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ABSTRACT

Graphical models are useful tools in causal inference, and causal directed acyclic graphs (DAGs) are used extensively to determine
the variables for which it is sufficient to control for confounding to estimate causal effects. We discuss the following ten pitfalls and
tips that are easily overlooked when using DAGs: 1) Each node on DAGs corresponds to a random variable and not its realized
values; 2) The presence or absence of arrows in DAGs corresponds to the presence or absence of individual causal effect in the
population; 3) “Non-manipulable” variables and their arrows should be drawn with care; 4) It is preferable to draw DAGs for the
total population, rather than for the exposed or unexposed groups; 5) DAGs are primarily useful to examine the presence of
confounding in distribution in the notion of confounding in expectation; 6) Although DAGs provide qualitative differences of causal
structures, they cannot describe details of how to adjust for confounding; 7) DAGs can be used to illustrate the consequences of
matching and the appropriate handling of matched variables in cohort and case-control studies; 8) When explicitly accounting for
temporal order in DAGs, it is necessary to use separate nodes for each timing; 9) In certain cases, DAGs with signed edges can be
used in drawing conclusions about the direction of bias; and 10) DAGs can be (and should be) used to describe not only
confounding bias but also other forms of bias. We also discuss recent developments of graphical models and their future directions.
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1. BACKGROUND ON THE TOPIC

Causal diagrams have been often used among epidemiologists as
a tool to describe what is already known about relevant causal
structures. In 1999, Greenland et al introduced formal theories
of causal directed acyclic graphs (DAGs) within epidemiology,1

and several comprehensive introductions to DAGs have been
published,2–7 including a review article in Japanese.8 Con-
sequently, the use of DAGs is now widespread among
epidemiologists; when consulting A Dictionary of Epidemiology,
although there was no entry for DAGs in its fourth edition
that was published in 2001,9 a definition of DAGs has been
included in its later editions.10,11

Confounding is one of the primary concerns in epidemiologic
research, and DAGs are used extensively to determine the
variables for which it is sufficient to control for confounding to
estimate causal effects. A confounder was traditionally identified
based on the following three criteria3–5: a) it must be associated
with the exposure; b) it must be associated with the outcome in
the unexposed; and c) it must not lie on a causal pathway between
exposure and outcome. Because these traditional criteria some-
times fail, however, the graphical criteria for identifying
confounders in DAGs are especially useful. This point is often
explained using an example of the so-called M bias.12 In this case,
even if one takes care to not adjust for variables affected by

exposure or outcome in the traditional confounder-selection
criteria, one may be led to adjust for a “collider” on the backdoor
path from exposure to outcome and unnecessarily introduce bias.

Despite its widespread use, however, the lack of clear
understanding of this tool could lead to inappropriate use and
underappreciation of DAGs. The goal of this paper is not to
provide a basic introduction of DAGs; rather, we aim to review
some pitfalls that are easily overlooked when using DAGs and
discuss tips, hoping that DAGs will be further used in
epidemiology as well as in a wide range of other research
disciplines. We also discuss recent developments of graphical
models and their future directions.

2. PITFALLS AND TIPS

Simply speaking, a DAG is composed of nodes (or vertices) and
arrows (or arcs=edges) connecting them such that the graph is
acyclic. The first three pitfalls below address these basic
components, followed by other pitfalls when drawing and
interpreting DAGs.

2-1. Each node on DAGs corresponds to a random
variable and not its realized values
When drawing DAGs, we are primarily concerned about causal
relations among variables. DAGs are a simple way to encode our
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subject-matter knowledge, or our assumptions, about the
qualitative causal structure of interest. Consequently, each node
on DAGs corresponds to a random variable and not its realized
values. Incorrect use of nodes can lead to erroneous construction
of the DAGs. For example, Steiner et al proposed that propensity
score itself is described as a collider with respect to exposure and
confounders, claiming that propensity score analysis removes the
confounding bias by offsetting the relation from confounders to
exposure via association due to conditioning on the collider,
regardless of analytic method (eg, matching, stratification, or
weighting).13 Their approach, however, does not describe causal
structures between random variables; rather, they are concerned
about the realized values of propensity scores based on an
empirical joint distribution of exposure A and confounders C in a
sample. Also, the fact that (true) propensity score is the functional
of the joint probability distribution P(A,C ) does not justify
drawing arrows from A and C to the node representing propensity
score. Arrows in DAGs should represent causal structure between
each random variable but not the dependence forms defined
by probability distributions; a related pitfall is presented in
Section 2-2.

Note that statistical independencies implied by a DAG are only
“in expectation”, and they apply to the expected data distribution
if the causal structure represented by the DAG is correct. Thus,
the associations that may arise as a result of purely random
events, such as those produced by randomization or random
sampling, are not described in DAGs. A related issue is discussed
in Section 2-5.

2-2. The presence or absence of arrows in DAGs
corresponds to the presence or absence of individ-
ual causal effect in the population
We say that P affects Q in a population if and only if there is at
least one individual for whom changing (intervening on) P would
change Q.4 In line with this, an arrow from P to Q is drawn when
we suspect there is a direct causal effect (ie, an effect not
mediated through any other variables in the DAG) for at least one
individual in the population, or when we are unwilling to assume
such individual causal effects do not exist.4,5 Thus, the presence
of an arrow from P to Q does not necessarily imply that these two
variables are statistically dependent; if the quantity of positive

individual causal effect and that of negative individual causal
effect are equivalent, they perfectly cancel out and the net effect
of P on Q becomes null (this situation would be relatively rare
in large samples). If this is the case, P and Q are statistically
independent even if there is an arrow from P to Q. By contrast, if
there are no (direct or indirect) paths from P to Q, it means that
we assume that a sharp null hypothesis of no causal effect of P on
any individual’s Q holds in the population.4,5 Thus, omitting
arrows represents a strong assumption, though some may put
more emphasis on drawing arrows. Recall that the mathematical
theory underlying the graphical rules is known not as “d-connec-
tion” but as “d-separation”.2 To summarize, the presence or
absence of arrows in DAGs corresponds to the presence or
absence of individual causal effect in the population.

This point is sometimes explained using the rules of
compatibility and weak faithfulness (see Figure 1 and Box 1 for
their definitions).3 Under these two rules, we can specify the
relation between d-separation and statistical independence, and it
is consistent with drawing arrows based on the presence or
absence of individual causal effect. When we further assume
faithfulness (see Figure 1 and Box 1 for its definition), we
can also find the statistical dependencies implied by DAGs.3

(Matching leads to unfaithfulness: see Section 2-7 and elsewhere

d-separation independence

Compatibility

independence d-separation

Faithfulness

dependence d-connection

Compatibility

d-connection dependence

Faithfulness

inverse inverse

converse

converse

contraposition

Figure 1. The relation between compatibility and faithfulness. See Section 2-2 and Box 1 for details.

Box 1. Terminology in Section 2-2

• d-separation=d-connection: Two variables (or two sets of
variables) are said to be d-separated if every path between
them is blocked; otherwise they are d-connected.

• Rule of compatibility: Whenever two sets of variables are
d-separated given a third set, the two sets are independent
conditional on the third.

• Assumption of faithfulness: Whenever two sets of variables
are d-connected given a third set, the two sets are associated
conditional on the third. This is the converse property of
compatibility.

• Rule of weak faithfulness: When two sets of variables are
d-connected given a third set, the two sets are expected to be
associated conditional on the third.
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for details.14,15) We may often see apparent violations of
faithfulness in small data sets when that would not be the case
in a larger sample from the same population. However, because
faithfulness is controversial as a routine assumption from
practical as well as theoretical perspectives, Glymour and
Greenland discuss only uses of graphical models that do not rely
on its assumption in Modern Epidemiology,3 whereas Hernán
and Robins assume faithfulness throughout their book Causal
Inference: What If unless mentioned otherwise.5 The importance
of faithfulness becomes clearer for “causal discovery”. The
details about these rules are beyond the scope of this paper, but it
is notable that, under the rule of compatibility and the assumption
of faithfulness (which are collectively referred to as perfect
compatibility),3 the presence or absence of arrows corresponds to
the presence or absence of average causal effect in the target
population, instead of individual causal effect. These may well
illustrate the significance of distinguishing individual causal
effect and average causal effect.

In the Appendix, a further discussion is provided following an
example in Fine Point 6.2 of Causal Inference: What If.5

2-3. “Non-manipulable” variables and their arrows
should be drawn with care
In the counterfactual framework, we think of the effect of a parti-
cular factor as a contrast between the potential outcomes when an
exposure is set to a particular value, while holding all other
components constant (unless they are assumed to mediate the
causal path).16,17 Therefore, if we can clearly address hypothetical
interventions on manipulable variables, it is relatively straightfor-
ward to examine their causal effects. Because a counterfactual
definition of causation requires hypothetical intervention(s), the
question of whether non-manipulable variables can be considered
“causal” has long been controversial.4 For example, Holland
famously argued that “causes are only those things that could, in
principle, be treatments in experiments”, putting forward the
slogan “no causation without manipulation”.18 Although counter-
factuals related to manipulable quantities are of great value,
causation related to non-manipulable quantities can be of scientific
interest and constitute a substantial portion of instances of
causation in biomedical and social sciences.19 For example,
though not easily amenable to experimental interventions, we may
be interested in examining “causal” effects of sex, race, or genetic
ancestry. There have been similar arguments about age-period-
cohort analyses; although this analytic method is used to measure
the effect of time, hypothetical interventions to change “time” are
beyond the realm of possibility, though may be conceivable.20

Accordingly, when drawing DAGs, each researcher should
carefully think about whether it even makes sense to include non-
manipulable variables at all with any arrows into or out of them.
In this regard, it would be helpful to clearly define “hypothetical
interventions” in the counterfactual framework.21 If a “hypo-
thetical intervention” on a non-manipulable variable is well-
defined, the variable may be treated as a “hypothetically
manipulable” variable. For particular research hypotheses of
interest, we may need to represent “hypothetically manipulable”
variables (either as exposures or as covariates) and show arrows
emanating from such variables. In most cases, however,
“hypothetically manipulable” variables will not have any causes
(other than the hypothetical intervention) and therefore will not
have arrows pointing into them.4 Consequently, for example, the
total causal effect of sex can be estimated simply by taking

the observed differences in the outcome of interest between male
and female.19 In other words, once we adopt the presence of
“causal” effect of sex on a particular health outcome, there is no
confounding because sex itself is randomized at conception. As
one of a handful of exceptions, Glymour explained that, if sex
ratios of newborns are thought to vary slightly in response to
environmental conditions,22 it may be useful to include such
stressors as causes of sex.4 To summarize, “non-manipulable”
variables and their arrows should be drawn with care from a
perspective of hypothetical interventions.

On a related issue, even if the exposure of interest is
manipulable and hypothetical interventions on it are conceivable,
there is a serious concern arising from ill-defined causal
questions. If there are multiple versions of treatment, which is
referred to as compound treatments,5,23 estimating causal effects
is challenging in randomized controlled trials (RCTs) as well as in
observational studies. See Hernán and VanderWeele for DAGs
with compound treatments.23

2-4. It is preferable to draw DAGs for the total popula-
tion, rather than for the exposed or unexposed
groups
The target population concept plays a key role in discussions of
causal inference in epidemiology, and it has been well established
that confounding depends on the population chosen as the target
of inference.24–26 The target can be the total population or the
exposed, the unexposed, or conditional on the covariates. When
drawing DAGs, however, it would be preferable to use the total
population as the target population, which enables us to more
readily identify the presence of bias.26,27 This is because, as is
further explained in Section 2-5, DAGs are primarily useful to
examine the presence of confounding in distribution in the notion
of confounding in expectation.26 The exposed and unexposed
groups are, by definition, determined by the specific pattern of
exposure status. Thus, if these groups are used as target popula-
tions, the discussion is logically restricted to the notion of realized
confounding for the two target populations in that particular
pattern. Generally, drawing DAGs for the exposed or unexposed
group should be avoided.27,28

If we intend to use the exposed and unexposed groups as target
populations when drawing DAGs, we may need to draw a square
around the node of exposure to explicitly indicate that we are
conditioning on exposure status. On a related issue, other than
unspecified component causes, when every sufficient cause either
includes both the exposure and a certain covariate (ie, causal co-
action), or includes the exposure alone without the covariate,
confounding does not occur if the target population is the exposed
group. This is because, irrespective of distributions of the
covariate and the unspecified component causes, no outcome
occurs in the actual unexposed group, which is used as a substitute
of what would have occurred in the actual exposed group had they
been unexposed. In this situation, Flanders et al proposed a simple
modification of DAGs to use dotted arrows for all effects that are
absent when exposure is absent.29 Their approach, however, is
also based on DAGs for the total population.

2-5. DAGs are primarily useful to examine the
presence of confounding in distribution in the notion
of confounding in expectation
Despite its significance, the different notions of confounding have
not been fully appreciated in the literature, leading to confusion of
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causal concepts in epidemiology. This lack of clear understanding
could lead to inappropriate use and underappreciation of DAGs,
which provide a simple algorithm for examining the presence of
confounding in distribution in the notion of confounding in
expectation.26 We briefly explain these notions of confounding
below.

First, the notion of confounding can be defined both with
respect to marginal distributions of potential outcomes (ie,
confounding in distribution) and with respect to a specific effect
measure (ie, confounding in measure).30,31 By definition, con-
founding in distribution is scale-independent, whereas confound-
ing in measure is scale-dependent. No confounding in distribution
is a sufficient condition for no confounding in measure. DAGs
are primarily useful to examine the presence of confounding in
distribution because they are completely nonparametric and
provide qualitative assumptions behind a causal analysis.1,26 As
explained in Section 2-4, it is preferable to draw DAGs for total
population as the target population. When the target is the total
population, confounding depends on the notions of confounding
in distribution and confounding in measure,26,30–32 which high-
lights the significance of distinguish these notions.

Second, a further distinction can be drawn between
confounding in expectation and realized confounding.26,30,33 In
an ideal RCT, the randomized groups will be comparable in their
potential outcomes on average over repeated experiments. For
any given experiment, however, the particular randomization may
result in imbalances by chance because of the particular allocation
or exposure assignment.34 Such a scenario would be one in which
there is no confounding in expectation but there is realized
confounding for the particular experiment.26,30 (This phenomenon
has been also referred to as random confounding,35 and is
particularly of concern when the size of the population is small.)
To grasp the profound distinction between these notions of
confounding, we need to understand the mechanism that
generates exposure events not the product of that mechanism.
The lack of clear understanding of this mechanism could lead
to inappropriate use of DAGs to examine the presence of
realized confounding.27,28 DAGs are, however, primarily useful to
examine the presence of confounding in expectation,26 which is a
form of systematic error.36 Therefore, one needs to draw DAGs
based on the understanding of underlying causal structures among
random variables, as mentioned in Section 2-1. This point is
related to the fact that bias (or more strictly speaking, exact bias5)
is defined by comparing the expected value of an estimator and
the true value of the parameter.37,38 If the size of population is
large enough, DAGs are also practical tools to identify realized
confounding.26

To summarize, DAGs are primarily useful to examine the
presence of confounding in distribution in the notion of
confounding in expectation.26 See elsewhere for a detailed
discussion about the notions of confounding.26

2-6. Although DAGs provide qualitative differences
of causal structures, they cannot describe details of
how to adjust for confounding
Analytic adjustment for confounders in observational studies has
consequences quite different from those of physical control in
RCTs. When randomization is implemented in ideal RCTs, there
is no confounding in expectation, and all arrows pointing into
exposure(s) can be erased or removed.26 In observational studies,
however, arrows pointing into exposure(s) cannot be erased, even

though one aims to adjust for confounding by using appropriate
study designs as well as analytic methods. There are inherent
distinctions in the underlying causal structures between
observational studies and RCTs, which can be readily understood
by considering theoretical data frequencies in these studies based
on the counterfactual model.39

Although DAGs can provide qualitative differences of causal
structures between observational studies and RCTs, they cannot
describe details of how to adjust for confounding because DAGs
are not quantitative models. For example, we often use a square
box around a node to indicate that we are conditioning on it
(or stratifying on its values). If we can identify a sufficient set
of covariates to block all the backdoor paths from exposure to
outcome, the statistical relation between exposure and outcome
within strata of the covariates is due only to the effect of
exposure on outcome within the strata. Indeed, blocking the flow
of association between exposure and outcome through the
common cause(s) is the graph-based justification to use
stratification as a method to achieve exchangeability.5 However,
we cannot use DAGs to explain the fact that standardization can
be used to obtain marginal causal effect in the target population;
rather we need to analytically explain that marginal causal effect
becomes equivalent to a weighted average of conditional causal
effects. Thus, DAGs cannot be used to distinguish analytic
methods that aim to obtain conditional causal effects (eg,
stratified analyses and regression models) and those that aim to
obtain marginal causal effects (eg, standardization). Further,
DAGs cannot be used to explain whether specific estimators or
estimation works well. Irrespective of the methods employed to
adjust for confounding, however, DAGs can be used to determine
the variables for which it is sufficient to control for confounding
to estimate causal effects.

2-7. DAGs can be used to illustrate the consequen-
ces of matching and the appropriate handling of
matched variables in cohort and case-control
studies
The goal of matching differs by study design. In cohort studies,
matching is used to prevent confounding by the matched variables,
and then adjustment for these variables may be unnecessary to
remove bias in point estimation. In case-control studies, matching
is used to increase statistical efficiency. Unlike cohort matching,
case-control matching does not and cannot remove confounding,
but instead may induce selection bias that can itself be removed by
adjustment for the matched variables. Although these differences
were clarified long ago, misconceptions about the implications
of matching remain common. DAGs can be used to illustrate
the consequences of matching and the appropriate handling of
matched variables in cohort and case-control studies.14,15 Let A
denote an exposure, Y denote an outcome, and C denote a
confounder and matching variable. The variable S indicates
whether an individual in the source population is selected for the
matched study (1: selected, 0: not selected).

In cohort studies, matching process ensures that the distribu-
tions of matched variables are (nearly) identical across exposure
groups. In a DAG, cohort matching is described by drawing
arrows from C and A to S because selection into the sub-cohort
depends on the values of C and A (Figure 2). The square around
S = 1 indicates that the analysis is conditional on having been
selected. Although the variables C and A are d-connected via two
paths, C→A and C→S ¼ 1←A, these variables are independent
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by design. In other words, the two paths “unfaithfully” cancel each
other exactly. This graphical representation is useful to explain
that, if there are unmatched confounders in matched cohort
studies, ignoring the matching variables may leave bias even when
additional adjustment is made for the unmatched confounders.40

A similar issue occurs for propensity score balancing.41

By contrast, case-control matching ensures that the distributions
of matched variables are (nearly) identical across outcome groups.
In a DAG, case-control matching is described by drawing arrows
from C and Y to S because, by definition, both C and Y affect S
(Figure 3). (Here, we only discuss a situation in which there is an
arrow from A to Y. See elsewhere for a situation without the
arrow.14,15) The variables C and Y are d-connected via three paths,
C→Y, C→A→Y, and C→S ¼ 1←Y. The third path is induced by
the matching and is of equal magnitude but opposite direction to
the net association via the first two paths. Consequently, C and Y
are independent unconditional on A in the matched sample (ie,
unfaithfulness). This implies, however, that the net association
over the two paths C→Y and C→S ¼ 1←Y is not zero: C and Y
are associated conditional on A in the matched sample. Therefore,
the case-control matching does not break the biasing path
A←C→Y, which graphically explains that case-control matching
does not prevent the original confounding. Moreover, conditional
on S = 1, there is a biasing path for the effect of A on Y,
A←C→S ¼ 1←Y, which graphically explains that case-control
matching induces selection bias. Adjustment for C is necessary to
control both the intentional selection bias introduced by matching

and the original confounding. Furthermore, case-control matching
on a non-confounder may lead to selection bias, which is
illustrated in DAGs.3,14,15 For details about DAGs for matching,
see elsewhere.14,15

Finally, it is worth mentioning that, when using a square box
around a node, there are two distinct ways. One is to simply add a
square around a node, which is often used to indicate that all
the strata of the variable are observed (eg, when conditioning is
done analytically). The other is to use a square around a node by
specifying the value on which conditioning was made (as in
Figure 2 and Figure 3). This is also often employed to indicate
that the strata except for the one indicated are missing (eg, when
conditioning is done during selection or attrition, which could
result in selection bias). Because the values on which con-
ditioning was made could yield different associations, it is
important to specify them when drawing DAGs.42

2-8. When explicitly accounting for temporal order in
DAGs, it is necessary to use separate nodes for each
timing
DAGs are, by definition, acyclic, and they should contain no
feedback loops. Therefore, no variable is an ancestor or
descendant of itself. If A causes Y, Y cannot also cause A at the
same time. Though it may induce few problems in settings of a
single-point exposure, we need to carefully draw DAGs for
longitudinal analyses with time varying exposures by using
separate nodes for each timing. If a prior value of Y affects A, and
then A affects a subsequent value of Y, we must use separate
nodes because these are separate variables (eg, Y0 → A1 → Y2).

On a related issue, some researchers draw DAGs without a
rigorous consideration of chronological order, putting more
emphasis on their visibility. Others are more rigorously
concerned about the chronological order, consistently drawing
variables that occur temporarily earlier on the left side of DAGs.5

Furthermore, some may draw DAGs in the order from top to
bottom,43 and others may draw in the order from right to left.
These are merely differences of drawing styles of DAGs, and
there is probably no single correct style. To avoid pitfalls in
drawing DAGs, however, it may be helpful to prioritize clarity
of communication. For example, although M bias is a classic
example to illustrate benefits of using DAGs,12 its form becomes
quite different if chronological orders of variables are rigorously
drawn. It is thus perhaps helpful to use different styles properly
based on the aims of using DAGs.

2-9. In certain cases, DAGs with signed edges can be
used in drawing conclusions about the direction of
bias
Arrows in DAGs represent the presence of causal relations
between the variables, and do not describe their directions or
signs. Consequently, DAGs cannot describe direction of bias.
This point is crucial because when interpreting epidemiologic
findings, it is significant to consider not only the presence of
but also the direction of bias—whether underestimation or
overestimation occurs.

To address this issue within the context of DAGs, signs can
sometimes be added to the edges of DAGs following the rigorous
rules.44–46 Briefly, a positive sign can be added to an edge from A
to Y if a distributional positive monotonic effect of A on Y is met,
which means that intervening on A will increase or leave
unchanged the distribution of Y over the population, regardless of

A Y

CS=1

Figure 2. Cohort matching on a confounder. We let A denote
an exposure, Y denote an outcome, and C denote
a confounder and matching variable. The variable
S indicates whether an individual in the source
population is selected for the matched study
(1: selected, 0: not selected). See Section 2-7 for
details.

A Y

C S=1

Figure 3. Case-control matching on a confounder. We let A
denote an exposure, Y denote an outcome, and C
denote a confounder and matching variable. The
variable S indicates whether an individual in the
source population is selected for the matched study
(1: selected, 0: not selected). See Section 2-7 for
details.
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the value of the parents of Y other than A.45 A negative sign can
be analogously added. If A has neither a distributional positive
monotonic effect nor a distributional negative monotonic effect
on Y, then the edge from A to Y is said to be without a sign. The
sign of a path on a DAG is the product of the signs of the edges
that constitute that path. If one of the edges on a path is without a
sign, then the sign of the path is said to be undefined. Based on
these rules, DAGs with signed edges, or signed DAGs, can be
used to draw conclusions about the direction of the bias of
unmeasured confounding under specific assumptions. Weaker
assumptions can be drawn in certain situations.44

When using signed DAGs, the direction of nodes themselves
should be also clearly indicated; for example, instead of a node
for “sex”, we need to use a node for “male”.

2-10. DAGs can be (and should be) used to describe
not only confounding bias but also other forms of bias
Because DAGs have been used extensively to determine the
variables for which it is sufficient to control for confounding to
estimate causal effects, some may misunderstand that DAGs can
be used only for assessment of confounding bias. To obtain an
accurate estimate of the causal effect of exposure on outcome,
however, we need to deal with other important forms of bias.36 If
DAGs are used only as tools to assess confounding bias, we may
overlook other important bias and fail to properly assess them.

DAGs can be used to illustrate not only confounding bias but
also selection bias and measurement bias.42,46,47 It is fairly well
known that both confounding bias and selection bias imply a lack
of exchangeability between the exposed and unexposed
groups,33,39,42,48 and they may be collectively referred to as
nonexchangeability bias.36 In some cases, confounding bias and
selection bias cannot be clearly distinguished, and the same is true
in DAGs. The blurred border between confounding bias and
selection bias can be illustrated using M bias42; while some prefer
to classify M bias as selection bias because it is induced by
conditioning on a common effect of causes of exposure and
outcome,42 others may prefer to refer to it as confounding bias
based on the position of the entire path in the DAG.3 Even if the
distinction between confounding bias and selection bias cannot
be clearly made, DAGs can enhance communication among
investigators to avoid unnecessary misunderstandings. Thus, even
though analyses may be conditioned on participants in a study
or survival to a certain age, it is preferable to include that
selection process in the DAG, rather than omit it entirely. Unlike
confounding bias and selection bias, measurement bias is
explained by the presence of backdoor path(s) between the
misclassified exposure and the misclassified outcome.36 DAGs
can be used to represent four types of measurement error:
independent nondifferential, dependent nondifferential, independ-
ent differential, and dependent differential errors.46,47

To summarize, DAGs can be used to illustrate these three
main source of bias (ie, confounding bias, selection bias, and
measurement bias); a recent paper refers to these biases as
structural error.36 DAGs can be used at various steps during the
process of conducting research, contributing to understanding of
the overall picture of errors in causal inference. Even in RCTs,
because randomization at baseline does not guarantee exchange-
ability during the post-baseline period (eg, due to differential loss
to follow-up), it is significant to consider the whole process of
obtaining data when drawing DAGs. For details of illustration,
see elsewhere.49,50

3. FUTURE DIRECTIONS

Graphical models are useful tools in causal inference. In this
paper, we have primarily focused on causal DAGs, which provide
one basis of our clearer understanding of causality if
appropriately used. In addition, there are other important causal
models aside from graphical ones. Greenland and Brumback
discussed four major causal model frameworks51; graphical
models, potential outcome (counterfactual) models, sufficient
cause models, and structural equation models. These frameworks
are distinct but closely related, providing complementary
perspectives of causality. For example, DAGs are often criticized
for not allowing for the representation of interactions among
variables. In this regard, VanderWeele and Robins proposed to
incorporate sufficient causes into the DAG framework, in which
an ellipse is put around the sufficient-cause nodes to indicate that
the set is determinative.52,53 Causal DAGs with sufficient
causation structures thus allow for the graphical representation
of interactions on DAGs. Furthermore, by formulating mediation
in the sufficient cause framework,54,55 Suzuki et al showed that
operating mediation and mechanism can be identified from
empirical data, illustrating it in causal DAGs with sufficient
causation structures.56 A similar approach was used to help
distinguish and relate concepts of confounding and of covariate
balance.57 These approaches provide the link between the
graphical models and the sufficient cause models among the four
major causal model frameworks. Further, DAGs represent
nonparametric structural equation models,2,5 and the link between
graphical models and potential outcome models becomes clearer
using advanced types of causal diagrams, as described later.
In these manners, attempts to integrate the four major causal
model frameworks can lead to profound, universal perspectives of
causality.58–62 Further developments of causal theories would
enhance versatility of causal diagrams in applied research.
Meanwhile, the significance of study design itself should not be
overlooked for valid causal inference, and it is important to have a
clear research question before even beginning to draw a DAG.8

Although DAGs are useful tools to make decisions for
confounder selection, one can rarely construct perfectly correct
DAGs because complete knowledge of underlying causal
structures is often unavailable. Uncertainties prevail in bio-
medical and social sciences.63 Accordingly, VanderWeele
proposed a practical approach to confounder selection deci-
sions64: control for each covariate that is a cause of the exposure,
or of the outcome, or of both; exclude from this set any variable
known to be an instrumental variable; and include as a covariate
any proxy for an unmeasured variable that is a common cause of
both the exposure and the outcome. This approach is referred to
as a “modified disjunctive cause criterion”, which would be a
useful guide for confounder selection, once we can properly use
DAGs to avoid the pitfalls.

Finally, conventional causal diagrams do not include the
underlying counterfactual variables on the graphs. In other words,
the link between the graphical models and the potential outcome
models has remained traditionally hidden.5 In this regard,
Richardson and Robins developed single world intervention
graphs (SWIGs),65 which explicitly connect the potential outcome
framework with DAGs. Although DAGs are used to visually
summarize hypothetical relations among observed variables,
SWIGs allow us to show hypothetical relations between
observed=unobserved factual random variables and potential (or
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counterfactual) outcomes. This advanced type of causal diagram
is introduced primarily in a chapter about confounding of Causal
Inference: What If,5 and its further use is expected. Although
SWIGs have been used less in other settings, a recent letter
discussed a practical example demonstrating the utility of SWIGs
for selection bias.66 As another approach to describe hidden
causal structures, Suzuki et al proposed extended DAGs, which
integrate response types and observed variables.39 They show the
conceptual link between unobservable response types and
observed (or observable) data frequencies in the population. This
is crucial because the causal effect of exposure on disease
frequency in a population depends on the distribution of response
types of individuals in that population. As an example of their
usefulness, the principal stratification approach can be illustrated
using extended DAGs to describe such contexts as truncation by
death, mediation, and noncompliance.67 Some other extensions of
DAGs include selection diagrams68 and missingness graphs.69

As addressed in this article, there are many pitfalls to avoid
when using DAGs. Indeed, DAGs are not panacea, and there is
no magic bullet for causal inference. Nevertheless, DAGs have
proven to be a useful tool to clarify our causal thinking. As a
visual aid, causal diagrams provide an incomparable help at
the stages of study design, data collection and analysis, and
interpretation of study findings. Furthermore, their value as a
pedagogical tool cannot be overlooked in the causal inference
literature. It is hoped that the utility of DAGs will be further
advanced as an interdisciplinary tool, and thus contribute to
elaborate scientific understanding of causality.
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APPENDIX

As explained in Section 2-2 of the main text, an arrow from P to
Q in a DAG indicates that P has a causal effect on Q of at least
one individual in the population. In this Appendix, we illustrate
this point following an example in Fine Point 6.2 of Causal
Inference: What If.5 We let A denote a binary exposure (1 =
received heart transplant, 0 = did not receive heart transplant) and
Y denote a binary outcome (1 = deceased, 0 = did not decease)
andM denote a binary covariate (1 = men, 0 = women). A half of
the target population was men, and the other half was women. We
consider a simple RCT, letting p denote a probability of exposure
in the population, irrespective of sex. The assumptions about the
two random variables A and M can be respectively described as:

A � pAðaÞ ¼
p (a ¼ 1)

1 � p (a ¼ 0)

�
(Eq. 1)

and

M � pMðmÞ ¼
1=2 (m ¼ 1)

1=2 (m ¼ 0)

�
(Eq. 2)

Consider a situation in which heart transplant A has a causal
effect to increase the risk of death Y in every woman and has a
causal effect to decrease the risk of death in every man. In other
words, the response type of all the women is “causal” whereas
that of all the men is “preventive”. Because the beneficial and
harmful effects of A perfectly cancel out, the average causal effect
in the target population is null. Despite the absence of average
causal effect from A on Y, however, we need to draw an arrow
from A to Y to make them d-connected because heart transplant A
has a causal effect on the death Y of at least one (actually, all of
the) individuals in the population (Figure 4). Below, we discuss
this point by highlighting the difference between issues of causal
structures and statistical (in)dependencies. Note that M is referred
to as a direct effect modifier of A on Y.70

First, we discuss the relationship between A, M, and Y from the
perspective of causal structures. Recall that a DAG represents a
nonparametric structural equation model, and in Figure 4, we
consider the following structural equations:

A ¼ fAð"AÞ
M ¼ fMð"MÞ
Y ¼ fYðA;M; "YÞ

8><
>: (Eq. 3)

where f (·) is an arbitrary function and ε represents all causes or
random components of the corresponding variable not repre-
sented in the DAG. Note that these random components are
independent of each other. Suppose that the nonparametric
structural equation models in this example are parametrized as:

A ¼ fAð"AÞ
M ¼ fMð"MÞ
Y ¼ fYðA;MÞ ¼ Að1 �MÞ þ ð1 � AÞM

8><
>: (Eq. 4)

Note that we dropped off εY from Equation 4 because we consider
an example in which Y is fully determined by A and M. Then,
among men (ie, M = 1), the structural equation for Y in
Equation 4 becomes

Y ¼ fYðA; 1Þ ¼ 1 � A (Eq. 5)

which shows that the response type of all the men is “preventive”.
By contrast, among women (ie, M = 0), the structural equation
for Y in Equation 4 becomes

Y ¼ fYðA; 0Þ ¼ A (Eq. 6)

which shows that the response type of all the women is “causal”.
Note that Equations 5 and 6 show that Y is causally determined

A Y

M

Figure 4. DAG that properly illustrate the underlying causal
structures, before conditioning on M. We let A
denote a binary exposure (1 = received heart
transplant, 0 = did not receive heart transplant)
and Y denote a binary outcome (1 = deceased,
0 = did not decease) and M denote a binary
covariate (1 = men, 0 = women). DAG, directed
acyclic graph.
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by A conditional on M. This is graphically illustrated as the arrow
from A to Y in the DAG with a box around M (Figure 5). Thus, A
and Y are conditionally d-connected.

Next, we discuss the relationship between A,M, and Y from the
perspective of statistical (in)dependencies. From Equations 1, 2,
and 4, the joint distribution of (A,M,Y ) is described as:

ðA;M; Y Þ � pAMYða; m; yÞ

¼
1=2 � p ða;m; yÞ ¼ ð1; 1; 0Þ; ð1; 0; 1Þ
1=2 � ð1 � pÞ ða;m; yÞ ¼ ð0; 1; 1Þ; ð0; 0; 0Þ
0 otherwise

8<
: (Eq. 7)

By marginalizing over M, the joint distribution of (A,Y ) is given
as:

ðA; Y Þ � pAYða; yÞ ¼
1=2 � p ða; yÞ ¼ ð1; 0Þ; ð1; 1Þ
1=2 � ð1 � pÞ ða; yÞ ¼ ð0; 1Þ; ð0; 0Þ

�

(Eq. 8)

Further, by marginalizing over A, the marginal distribution of Y is
given as:

Y � pYðyÞ ¼
1=2 (y ¼ 1)

1=2 (y ¼ 0)

�
(Eq. 9)

which shows that the probability of death in the total population
is 50% because the numbers of men and women are equal in this
example. From Equations 1, 8, and 9, we obtain

8ða; yÞ; pAYða; yÞ ¼ pAðaÞpYðyÞ (Eq. 10)

which clearly shows that A and Y are statistically independent
when we do not condition on M. When we condition on M, the
conditional distribution of (A,Y)∣M is described as:

ðA; Y ÞjM¼1 � pAYjMða; yjm ¼ 1Þ ¼ pAMYða;m ¼ 1; yÞ
pMðm ¼ 1Þ

¼
p ða; yÞ ¼ ð1; 0Þ
1 � p ða; yÞ ¼ ð0; 1Þ
0 otherwise

8<
:

ðA; Y ÞjM¼0 � pAYjMða; yjm ¼ 0Þ ¼ pAMYða;m ¼ 0; yÞ
pMðm ¼ 0Þ

¼
p ða; yÞ ¼ ð1; 1Þ
1 � p ða; yÞ ¼ ð0; 0Þ
0 otherwise

8<
:

(Eq. 11)

Further, the conditional distributions of A∣M and Y ∣M are
respectively given as:

AjM¼1 � pAjMðajm ¼ 1Þ ¼ p (a ¼ 1)

1 � p (a ¼ 0)

�

AjM¼0 � pAjMðajm ¼ 0Þ ¼ p (a ¼ 1)

1 � p (a ¼ 0)

�
(Eq. 12)

and

YjM¼1 � pYjMðyjm ¼ 1Þ ¼ 1 � p (y ¼ 1)

p (y ¼ 0)

�

YjM¼0 � pYjMðyjm ¼ 0Þ ¼ p (y ¼ 1)

1 � p (y ¼ 0)

�
(Eq. 13)

From Equations 11 to 13, we obtain

pAYjMða ¼ 1; y ¼ 0jm ¼ 1Þ
¼ p ≠ p � p ¼ pAjMða ¼ 1jm ¼ 1Þ � pYjMðy ¼ 0jm ¼ 1Þ

pAYjMða ¼ 1; y ¼ 1jm ¼ 0Þ
¼ p ≠ p � p ¼ pAjMða ¼ 1jm ¼ 0Þ � pYjMðy ¼ 1jm ¼ 0Þ

(Eq. 14)

which shows that A and Y are statistically dependent conditional
on M.

Then, what if one draws an arrow from A to Y based on the
statistical (in)dependencies between them? Because A and Y are
statistically independent without conditioning on M, one would
not draw an arrow from A to Y in the DAG without a box around
M (ie, d-separation of A and Y) as shown in Figure 6. Note that
one (implicitly) employ an assumption of faithfulness here. By
contrast, because A and Y are statistically dependent conditional
on M, one would draw an arrow from A to Y in the DAG with a
box around M (ie, conditional d-connection of A and Y ) as shown
in Figure 5, which is based on the rule of compatibility.
Therefore, if one draws an arrow from A to Y based on the
statistical (in)dependencies, the presence of the arrow depends on
the presence of a “box” around M. In other words, the presence of
the arrow from A to Y becomes “unstable”.

To summarize, although A and Y are statistically independent
without conditioning on M, we need to draw an arrow from
A to Y irrespective of whether we draw a box around M or not.
This is because Y is causally determined by A. Thus, Figure 4 and
Figure 5 properly illustrate the underlying causal structures, but
Figure 6 does not. Under the rule of compatibility, d-connection
is a necessary but not a sufficient condition for statistical
dependence. The above discussion exemplifies that an arrow in

A Y

M

Figure 5. DAG that properly illustrate the underlying causal
structures, after conditioning on M. We let A
denote a binary exposure (1 = received heart
transplant, 0 = did not receive heart transplant)
and Y denote a binary outcome (1 = deceased,
0 = did not decease) and M denote a binary
covariate (1 = men, 0 = women). DAG, directed
acyclic graph.

A Y

M

Figure 6. DAG that does not properly illustrate the under-
lying causal structures. We let A denote a binary
exposure (1 = received heart transplant, 0 = did
not receive heart transplant) and Y denote a binary
outcome (1 = deceased, 0 = did not decease) and
M denote a binary covariate (1 = men, 0 = wom-
en). DAG, directed acyclic graph.
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DAGs represents the presence of individual causal effect in the
target population.
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