	Amm'2'	C9(1)P2(1)	$\begin{aligned} & \text { (a,-0.325a,b,-0.325b,b,- } \\ & 0.325 \mathrm{~b}),(\mathrm{c}, 0.577 \mathrm{c}) \\ & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{~b}, 3.078 \mathrm{~b},-\mathrm{b},- \end{aligned}$	(0,0,5),(0,2,0),(-4,-2,0)	(0,0,1/4)
39.198	Abm'2'	C10(1)P2(1)	$3.078 \mathrm{~b})$,(c,0.577c)	$(0,0,5),(0,2,0),(-4,-2,0)$	(0,0,1/4)

36.176	$C m^{\prime} c^{\prime} 2_{1}$	C11(1)P2(2)	(a,b,0,0,a,b),(0,-1.155c)	$(2,0,0),(2,4,0),(0,0,5)$	(1/2,-1,0)
5.15	$C 2^{\prime}$	S1(1)P2(2)	(a,b,c,0,a,-b),(0,-1.155d) (a,-0.325a,b,c,0.809b$0.588 \mathrm{c},-0.588 \mathrm{~b}-0.809 \mathrm{c}$),	$(-2,-4,0),(2,0,0),(0,0,5)$	$(0,0,0)$
5.15	C2'	S2(1)P2(1)	(d,0.577d)	(0,-2,0),(4,2,0),(0,0,5)	(0,0,1/4)
8.34	Cm'	4D2(1)P2(2)	(a,b,c,d,a,b),(0,-1.155e)	$(-2,-4,0),(2,0,0),(0,0,5)$	$(0,0,0)$
14.75	$P 2_{1} / \mathrm{c}$	P1(1)C1(1)	(a, $0,0,0,0,0),(\mathrm{b}, \mathrm{c})$	(0,1,0),(0,0,5),(2,0,0)	(0,0,0)
11.5	$P 2_{1} / m$	$\mathrm{P} 2(1) \mathrm{C} 1(1)$	(0,a, $, 0,0,0),(\mathrm{b}, \mathrm{c})$	(-2,0,0),(0,0,5),(0,1,0)	(-1/2,0,0)
4.7	$P 2_{1}$	$\mathrm{C} 1(1) \mathrm{C} 1$ (1)	(a,b, , 0, 0, 0), (c, d)	$(-2,0,0),(0,0,5),(0,1,0)$	(-1/2,0,0)
14.75	$P 2_{1} / \mathrm{c}$	$\mathrm{C} 4(1) \mathrm{C} 1$ (1)	(0,0,a, $0, \mathrm{~b}, 0),(\mathrm{c}, \mathrm{d})$	$(-2,0,0),(0,0,5),(0,2,0)$	$(0,0,0)$
11.5	$P 2{ }_{1} / m$	C5(1)C1(1)	(0,0,0,a, 0, b), (c,d)	$(-2,0,0),(0,0,5),(0,2,0)$	(0,1/2,0)
14.75	$P 21_{1} /$	C 6 (1) C 1 (1)	(a, $0,0,0,0, b),(\mathrm{c}, \mathrm{d})$	$(-2,0,0),(0,0,5),(2,2,0)$	(0,1/2,0)
2.4	$P 1$,	S3(1)C1(1)	(a, $0, \mathrm{~b}, 0, \mathrm{c}, 0),(\mathrm{d}, \mathrm{e})$	$(0,0,5),(0,2,0),(-2,0,0)$	(0,0,0)
2.4	$P 1$	S4(1)C1(1)	$\begin{aligned} & (\mathrm{a}, 0,0, \mathrm{~b}, 0, \mathrm{c}),(\mathrm{d}, \mathrm{e}) \\ & (\mathrm{a},-0.325 \mathrm{a}, \mathrm{~b}, 0.325 \mathrm{~b}, \mathrm{c},- \end{aligned}$	(0,0,5),(0,2,0),(-2,0,0)	(0,1/2,0)
6.18	Pm	S5(1)C1(1)	$\begin{aligned} & 0.325 \mathrm{c}),(\mathrm{d}, \mathrm{e}) \\ & (\mathrm{a},- \\ & 0.325 \mathrm{a}, \mathrm{~b}, 3.078 \mathrm{~b}, \mathrm{c}, 3.078 \mathrm{c}), \end{aligned}$	$(-2,0,0),(0,0,5),(0,2,0)$	$(0,0,1 / 4)$
7.24	Pc	S6(1)C1(1)	(d,e)	$(-2,0,0),(0,0,5),(0,2,0)$	(0,0,1/4)
4.7	$P 2_{1}$	4D1(1)C1(1)	(0,0,a,b,c,d),(e,f)	$(-2,0,0),(0,0,5),(0,2,0)$	(0,1/2,0)
1.1	P1	6D1(1)C1(1)	(a,b,c,d,e,f),(g,h)	(0,0,5),(0,2,0),(-2,0,0)	$(0,0,0)$

S10. 6C

S11. U_{1}

Table S7 Order parameter components and unit cell configurations for subgroups of $P 6_{3} / m m c$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 6)$ is the active representation.

SGN	Space	OPD	OPD Vector	Basis Vectors	Origin
	Group	Name			
12	C2/m	P1	(a, 0, $0,0,0,0$)	(2,1,-6),(0,1,0),(2,1,0)	$(0,0,0)$
44	Imm 2	P2	(a,-0.268a, $0,0,0,0$)	(0,0,6),(0,1,0),(-2,-1,0)	$\begin{aligned} & (-11 / 12,1 / 24,- \\ & 11 / 4) \end{aligned}$
12	C2/m	P3	(a, $0, \mathrm{a}, 0,0,0$)	(2,-2,0), (2,2,0),(-1,1,3)	$(0,0,0)$
15	C2/c	P4	(a, $0,0, \mathrm{a}, 0,0$)	(2,2,0),(-2,2,0),(1,1,3)	(0,1/2,0)
43	$F d d 2$	P5	(a,-0.268a, $0.268 \mathrm{a}, \mathrm{a}, 0,0$)	$(0,0,6),(-2,2,0),(-2,-2,0)$	(-4/3,-1/3,1)
42	Fmm2	P6	(a,-0.268a,a,-0.268a, 0,0)	$(0,0,6),(2,2,0),(-2,2,0)$	(-1/12,1/12,1/4)
164	P Śm1	P7	($\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0$)	$(2,0,0),(0,2,0),(0,0,6)$	$(0,0,0)$
187	P6́m2	P8	$\begin{aligned} & (a,-0.268 a, a,-0.268 a, a,- \\ & 0.268 a) \end{aligned}$	(0,-2,0),(2,2,0),(0,0,6)	(0,0,1/4)
152	P3121	P9	(a,1.732a,-2a, $0, \mathrm{a},-1.732 \mathrm{a}$)	(2,0,0), (0,2,0), (0,0,6)	$(0,0,1)$
151	$P 3112$	P10	$\begin{aligned} & (a, a,- \\ & 1.366 a, 0.366 a, 0.366 a, 1.366 a) \end{aligned}$	$(0,-2,0),(2,2,0),(0,0,6)$	(0,0,5/4)
8	Cm	C1	(a,b, $, 0,0,0$)	(2,1,-6), (0,, 00), (2,1,0)	$(0,0,0)$
5	C2	C2	(a,b,a,-b, 0,0)	(2,-2,0), (2,2,0), (-1,1,3)	$(0,0,0)$
5	C2	C3	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, 0.866 \mathrm{a} 0.500 \mathrm{~b},- \\ & 0.500 \mathrm{a} 0.866 \mathrm{~b}, 0,0) \end{aligned}$	$(2,2,0),(-2,2,0),(1,1,3)$	(1/12,23/12,1/4)
2	$P 1$	C4	(a, 0, b, 0, 0, 0)	$(1,1,3),(0,2,0),(-2,0,0)$	(0,0,0)
2	$P 1$	C5	(a, $0,0, \mathrm{~b}, 0,0$)	$(1,1,3),(0,2,0),(-2,0,0)$	(0,1/2,0)
8	Cm	C6	(a,-0.268a,b,-0.268b, 0,0)	(-2,-2,0),(0,0,6),(-2,0,0)	(-1/12,-1/12,1/4)
9	Cc	C7	(a,-0.268a,b,3.732b,0,0)	(-2,-2,0), (0,0,6),(-2,0,0)	(-7/12,-7/12,7/4)
8	Cm	C8	(a,b,a,b, 0,0)	(2,-2,0), (2,2,0), (-1,1,3)	$(0,0,0)$
9	Cc	C9	(a,b,b,-a, 0,0)	(2,2,0),(-2,2,0),(1,1,3)	(0,3/2,0)
156	P3m1	C10	(a,b,a,b,a,b)	(2,0,0),(0,2,0),(0,0,6)	$(0,0,0)$

$\left.\begin{array}{llllll}12 & C 2 / m & \mathrm{C} 11 & (\mathrm{a}, 0, \mathrm{~b}, 0, \mathrm{a}, 0) & (-2,-4,0),(2,0,0),(0,0,6) & (0,0,0) \\ 12 & C 2 / m & \mathrm{C} 12 & (0, \mathrm{a}, \mathrm{b}, 0,0,-\mathrm{a})\end{array}\right)$

S12. U_{1} and $\mathrm{m}_{\mathrm{C}_{4}}{ }^{+}$

Table S8 Magnetic subgroups arising from coupling of irreps $m \Gamma_{4}^{+i i}$ and $U_{1}(1 / 2,0,1 / 6)$, with respect to the parent space group $\mathrm{Pb}_{3} / \mathrm{mmc}$.

SGN.M	Space group	OPD Name $U_{1}(1 / 2,0,1 / 6)$ $m \Gamma_{4}^{+66}$	$\begin{aligned} & \text { OPD Vector } U_{1}(1 / 2,0,1 / 6), \\ & m \Gamma_{4}^{+i \zeta} \end{aligned}$	Basis Vectors	Origin
12.62	C2'/m'	P 1 (1)P1(1)	(a,0,0,0,0,0),(b)	$\begin{aligned} & (2,1,-6),(0,1,0), \\ & (2,1,0) \end{aligned}$	$(0,0,0)$
				(0,0,6),(0,1,0),(-2,-	(-11/12,1/24,-
44.232	Im'm'2	P2(1)P1(1)	(a,-0.268a, $0,0,0,0),(\mathrm{b})$	$\begin{aligned} & 1,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	11/4)
12.62	C2'/m'	P3(1)P1(1)	(a, $0, \mathrm{a}, 0,0,0),(\mathrm{b})$	$\begin{aligned} & 1,1,3) \\ & (2,2,0),(-2,2,0), \end{aligned}$	(0,0,0)
15.85	C2/c	P4(1)P1(1)	(a, $0,0, a, 0,0),(b)$	$\begin{aligned} & (1,1,3) \\ & (0,0,6),(-2,2,0),(-2,- \end{aligned}$	(0,1/2,0)
43.226	Fd'd2' Fm'm'	P5(1)P1(1)	(a,-0.268a, $0.268 \mathrm{a}, \mathrm{a}, 0,0$),(b)	$\begin{aligned} & 2,0) \\ & (0,0,6),(2,2,0),(- \end{aligned}$	$(-4 / 3,-1 / 3,1)$
42.222	2	P6(1)P1(1)	(a,-0.268a,a,-0.268a, 0,0), (b)	$\begin{aligned} & 2,2,0) \\ & (0,-2,0),(2,2,0), \end{aligned}$	(-1/12,1/12, 1/4)
164.89	$P 3 m^{\prime} 1$	P 7 (1)P1(1)	($\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0$), (b)	$(0,0,6)$	(0,0,0)
$\begin{aligned} & 187.21 \\ & 1 \end{aligned}$	$P 6^{\prime} m^{\prime} 2$	P8(1)P1(1)	$\begin{aligned} & (a,-0.268 a, a,-0.268 a, a,- \\ & 0.268 a),(b) \end{aligned}$	$\begin{aligned} & (2,2,0),(-2,0,0), \\ & (0,0,6) \end{aligned}$	(0,0,1/4)
152.35	P312'1	P9		$(0,-2,0),(2,2,0),$ $(0,0,6)$	$(0,0,0)$
152.35			(a,a,-1.366a,0.366a,0.366a,-	$(2,2,0),(-2,0,0),$	(0,0,0)
151.29	P3112	P10(1)P1(1)	1.366a),(b)	$\begin{aligned} & (0,0,6) \\ & (2,1,-6),(0,1,0), \end{aligned}$	(0,0,1/4)
8.34	Cm'	C 1 (1)P1(1)	(a,b, $0,0,0,0$), (c)	$\begin{aligned} & (2,1,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	$(0,0,0)$
5.15	C2'	C2(1)P1(1)	(a,b,a,-b,0,0),(c)	1,1,3)	$(0,0,0)$
			(a,b,0.866a-0.500b,-0.500a-	(2,2,0),(-2,2,0),	(1/12,23/12,1/4
5.13	C2	C3(1)P1(1)	0.866b,0,0),(c)	$(1,1,3)$)
	P1			(1,1,3), (0,2,0),(-	
2.4	P1	C4(1)P1(1)	(a,0,b, $0,0,0$), (c)	$2,0,0)$ $(1,1,3),(0,2,0),(-$	(0,0,0)
2.4	P1	C5(1)P1(1)	(a, $0,0, b, 0,0),(\mathrm{c})$	2,0,0)	(0,1/2,0)

8.34	Cm'	C6(1)P1(1)			$\begin{aligned} & (-1 / 12,- \\ & 1 / 12,1 / 4) \end{aligned}$
8.34	Cm	C6(1)P1(1)	(a,-0.268a,b,-0.268b,0,0),(c)	$(-2,-2,0),(0,0,6),(-$	$(-7 / 12,-$
9.39	Cc'	C7(1)P1(1)	(a,-0.268a,b,3.732b,0,0),(c)	$\begin{aligned} & 2,0,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	7/12,7/4)
8.34	Cm'	C8(1)P1(1)	(a,b,a,b, 0,0), (c)	$\begin{aligned} & 1,1,3) \\ & (2,2,0),(-2,2,0), \end{aligned}$	$(0,0,0)$
9.37	Cc	$\mathrm{C} 9(1) \mathrm{P} 1$ (1)	(a,b,b,-a, 0, 0), (c)	$\begin{aligned} & (1,1,3) \\ & (0,-2,0),(2,2,0), \end{aligned}$	(0,3/2,0)
156.51	P3m'1	C10(1)P1(1)	(a,b,a,b,a,b),(c)	$\begin{aligned} & (0,0,6) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,0,0)
12.62	$\mathrm{C} 21 / \mathrm{m}^{\prime}$	C11(1)P1(1)	(a,0,b,0,a,0),(c)	$\begin{aligned} & (0,0,6) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	$(0,0,0)$
12.62	$\begin{aligned} & \mathrm{C} 21 / \mathrm{m}^{\prime} \\ & \text { Am'm' } \end{aligned}$	C12(1)P1(1)	$\begin{aligned} & (0, a, b, 0,0,-a),(c) \\ & (a,-0.268 a, b,-0.268 b, b,- \end{aligned}$	$\begin{aligned} & (0,0,6) \\ & (0,0,6),(0,2,0),(-4,- \end{aligned}$	$(1 / 2,0,0)$
38.191	2	C13(1)P1(1)	$\begin{aligned} & 0.268 b),(c) \\ & (a,-0.268 a, b, 3.732 b,-b,- \end{aligned}$	$\begin{aligned} & 2,0) \\ & (0,0,6),(0,2,0),(-4,- \end{aligned}$	(0,0,1/4)
39.199	Ab'm'2	C14(1)P1(1)	3.732b),(c) (a,b,-0.500a-0.866b,0.866a- $0.500 \mathrm{~b},-0.500 \mathrm{a}+0.866 \mathrm{~b},-$	$\begin{aligned} & 2,0) \\ & (2,2,0),(-2,0,0) \end{aligned}$	(0,0,1/4)
144.4	P31	C15(1)P1(1)	0.866a-0.500b),(c)	$\begin{aligned} & (0,0,6) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,0,0)
5.15	C2'	S1(1)P1(1)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0, \mathrm{a},-\mathrm{b}),(\mathrm{d}) \\ & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.866 \mathrm{~b}- \end{aligned}$	$\begin{aligned} & (0,0,6) \\ & (0,-2,0),(4,2,0), \end{aligned}$	(0,0,0)
5.13	C2	S2(1)P1(1)	$0.500 \mathrm{c},-0.500 \mathrm{~b}-0.866 \mathrm{c})$,(d)	$\begin{aligned} & (0,0,6) \\ & (0,0,6),(0,2,0),(- \end{aligned}$	(0,0,1/4)
2.4	P1	S3(1)P1(1)	($\mathrm{a}, 0, \mathrm{~b}, 0, \mathrm{c}, 0$), (d)	$\begin{aligned} & 2,0,0) \\ & (0,0,6),(0,2,0),(- \end{aligned}$	(0,0,0)
2.4	P1	S4(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0,0, \mathrm{~b}, 0, \mathrm{c}),(\mathrm{d}) \\ & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b},-0.268 \mathrm{~b}, \mathrm{c},- \end{aligned}$	$\begin{aligned} & 2,0,0) \\ & (-2,0,0),(0,0,6), \end{aligned}$	(0,1/2,0)
6.2	Pm'	S5(1)P1(1)	$\begin{aligned} & 0.268 \mathrm{c}),(\mathrm{d}) \\ & (\mathrm{a},- \\ & 0.268 \mathrm{a}, \mathrm{~b}, 3.732 \mathrm{~b}, \mathrm{c}, 3.732 \mathrm{c}), \end{aligned}$	$\begin{aligned} & (0,2,0) \\ & (-2,0,0),(0,0,6), \end{aligned}$	(0,0,1/4)
7.26	Pc'	S6(1)P1(1)	(d)	$\begin{aligned} & (0,2,0) \\ & (1,1,3),(0,2,0),(- \end{aligned}$	(0,0,1/4)
1.1	P1	4D1(1)P1(1)	(a,b,c,d, 0,0),(e)	$\begin{aligned} & 2,0,0) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	$(0,0,0)$
8.34	Cm'	4D2(1)P1(1)	(a,b,c,d,a,b),(e)	$\begin{aligned} & (0,0,6) \\ & (0,0,6),(0,2,0),(- \end{aligned}$	(0,0,0)
1.1	P1	6D1(1)P1(1)	(a,b,c,d,e,f),(g)	2,0,0)	$(0,0,0)$

S13. U_{1} and $\mathbf{m} \Gamma_{5}{ }^{+}$

Table S9 Magnetic subgroups arising from coupling of irreps $m \Gamma_{5}^{+i \epsilon}$ and $U_{1}(1 / 2,0,1 / 6)$, with respect to the parent space group $\mathrm{Pb}_{3} / \mathrm{mmc}$.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 6)$ $m \Gamma_{5}^{+i}$	$\begin{aligned} & \text { OPD Vector } U_{1}(1 / 2,0,1 / 6), \\ & m \Gamma_{5}^{+i i} \end{aligned}$	Basis Vectors	Origin
12.58	C2/m	P1(1)P1(1)	(a,0,0,0,0,0), (b,-1.732b)	$\begin{aligned} & (2,1,-6),(0,1,0), \\ & (2,1,0) \end{aligned}$	(0,0,0)
44.229	Imm 2	P2(1)P1(1)	(a,-0.268a, $0,0,0,0),(\mathrm{b},-1.732 \mathrm{~b})$	$\begin{aligned} & (0,1,0),(0,0,6),(2,1,0) \\ & (2,-2,0),(2,2,0),(- \end{aligned}$	($0,0,1 / 4$)
12.58	C2/m	P3(1)P1(3)	(a,0,a,0,0,0), (b, 1.732b)	$\begin{aligned} & 1,1,3) \\ & (2,2,0),(-2,2,0), \end{aligned}$	$(0,0,0)$
15.85	C2/c	P4(1)P1(3)	(a, 0, 0, a, 0, 0), (b, 1.732b)	$(1,1,3)$	(0,1/2,0)
43.224	Fdd2	P5(1)P1(3)	$\begin{aligned} & (a,-0.268 \mathrm{a}, 0.268 \mathrm{a}, \mathrm{a}, 0,0), \\ & (\mathrm{b}, 1.732 \mathrm{~b}) \end{aligned}$	$\begin{aligned} & (-2,2,0),(0,0,6), \\ & (2,2,0) \end{aligned}$	(5/6,5/6,5/2)
42.219	Fmm2	P6(1)P1(3)	$\begin{aligned} & (a,-0.268 a, a,-0.268 a, 0,0) \\ & (b, 1.732 b) \end{aligned}$	$\begin{aligned} & (2,2,0),(0,0,6),(2,- \\ & 2,0) \end{aligned}$	$\begin{aligned} & (1 / 12,- \\ & 1 / 12,1 / 4) \end{aligned}$

8.32	Cm	C1(1)P1(1)	(a,b,0,0,0,0),(c,-1.732c)	$\begin{aligned} & (2,1,-6),(0,1,0), \\ & (2,1,0) \end{aligned}$	$(0,0,0)$
				(2,-2,0), (2,2,0),(-	
5.13	C2	C2(1)P1(3)	(a,b,a,-b,0,0),(c,1.732c)	1,1,3)	$(0,0,0)$
5.13	C2	C3(1)P1(3)	(a,b,0.866a-0.500b,-0.500a- $0.866 \mathrm{~b}, 0,0),(\mathrm{c}, 1.732 \mathrm{c})$	$(2,2,0),(-2,2,0)$ $(1,1,3)$	$\begin{aligned} & (1 / 12,23 / 12,1 / \\ & 4) \end{aligned}$
				$(2,-2,0),(2,2,0),(-$	
8.32	Cm	C8(1)P1(3)	(a,b,a,b,0,0), (c, 1.732c)	$1,1,3)$	$(0,0,0)$
9.37	Cc	C9(1)P1(3)	(a,b,b,-a, 0, 0), (c, 1.732c)	$\begin{aligned} & (1,1,3) \\ & (-2,-4,0),(2,0,0 \end{aligned}$	(0,3/2,0)
12.58	$\mathrm{C} 2 / \mathrm{m}$	C11(1)P1(2)	$(a, 0, b, 0, a, 0),(-2 c, 0)$	$(0,0,6)$	$(0,0,0)$
12.58	C2/m	C12(1)P1(2)	(0,a,b, $0,0,-\mathrm{a}),(-2 \mathrm{c}, 0)$	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,6) \end{aligned}$	(1/2,0,0)
	Amm		(a,-0.268a,b,-0.268b,b,-	(0,0,6), (0,2,0), (-4,-	
38.187	2	C13(1)P1(1)	$\begin{aligned} & 0.268 \mathrm{~b}),(\mathrm{c},-1.732 \mathrm{c}) \\ & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b}, 3.732 \mathrm{~b},-\mathrm{b},- \end{aligned}$	$\begin{aligned} & 2,0) \\ & (0,0,6),(0,2,0),(-2 \end{aligned}$	(0,0,1/4)
39.195	Abm2	C14(1)P1(1)	3.732 b),(c,-1.732c)	$\begin{aligned} & 2,0) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,0,1/4)
5.13	C2	S1(1)P1(2)	(a,b,c,0,a,-b), (-2d,0)	$(0,0,6)$	$(0,0,0)$
5.13	C2	S2(1)P1(1)	$\begin{aligned} & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.866 \mathrm{~b}-0.500 \mathrm{c},- \\ & 0.500 \mathrm{~b}-0.866 \mathrm{c}),(\mathrm{d},-1.732 \mathrm{~d}) \end{aligned}$	$\begin{aligned} & (0,-2,0),(4,2,0) \\ & (0,0,6) \end{aligned}$	(0,0,1/4)
8.32	Cm	4D2(1)P1(2)	(a,b,c,d,a,b),(-2e,0)	$\begin{aligned} & (-2,-4,0),(2,0,0), \\ & (0,0,6) \end{aligned}$	$(0,0,0)$
				$(2,1,-6),(0,1,0)$,	
12.62	C2'/m'	P1(1)P2(1)	(a,0,0,0,0,0), (b, 0.577b)	$(2,1,0)$	$(0,0,0)$
44.231	Im'm2'	P2(1)P2(1)	(a,-0.268a, $0,0,0,0$), (b, 0.577 b)	$(0,1,0),(0,0,6),(2,1,0)$	(0,0,1/4)
				(2,-2,0), (2,2,0),(-	
12.62	C2'/m'	P3(1)P2(3)	(a,0,a,0,0,0),(-b,0.577b)	$1,1,3)$	$(0,0,0)$
15.89	C2'/c'	P4(1)P2(3)	(a, $0,0, a, 0,0),(-b, 0.577 \mathrm{~b})$	$(1,1,3)$	(0,1/2,0)
			(a,-0.268a,0.268a,a,0,0),(-	(-2,2,0),(0,0,6),	
43.226	Fd'd2'	P5(1)P2(3)	b, 0.577 b)	$(2,2,0)$	(5/6,5/6,5/2)
	Fm'm		(a,-0.268a,a,-0.268a, 0,0),(-	$(2,2,0),(0,0,6),(2,-$	(1/12,-
42.221	2^{\prime}	P6(1)P2(3)	b, 0.577 b)	$\begin{aligned} & 2,0) \\ & (2,1,-6),(0,1,0), \end{aligned}$	1/12,1/4)
8.34	Cm'	C1(1)P2(1)	(a,b, $0,0,0,0),(\mathrm{c}, 0.577 \mathrm{c})$	$(2,1,0)$	$(0,0,0)$
				(2,-2,0), (2,2,0),(-	
5.15	C2'	C2(1)P2(3)	(a,b,a,-b, 0,0), (-c, 0.577c)	1,1,3)	$(0,0,0)$
			(a,b,0.866a-0.500b,-0.500a-	(2,2,0),(-2,2,0),	(1/12,23/12,1/
5.15	C2'	C3(1)P2(3)	0.866b, 0,0$),(-\mathrm{c}, 0.577 \mathrm{c})$	$(1,1,3)$	4)
				(2,-2,0), (2,2,0),(-	
8.34	Cm'	C8(1)P2(3)	(a,b,a,b,0,0),(-c,0.577c)	1,1,3)	(0,0,0)
				(2,2,0),(-2,2,0),	
9.39	Cc^{\prime}	C9(1)P2(3)	(a,b,b,-a, 0,0),(-c,0.577c)	$(1,1,3)$	(0,3/2,0)
				$(-2,-4,0),(2,0,0)$,	
12.62	C2'/m'	C11(1)P2(2)	(a,0,b,0,a,0),(0,-1.155c)	$(0,0,6)$	$(0,0,0)$
				(-2,-4,0), (2,0,0),	
12.62	C2'/m'	C12(1)P2(2)	(0,a,b, 0, $0,-\mathrm{a}),(0,-1.155 \mathrm{c})$	$(0,0,6)$	(1/2,0,0)
	Amm'		(a,-0.268a,b,-0.268b,b,-	(0,0,6),(0,2,0),(-4,-	
38.19	2^{\prime}	C13(1)P2(1)	$0.268 \mathrm{~b})$,(c,0.577c)	2,0)	(0,0,1/4)
	Abm'2		(a,-0.268a,b,3.732b,-b,-	(0,0,6),(0,2,0),(-4,-	
39.198	,	C14(1)P2(1)	$3.732 \mathrm{~b})$,(c,0.577c)	2,0)	(0,0,1/4)
				$(-2,-4,0),(2,0,0)$,	
5.15	C2'	S1(1)P2(2)	(a,b,c, 0, a,-b), (0,-1.155d)	$(0,0,6)$	$(0,0,0)$
			(a,-0.268a,b,c, $0.866 \mathrm{~b}-0.500 \mathrm{c},-$	$(0,-2,0),(4,2,0)$,	
5.15	C2'	S2(1)P2(1)	$0.500 \mathrm{~b}-0.866 \mathrm{c}),(\mathrm{d}, 0.577 \mathrm{~d})$	$(0,0,6)$	(0,0,1/4)
				$(-2,-4,0),(2,0,0)$,	
8.34	Cm'	4D2(1)P2(2)	(a,b,c,d,a,b),(0,-1.155e)	$(0,0,6)$	$(0,0,0)$

2.4	$P 1$	P1(1)C1(1)	(a, $0,0,0,0,0),(\mathrm{b}, \mathrm{c})$	$\begin{aligned} & (1,0,3),(0,1,0),(- \\ & 2,0,0) \end{aligned}$	$(0,0,0)$
8.32	Cm	$\mathrm{P} 2(1) \mathrm{C} 1$ (1)	(a,-0.268a, 0, 0, 0, 0), (b,c)	$\begin{aligned} & (-2,0,0),(0,0,6), \\ & (0,1,0) \end{aligned}$	$(-1 / 12,0,1 / 4)$
1.1	P1	C 1 (1)C1(1)	(a,b, $0,0,0,0),(\mathrm{c}, \mathrm{d})$	$\begin{aligned} & (1,0,3),(0,1,0),(- \\ & 2,0,0) \\ & (1,1,3),(0,2,0),(- \end{aligned}$	$(0,0,0)$
2.4	$P 1$	C4(1)C1(1)	(a, $0, \mathrm{~b}, 0,0,0),(\mathrm{c}, \mathrm{d})$	$\begin{aligned} & 2,0,0) \\ & (1,1,3),(0,2,0),(- \end{aligned}$	$(0,0,0)$
2.4	$P 1$	C5(1)C1(1)	(a, $0,0, b, 0,0),(\mathrm{c}, \mathrm{d})$	$2,0,0)$	$(0,1 / 2,0)$
8.32	Cm	C6(1)C1(1)	$\begin{aligned} & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b},-0.268 \mathrm{~b}, 0,0), \\ & (\mathrm{c}, \mathrm{~d}) \end{aligned}$	$\begin{aligned} & (-2,-2,0),(0,0,6),(- \\ & 2,0,0) \end{aligned}$	$\begin{aligned} & (-1 / 12,- \\ & 1 / 12,1 / 4) \end{aligned}$
			(a,-0.268a, b, 3.732b, 0,0),	$(-2,-2,0),(0,0,6),(-$	(-7/12,-
9.37	Cc	C7(1)C1(1)	(c,d)	$\begin{aligned} & 2,0,0) \\ & (0,0,6),(0,2,0),(- \end{aligned}$	7/12,7/4)
2.4	$P 1$	S3(1)C1(1)	(a, $0, \mathrm{~b}, 0, \mathrm{c}, 0),(\mathrm{d}, \mathrm{e})$	$\begin{aligned} & 2,0,0) \\ & (0,0,6),(0,2,0),(- \end{aligned}$	$(0,0,0)$
2.4	P1	S 4 (1) C 1 (1)	(a, $0,0, b, 0, \mathrm{c}$), (d,e)	$2,0,0)$	$(0,1 / 2,0)$
6.18	Pm	S5(1)C1(1)	$\begin{aligned} & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b},-0.268 \mathrm{~b}, \mathrm{c},- \\ & 0.268 \mathrm{c}),(\mathrm{d}, \mathrm{e}) \end{aligned}$	$\begin{aligned} & (-2,0,0),(0,0,6), \\ & (0,2,0) \end{aligned}$	(0,0,1/4)
7.24	Pc	S6(1)C1(1)	$\begin{aligned} & (\mathrm{a},-0.268 \mathrm{a}, \mathrm{~b}, 3.732 \mathrm{~b}, \mathrm{c}, 3.732 \mathrm{c}), \\ & (\mathrm{d}, \mathrm{e}) \end{aligned}$	$\begin{aligned} & (-2,0,0),(0,0,6), \\ & (0,2,0) \end{aligned}$	(0,0,1/4)
1.1	P1	4D1(1)C1(1)	(a,b,c,d,0,0),(e,f)	$\begin{aligned} & (1,1,3),(0,2,0),(- \\ & 2,0,0) \\ & (0,0,6),(0,2,0),(- \end{aligned}$	$(0,0,0)$
1.1	P1	6D1(1)C1(1)	(a,b,c,d,e,f),(g,h)	$2,0,0)$	$(0,0,0)$

S14.3C

S15. \boldsymbol{U}_{1}
Table S10 Order parameter components and unit cell configurations for subgroups of $P_{3} / m m c$ which can arise from phase transitions in which irrep $U_{1}(1 / 2,0,1 / 3)$ is the active representation.

SGN	Space Group	OPD Name	OPD Vector	Basis Vectors	Origin
58	Pnnm	P1	(a, , , , 0, 0, 0)	(0,0,3),(2,1,0),(0,1,0)	(0,0,0)
59	Pmmn	P2	(0,a, $, 0,0,0,0$)	$(0,0,3),(0,-1,0),(2,1,0)$	(1/2,1/2,0)
164	$P 3$ З́m1	P3	($\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0$)	$(2,0,0),(0,2,0),(0,0,3)$	$(0,0,0)$
187	$P 6 ́ m 2$	P4	(a,-0.577a,a,-0.577a,a,-0.577a)	(0,-2,0), (2,2,0), (0,0,3)	(0,0,1/4)
64	Cmca	P5	($\mathrm{a}, 0,0,0, \mathrm{a}, 0$)	(2,0,0), (2,4,0),(0,0,3)	$(0,0,0)$
63	Cmcm	P6	(0,a, $0,0,0,-\mathrm{a}$)	(2,0,0), (2,4,0), (0,0,3)	$(1 / 2,0,0)$
152	$P 3121$	P7	(a,1.732a,-2a, $0, \mathrm{a},-1.732 \mathrm{a})$	$(2,0,0),(0,2,0),(0,0,3)$	(0,0,1/2)
151	$P 3_{1} 12$	P8	($\mathrm{a}, 0.577 \mathrm{a}, \mathrm{a}, 0.577 \mathrm{a}, 0,-1.155 \mathrm{a}$)	(0,-2,0),(2,2,0),(0,0,3)	(0,0,3/4)
31	Pmn2 ${ }_{1}$	C1	(a,b, , , , 0, 0)	(0,-1,0), (2,1,0), (0,0,3)	(1/2,1/4,0)
156	P3m1	C2	(a,b,a,b,a,b)	(2,0,0),(0,2,0),(0,0,3)	$(0,0,0)$
20	C222 ${ }_{1}$	C3	(a,b,0,0,a,-b)	$(2,0,0),(2,4,0),(0,0,3)$	(1/2,0,0)
14	$P 2{ }_{1} / \mathrm{c}$	C4	($0,0, \mathrm{a}, 0, \mathrm{~b}, 0$)	$(-2,0,0),(0,0,3),(0,2,0)$	$(0,0,0)$
11	$P 2_{1} / m$	C5	(0,0,0,a, $0, \mathrm{~b}$)	(-2,0,0),(0,0,3),(0,2,0)	$(0,1 / 2,0)$
14	$P 2{ }_{1} / \mathrm{c}$	C6	(a, , , , 0, 0, b)	$(-2,0,0),(0,0,3),(2,2,0)$	(0,1/2,0)
12	C2/m	C7	(a, $0, \mathrm{~b}, 0, \mathrm{a}, 0$)	(-2,-4,0),(2,0,0),(0,0,3)	(0,0,0)
12	C2/m	C8	(0,a,b, $0,0,-\mathrm{a}$)	$(-2,-4,0),(2,0,0),(0,0,3)$	$(1 / 2,0,0)$
38	Amm 2	C9	$\begin{aligned} & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b},- \\ & 0.577 \mathrm{~b}, \mathrm{~b},-0.577 \mathrm{~b}) \end{aligned}$	$(0,0,3),(0,2,0),(-4,-2,0)$	(0,0,1/4)

39	Abm 2	C10	(a,-0.577a,b,1.732b,-b, 1.732b)	$(0,0,3),(0,2,0),(-4,-2,0)$	(0,0,1/4)
36	Cmc2 ${ }_{1}$	C11	(a,b, $, 0, \mathrm{a}, \mathrm{b}$)	(2,0,0),(2,4,0),(0,0,3)	(1/2,-1,0)
144	$P 3_{1}$	C12	(a,b,-0.500a0.866b, 0.866a$0.500 \mathrm{~b},-0.500 \mathrm{a}+0.866 \mathrm{~b},-$ $0.866 a-0.500 b$)	$(2,2,0),(-2,0,0),(0,0,3)$	$(0,0,0)$
5	C2	S1	(a,b,c,0,a,-b)	(-2,-4,0), (2,0,0), (0,0,3)	$(0,0,0)$
5	C2	S2	$\begin{aligned} & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.500 \mathrm{~b} 0.866 \mathrm{c},- \\ & 0.866 \mathrm{~b} 0.500 \mathrm{c}) \end{aligned}$	(0,-2,0),(4,2,0),(0,0,3)	(0,0,1/4)
2	$P{ }^{\prime}$	S3	(a, $0, \mathrm{~b}, 0, \mathrm{c}, 0$)	$(0,0,3),(0,2,0),(-2,0,0)$	$(0,0,0)$
2	$P 1$	S4	(a, $0,0, b, 0, c)$	$(0,0,3),(0,2,0),(-2,0,0)$	$(0,1 / 2,0)$
6	Pm	S5	$\begin{aligned} & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b},- \\ & 0.577 \mathrm{~b}, \mathrm{c},-0.577 \mathrm{c}) \end{aligned}$	$(-2,0,0),(0,0,3),(0,2,0)$	$(0,0,1 / 4)$
7	Pc	S6	(a,-0.577a,b,1.732b,c,1.732c)	$(-2,0,0),(0,0,3),(0,2,0)$	$(0,0,1 / 4)$
4	$P 2_{1}$	4D1	(0,0,a,b,c, d)	$(-2,0,0),(0,0,3),(0,2,0)$	$(0,1 / 2,0)$
8	Cm	4D2	(a,b,c,d,a,b)	(-2,-4,0),(2,0,0),(0,0,3)	$(0,0,0)$
1	$P 1$	6D1	(a,b,c,d,e,f)	$(0,0,3),(0,2,0),(-2,0,0)$	$(0,0,0)$

S16. U_{1} and $\mathrm{m} \mathrm{\Gamma}_{4}{ }^{+}$
Table S11 Magnetic subgroups arising from coupling of irreps $m \Gamma_{4}^{+i i}$ and $U_{1}(1 / 2,0,1 / 3)$, with respect to the parent space group $P 6_{3} / \mathrm{mmc}$.

SGN.M	Space group	OPD Name $U_{1}(1 / 2,0,1 / 3)$ $m \Gamma_{4}^{+i \zeta}$	$\begin{aligned} & \text { OPD Vector } U_{1}(1 / 2,0,1 / 3), \\ & m \Gamma_{4}^{+i i} \end{aligned}$	Basis Vectors	Origin
58.398	Pnn'm'	P1(1)P1(1)	(a,0,0,0,0,0),(b)	$\begin{aligned} & (-2,-1,0),(0,0,3), \\ & (0,1,0) \end{aligned}$	$(0,0,0)$
59.409	Pro'm'n	$\mathrm{P} 2(1) \mathrm{P} 1$ (1)	(0,a, $0,0,0,0$),(b)	$(0,0,3),(0,-1,0),(2,1,0)$	(1/2,1/2,0)
164.89	$P 3 m^{\prime} 1$	P3(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0, \mathrm{a}, 0, \mathrm{a}, 0),(\mathrm{b}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{a},-0.577 \mathrm{a}, \mathrm{a},- \end{aligned}$	(0,-2,0), (2,2,0), (0,0,3)	$(0,0,0)$
187.211	P6'm'2	P4(1)P1(1)	0.577a),(b)	(2,2,0),(-2,0,0),(0,0,3)	(0,0,1/4)
64.476	Cm'ca'	P5(1)P1(1)	(a,0,0,0,a,0),(b)	$(2,0,0),(2,4,0),(0,0,3)$	$(0,0,0)$
63.464	$\mathrm{Cm}^{\prime} \mathrm{cm}^{\prime}$	P6(1)P1(1)	(0,a, $0,0,0,-\mathrm{a}$),(b)	$(2,0,0),(2,4,0),(0,0,3)$	$(1 / 2,0,0)$
152.35	P312'1	P7(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 1.732 \mathrm{a},-2 \mathrm{a}, 0, \mathrm{a},-1.732 \mathrm{a}),(\mathrm{b}) \\ & (\mathrm{a}, 0.577 \mathrm{a},-\mathrm{a}, 0.577 \mathrm{a}, 0,- \end{aligned}$	(0,-2,0),(2,2,0),(0,0,3)	(0,0,0)
151.29	P3112	P8(1)P1(1)	1.155a),(b)	$(2,2,0),(-2,0,0),(0,0,3)$	(0,0,1/4)
31.125	$P m^{\prime}{ }^{1}{ }_{1}{ }^{\prime}$	C 1 (1)P1(1)	(a,b,0,0,0,0),(c)	(0,-1,0),(2,1,0),(0,0,3)	(1/2, 1/4,0)
156.51	P3m'1	C2(1)P1(1)	(a,b,a,b,a,b),(c)	(0,-2,0),(2,2,0),(0,0,3)	($0,0,0$)
20.34	C22'21 ${ }^{\prime}$	C3(1)P1(1)	(a,b, $, 0,0,-\mathrm{b}),(\mathrm{c})$	(2,4,0),(-2,0,0),(0,0,3)	(3/2,2,3/4)
14.79	$P 2{ }_{1}{ }^{\prime} c^{\prime}$	C4(1)P1(1)	(0,0,a,0,b,0),(c)	(-2,0,0),(0,0,3),(0,2,0)	$(0,0,0)$
11.54	$P 21^{\prime} / m^{\prime}$	C5(1)P1(1)	(0,0,0,a, $0, \mathrm{~b}$), (c)	$(-2,0,0),(0,0,3),(0,2,0)$	(0,1/2,0)
14.79	$P 2{ }_{1} / c^{\prime}$	C6(1)P1(1)	(a, $0,0,0,0, b$), (c)	$\begin{aligned} & (-2,0,0),(0,0,3),(2,2,0) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,1/2,0)
12.62	$\mathrm{C} 21 / \mathrm{m}^{\prime}$	C7(1)P1(1)	(a,0,b,0,a,0),(c)	$\begin{aligned} & (0,0,3) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,0,0)
12.62	$\mathrm{C} 21 / \mathrm{m}^{\prime}$	C8(1)P1(1)	$\begin{aligned} & (0, a, b, 0,0,-a),(c) \\ & (a,-0.577 \mathrm{a}, \mathrm{~b},-0.577 \mathrm{~b}, \mathrm{~b},- \end{aligned}$	$\begin{aligned} & (0,0,3) \\ & (0,0,3),(0,2,0),(-4,- \end{aligned}$	$(1 / 2,0,0)$
38.191	Am'm'2	C9(1)P1(1)	0.577b),(c)	2,0)	(0,0,1/4)
39.199	Ab'm'2	C10(1)P1(1)	(a,-0.577a,b,1.732b,-b,-	(0,0,3), (0,2,0), (-4,-	(0,0,1/4)

36.174	Cm'c2 ${ }^{\prime}{ }^{\prime}$	C11(1)P1(1)	$\begin{aligned} & 1.732 \mathrm{~b}),(\mathrm{c}) \\ & (\mathrm{a}, \mathrm{~b}, 0,0, \mathrm{a}, \mathrm{~b}),(\mathrm{c}) \end{aligned}$	$\begin{aligned} & 2,0) \\ & (2,0,0),(2,4,0),(0,0,3) \end{aligned}$	(1/2,-1,0)
			(a,b,-0.500a-0.866b, 0.866a$0.500 b,-0.500 a+0.866 b,-$		
144.4	P31	C12(1)P1(1)	$0.866 \mathrm{a}-0.500 \mathrm{~b}$),(c)	$\begin{aligned} & (2,2,0),(-2,0,0),(0,0,3) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	$(0,0,0)$
5.15	C2'	S1(1)P1(1)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0, \mathrm{a},-\mathrm{b}),(\mathrm{d}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.500 \mathrm{~b}- \end{aligned}$	$(0,0,3)$	(0,0,0)
5.13	C2	S2(1)P1(1)	0.866c,-0.866b-0.500c),(d)	(0,-2,0),(4,2,0),(0,0,3)	$(0,0,1 / 4)$
2.4	$P 1$	S3(1)P1(1)	(a,0,b,0,c,0),(d)	$(0,0,3),(0,2,0),(-2,0,0)$	$(0,0,0)$
2.4	$P 1$	S4(1)P1(1)	$\begin{aligned} & (\mathrm{a}, 0,0, \mathrm{~b}, 0, \mathrm{c}),(\mathrm{d}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b},-0.577 \mathrm{~b}, \mathrm{c},- \end{aligned}$	$(0,0,3),(0,2,0),(-2,0,0)$	$(0,1 / 2,0)$
6.2	Pm'	S5(1)P1(1)	$\begin{aligned} & 0.577 \mathrm{c}),(\mathrm{d}) \\ & (\mathrm{a},- \end{aligned}$	(-2,0,0),(0,0,3),(0,2,0)	$(0,0,1 / 4)$
7.26	Pc'	S6(1)P1(1)	0.577a,b,1.732b,c, 1.732c),(d)	(-2,0,0),(0,0,3),(0,2,0)	$(0,0,1 / 4)$
4.9	$P 2{ }_{1}{ }^{\prime}$	4D1(1)P1(1)	(0,0,a,b,c,d),(e)	$\begin{aligned} & (-2,0,0),(0,0,3),(0,2,0) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	$(0,1 / 2,0)$
8.34	Cm'	4D2(1)P1(1)	(a,b,c,d,a,b),(e)	$(0,0,3)$	$(0,0,0)$
1.1	P1	6D1(1)P1(1)	(a,b,c,d,e,f),(g)	$(0,0,3),(0,2,0),(-2,0,0)$	$(0,0,0)$

S17. U_{1} and $\mathrm{m}_{5}{ }^{+}$
Table S12 Magnetic subgroups arising from coupling of irreps $m \Gamma_{5}^{+i \epsilon}$ and $U_{1}(1 / 2,0,1 / 3)$, with respect to the parent space group $P 6_{3} / m m c$.

SGN.M	Space Group	OPD Name $U_{1}(1 / 2,0,1 / 3)$ $m \Gamma_{5}^{+i}$	$\begin{aligned} & \text { OPD Vector } U_{1}(1 / 2,0,1 / 3), \\ & m \Gamma_{5}^{+i i} \end{aligned}$	Basis Vectors	Origin
58.393	Pnnm	P1(1)P1(1)	(a,0,0,0,0,0),(b,-1.732b)	$\begin{aligned} & (-2,-1,0),(0,0,3), \\ & (0,1,0) \end{aligned}$	$(0,0,0)$
59.405	Pmmn	P2(1)P1(1)	(0,a, $0,0,0,0),(b,-1.732 \mathrm{~b})$	(0,1,0), (0,0,3), (2,1,0)	(1/2,0,0)
64.469	Cmea	P5(1)P1(2)	(a,0,0,0,a,0), (-2b,0)	(2,0,0), (2,4,0), (0,0,3)	(0,0,0)
63.457	Cmcm	P6(1)P1(2)	(0,a, $, 0,0,-\mathrm{a}),(-2 b, 0)$	$\begin{aligned} & (2,0,0),(2,4,0),(0,0,3) \\ & (0,-1,0),(2,1,0), \end{aligned}$	$\begin{aligned} & (1 / 2,0,0) \\ & (1 / 2,1 / 4,0 \end{aligned}$
31.123	Pmn 21	C 1 (1)P1(1)	(a,b,0,0,0,0),(c,-1.732c)	$(0,0,3)$)
20.31	C2221	C3(1)P1(2)	(a,b,0,0,a,-b), (-2c,0)	$\begin{aligned} & (2,0,0),(2,4,0),(0,0,3) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(1/2,0,0)
12.58	C2/m	C7(1)P1(2)	($\mathrm{a}, 0, \mathrm{~b}, 0, \mathrm{a}, 0),(-2 \mathrm{c}, 0)$	$\begin{aligned} & (0,0,3) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,0,0)
12.58	C2/m	C8(1)P1(2)	$\begin{aligned} & (0, a, b, 0,0,-a),(-2 c, 0) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b},-0.577 \mathrm{~b}, \mathrm{~b},- \end{aligned}$	$\begin{aligned} & (0,0,3) \\ & (0,0,3),(0,2,0),(-4,- \end{aligned}$	(1/2,0,0)
38.187	Amm2	C 9 (1)P1(1)	$\begin{aligned} & 0.577 \mathrm{~b}),(\mathrm{c},-1.732 \mathrm{c}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b}, 1.732 \mathrm{~b},-\mathrm{b},- \end{aligned}$	$\begin{aligned} & 2,0) \\ & (0,0,3),(0,2,0),(-4,- \end{aligned}$	(0,0,1/4)
39.195	Abm2	C10(1)P1(1)	1.732b),(c,-1.732c)	2,0)	(0,0,1/4)
36.172	Cmc 2_{1}	C11(1)P1(2)	(a,b,0,0,a,b),(-2c,0)	$\begin{aligned} & (2,0,0),(2,4,0),(0,0,3) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(1/2,-1,0)
5.13	C2	S1(1)P1(2)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0, \mathrm{a},-\mathrm{b}),(-2 \mathrm{~d}, 0) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.500 \mathrm{~b}-0.866 \mathrm{c},- \end{aligned}$	$\begin{aligned} & (0,0,3) \\ & (0,-2,0),(4,2,0), \end{aligned}$	(0,0,0)
5.13	C2	S2(1)P1(1)	0.866b-0.500c),(d,-1.732d)	$\begin{aligned} & (0,0,3) \\ & (-2,-4,0),(2,0,0), \end{aligned}$	(0,0,1/4)
8.32	Cm	4D2(1)P1(2)	(a,b,c,d,a,b),(-2e,0)	$(0,0,3)$	(0,0,0)
58.398	Pnn'm'	P1(1)P2(1)	(a, $0,0,0,0,0),(b, 0.577 \mathrm{~b})$	$(0,0,3),(2,1,0),(0,1,0)$	(0,0,0)
				$(0,0,3),(0,-1,0)$,	(1/2,1/2,0
59.41	Pmm'n'	P2(1)P2(1)	(0,a, $0,0,0,0),(\mathrm{b}, 0.577 \mathrm{~b})$	$(2,1,0)$)
64.474	$C m^{\prime} c^{\prime} a$	P5(1)P2(2)	($\mathrm{a}, 0,0,0, \mathrm{a}, 0),(0,-1.155 \mathrm{~b})$	(2,0,0), (2,4,0), (0,0,3)	(0,0,0)
63.462	Cm'c'm	P6(1)P2(2)	(0,a, $0,0,0,-\mathrm{a}),(0,-1.155 b)$	(2,0,0), (2,4,0), (0,0,3)	(1/2,0,0)
31.127	Pm'n'21	$\mathrm{C} 1(1) \mathrm{P} 2(1)$	(a,b,0,0,0,0), (c, 0.577 c)	$(0,-1,0),(2,1,0)$,	(1/2, 1/4,0

20.33	$C 2^{\prime} 2^{\prime} 2_{1}$	C3(1)P2(2)	(a,b, $0,0, a,-b),(0,-1.155 c)$	$(0,0,3)$	$(1 / 2,0,0)$
				(2,0,0), (2,4,0), (0,0,3)	
				(-2,-4, 0), (2,0,0),	
12.62	$\mathrm{C} 21 / \mathrm{m}^{\prime}$	C7(1)P2(2)	(a,0,b,0,a,0),(0,-1.155c)	$(0,0,3)$	$(0,0,0)$
				$(-2,-4,0),(2,0,0)$,	
12.62	$\mathrm{C} 21 / \mathrm{m}^{\prime}$	C8(1)P2(2)	(0,a,b, $0,0,-\mathrm{a}),(0,-1.155 \mathrm{c})$	$(0,0,3)$	$(1 / 2,0,0)$
			(a,-0.577a,b,-0.577b,b,-	(0,0,3), (0,2,0),(-4,-	
38.19	Amm'2'	C 9 (1)P2(1)	0.577b),(c, 0.577 c)	2,0)	(0,0,1/4)
			(a,-0.577a,b,1.732b,-b,-	(0,0,3),(0,2,0),(-4,-	
39.198	Abm'2'	C10(1)P2(1)	1.732b),(c, 0.577 c)	2,0)	(0,0,1/4)
36.176	Cm'c' ${ }_{1}$	C11(1)P2(2)	(a,b,0,0,a,b),(0,-1.155c)	(2,0,0),(2,4,0),(0,0,3)	(1/2,-1,0)
				$(-2,-4,0),(2,0,0)$,	
5.15	C2'	S1(1)P2(2)	$\begin{aligned} & (\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0, \mathrm{a},-\mathrm{b}),(0,-1.155 \mathrm{~d}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b}, \mathrm{c}, 0.500 \mathrm{~b}-0.866 \mathrm{c},- \end{aligned}$	$(0,0,3)$	$(0,0,0)$
				$(0,-2,0),(4,2,0)$,	
5.15	C2'	S2(1)P2(1)	0.866b-0.500c),(d,0.577d)	$(0,0,3)$	(0,0,1/4)
				$(-2,-4,0),(2,0,0)$,	
8.34	Cm'	4D2(1)P2(2)	(a,b,c,d,a,b),(0,-1.155e)	$(0,0,3)$	$(0,0,0)$
14.75	$P 2{ }_{1} / c$	P 1 (1) C 1 (1)	($\mathrm{a}, 0,0,0,0,0$), (b, c)	(0,1,0),(0,0,3),(2,0,0)	$(0,0,0)$
				$(-2,0,0),(0,0,3)$,	
11.5	P21/m	$\mathrm{P} 2(1) \mathrm{C} 1$ (1)	($0, \mathrm{a}, 0,0,0,0$), (b,c)	$(0,1,0)$	(-1/2,0,0)
				$(-2,0,0),(0,0,3)$,	
4.7	P21	C 1 (1)C1(1)	(a,b, $0,0,0,0),(\mathrm{c}, \mathrm{d})$	$(0,1,0)$	(-1/2, 0,0)
				$(-2,0,0),(0,0,3)$,	
14.75	P21/c	C4(1)C1(1)	(0,0,a, $0, \mathrm{~b}, 0),(\mathrm{c}, \mathrm{d})$	$(0,2,0)$	$(0,0,0)$
				$(-2,0,0),(0,0,3)$,	
11.5	P21/m	C5(1)C1(1)	(0,0,0,a, $0, \mathrm{~b}$), (c, d)	$(0,2,0)$	(0,1/2,0)
				$(-2,0,0),(0,0,3)$,	
14.75	P21/c	C6(1)C1(1)	(a, $0,0,0,0, b),(\mathrm{c}, \mathrm{d})$	$(2,2,0)$	(0,1/2,0)
				(0,0,3), (0,2,0),(-	
2.4	P1	S3(1)C1(1)	(a, 0, b, $0, \mathrm{c}, 0),(\mathrm{d}, \mathrm{e})$	2,0,0)	$(0,0,0)$
				(0,0,3),(0,2,0),(-	
2.4	$P 1$	S4(1)C1(1)	$\begin{aligned} & (\mathrm{a}, 0,0, \mathrm{~b}, 0, \mathrm{c}),(\mathrm{d}, \mathrm{e}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b},-0.577 \mathrm{~b}, \mathrm{c},- \end{aligned}$	2,0,0)	(0,1/2,0)
				$(-2,0,0),(0,0,3)$,	
6.18	Pm	S5(1)C1(1)	$\begin{aligned} & 0.577 \mathrm{c}),(\mathrm{d}, \mathrm{e}) \\ & (\mathrm{a},-0.577 \mathrm{a}, \mathrm{~b}, 1.732 \mathrm{~b}, \mathrm{c}, 1.732 \mathrm{c}), \\ & (\mathrm{d}, \mathrm{e}) \end{aligned}$	$(0,2,0)$	(0,0, $1 / 4$)
				$(-2,0,0),(0,0,3)$,	
7.24	Pc	S6(1)C1(1)		$(0,2,0)$	(0,0, $1 / 4$)
				$(-2,0,0),(0,0,3)$,	
4.7	P21	4D1(1)C1(1)	(0,0,a,b,c,d),(e,f)	$(0,2,0)$	(0,1/2,0)
				(0,0,3),(0,2,0),(-	
1.1	P1	6D1(1)C1(1)	(a,b,c,d,e,f),(g,h)	2,0,0)	$(0,0,0)$

[^0]: ${ }^{1}$ Tabulated results are based on the ISODISTORT Version 6.4.0, April 2018, the OPD assignments can be reproduced using the 'legacy copy' of ISODISTORT.

