
157

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

How to cite this article:

Basavaiah, J., & Patil, C. M. (2020). Human activity detection and action recognition in
videos using convolutional neural networks. Journal of Information and Communication
Technology, 19(2), 157-183.

HUMAN ACTIVITY DETECTION AND ACTION RECOGNITION
IN VIDEOS USING CONVOLUTIONAL NEURAL NETWORKS

Jagadeesh Basavaiah & Chandrashekar Mohan Patil
Department of Electronics and Communication Engineering,

Vidyavardhaka College of Engineering, India

jagadeesh.b, patilcm@vvce.ac.in

ABSTRACT

Human activity recognition from video scenes has become
a significant area of research in the field of computer vision
applications. Action recognition is one of the most challenging
problems in the area of video analysis and it finds applications
in human-computer interaction, anomalous activity detection,
crowd monitoring and patient monitoring. Several approaches
have been presented for human activity recognition using
machine learning techniques. The main aim of this work is to
detect and track human activity, and classify actions for two
publicly available video databases. In this work, a novel approach
of feature extraction from video sequence by combining Scale
Invariant Feature Transform and optical flow computation are
used where shape, gradient and orientation features are also
incorporated for robust feature formulation. Tracking of human
activity in the video is implemented using the Gaussian Mixture
Model. Convolutional Neural Network based classification
approach is used for database training and testing purposes. The
activity recognition performance is evaluated for two public
datasets namely Weizmann dataset and Kungliga Tekniska
Hogskolan dataset with action recognition accuracy of 98.43%
and 94.96%, respectively. Experimental and comparative studies
have shown that the proposed approach outperformed state-of-
the art techniques.

Received: 20/12/2018 Revised: 20/5/2019 Accepted: 26/5/2019 Published: 31/3/2020

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

158

Keywords: Action recognition, convolutional neural network, Gaussian
Mixture Model, optical flow, SIFT feature extraction.

INTRODUCTION

A dramatic growth has been noticed in various technologies in which computer
vision technique is one of the most powerful and widely used techniques
for real-time applications such as traffic monitoring, facial recognition and
surveillance systems. Due to the rapid increase in population, the development
of effective surveillance systems are highly demanded to ensure security
in crowded regions. In the field of computer vision, action recognition and
classification are widely researched areas and utilized in various applications
such as surveillance systems, human-to-computer interactions, video retrieval,
etc. Recognition of various actions is an active research area in the field of
computer vision. Due to increased demand for accurate action recognition, it
has become a more complex task for researchers (Varol, Laptev, & Schmid,
2018).

Several techniques have been introduced for real-time action recognition.
Transferable Belief model is introduced for action recognition in video scenes
(Ramasso, Panagiotakis, Pellerin, & Rombaut, 2007). Conventional techniques
of action recognition are focused on single feature extraction models which
are portioned as global features (Shao, Zhen, Tao, & Li, 2014) and local
features (Laptev, Marszalek, Schmid, & Rozenfeld, 2008). Spatio-temporal
scheme of feature extraction is used for supervised learning scheme (Dollár,
Rabaud, Cottrell, & Belongie, 2019). In this spatio-temporal approach features
are extracted which lead to extraction of 3D oriented gradient (3D HOG),
and 3D scale invariant feature transform and histogram of optical flow are
extracted. Based on global feature extraction model, discriminative features
are used for analysis by combining features along with temporal and spatial
dimensions. Generally, action recognition techniques are categorized into two
models which are known as (a) learning based models and (b) template based
models of action recognition (Ji, Xu, Yang, & Yu, 2013). According to the
learning based techniques, a huge reliable database is required to formulate
the classifier model. Similarly, for template based matching approach, single
template is used to find the similarity between query video and database.
However, a huge amount of work has been carried out for action recognition
but still there is a performance gap due to various issues such as occlusion,
image scaling, cluttering and variations in object appearance, etc. Due to these
issues, conventional feature or template matching algorithm fails to obtain
the desired performance of action recognition. Hence, the development of an
efficient approach becomes a challenging task for researchers.

159

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

During action recognition, action classification plays an important
role. The classification scheme follow pattern learning scheme which can be
categorized into two main categories: stochastic model and statistical model
similar to previous work (Dollár, Rabaud, Cottrell, & Belongie, 2019). Spatio-
temporal techniques are used for action recognition (Wong & Cipolla, 2007)
and conventional techniques discard global information which may lead to
improper results. To overcome these issues, a novel approach is presented
here which includes global information during feature extraction such as
blobs and moving pixels, etc. which help to identify moving objects resulting
in better performance for action recognition. For robust performance in action
recognition, adaptive computation approaches such as Hidden Markov Model
is also used (Moghaddam & Piccardi, 2014). In this process, various techniques
such as Support Vector Machine (Varol, Laptev, & Schmid, 2018; Li, Zhang
& Liao, 2017), AdaBoost (Zhang et al., 2017) and Naïve Bayes (Zhen, Zheng,
Shao, Cao, & Xu, 2017) have been proposed. According to these studies,
human action recognition in videos has also attracted researchers due to its
potential applications. However, these feature extraction techniques depend
on visual pattern analysis.

These visual patterns are known as local features and deep-learned
features (Wang, Qiao, & Tang, 2015). Local features include trajectory
computation (Wang, Kläser, Schmid, & Liu, 2013), cuboids, and space time
interest points (Liu, Chen, & Liu, 2017). These feature computation processes
are decomposed into two main stages, viz. detector and descriptor. A detector
module helps to compute the salient features of an input scene for action
recognition whereas descriptors describe the visual feature pattern of an
input scene. Similarly, for deep learned-features, deep learning computation
approach is used which includes various convolutional networks for
processing such as 3D ConvNets (Ji, Xu, Yang, & Yu, 2013), Deep ConvNets
(Karpathy et al., 2014), Convolutional RBMs (Karpathy et al., 2014), and
Two stream ConvNets (Taylor, Fergus, LeCun, & Bregler, 2010). However,
image classification studies showed that the local features achieved improved
performance when compared with the deep-learned features. Deep learning
models of action recognition require more numbers of input label videos for
the training process; however, available datasets are comparatively small.
Moreover, current approaches of deep learning methods, discard information
related to spatial and temporal domains resulting in degraded performance in
action recognition (Krizhevsky, Sutskever, & Hinton, 2017).

There is a need to develop an efficient approach for action recognition
which can provide better accuracy with low-complexities. A new improvised
cascaded approach is introduced for feature extraction, which uses optical
flow computation combined with SIFT features where spatial and temporal
feature extraction are implemented and later Convolution Neural Network

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

160

(CNN) classification is used for activity classification. The main components
of the work are as follows:

In order to estimate the trajectory, optical flow computation approach is 1.
used which is further refined by using streak line flow.
In the next phase, feature extraction is applied using SIFT features 2.
including shape, orientation and gradient computation techniques which
provide a robust feature vector.
Finally, CNN based machine learning approach is implemented for 3.
activity classification and recognition using learned feature patterns.

RELATED WORK

Various researches have been carried out in this field of action recognition
using pattern learning based computer vision approaches. In this section,
some recent techniques of action recognition are discussed. Human action
recognition is a vast area in the computer vision field which has several
potential surveillance applications in real-time systems. Aggarwal and Ryoo
(2011) conducted an extensive survey which examined all recent studies in
surveillance systems which showed recent advancements in surveillance
systems with the help of human action recognition systems. Various schemes
have been discussed which are based on object trajectory.

Trajectory computation plays an important role for object detection in
video applications. These models are based on the Kanade–Lucas–Tomasi
(KLT) tracker between alternate frames. Due to insufficient feature extraction,
the performance of these systems degrades which may lead to performance
degradation. In order to deal with these issues, image classification techniques
have been considered as promising. In this process, dense point features
are extracted and sampled; tracking of the features is done using optical
flow computation (Wang, Kläser, Schmid, & Liu, 2013). Likewise, particle
trajectory based method is introduced for motion decomposition to recognize
human activity. Moving videos are complex in nature and require a better pre-
processing module with motion compensation, object detection and tracking.
Lagrangian particle trajectories based technique is developed by computing
optical flow computation to deal with moving camera object detection tasks;
in addition moving camera issues could be addressed with the help of low
rank optimization (Wu, Oreifej, & Shah, 2011).

Recently, machine learning and sensing hardware devices are used for
activity recognition algorithm. Hardware devices cause implementation cost
complexity, hence low cost and low power devices have been recommended
for use. In order to present machine learning approach, semi-Markov Random

161

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

Field is used. These activity recognitions require an efficient modeling of
visual features and their correlation. Generally, these features are in the form
of 2D feature models which sometimes suffer due to inefficient modeling and
context between individual features resulting in degraded performance. 3D
feature representation is a significant technique which can provide a better
modeling of individual features (Lee et al., 2011). To achieve this, an approach
is introduced which uses fusion scheme for both 3D depth sensor image and
grayscale image. Further, for better visual feature analysis, depth based filters
are applied which helps to identify and remove false detections. Later, 3D
modeling of spatial and temporal features is extracted for fused image. During
this process, complete information about video is partitioned into various
parts which are later accumulated using a structure level modeling (Burghouts
& Schutte, 2013).

However, human action video sequence may contain various occlusions,
cluttered environments which increase complexity for human action
recognition. During video acquisition, if camera motion is fast then it also
becomes a challenging task for the identification of action. To overcome this,
(Jian, Drew, & Li, 2010) convex match based approach is developed. A highly
non-convex video problem can be converted into smaller linear problems and
later, can be resolved using successive approaches.

In the field of human activity recognition, a huge amount of work has
been carried out. These techniques mainly depend on the feature extraction
process i.e. if robust features are extracted, it can provide a better analysis
of any given input video frame. However, conventional techniques suffer
from complexity and important feature extraction schemes. Some significant
features are also discarded during feature reduction modeling which may lead
to degraded performance.

A new video representation called trajectory-pooled deep-convolutional
descriptor (TDD) (Wang, Qiao, & Tang, 2015) shares the advantages of
both hand-crafted features and deep-learned features. Specifically, deep
architectures are used to learn discriminative convolutional feature maps,
and conduct trajectory-constrained pooling to aggregate these convolutional
features into effective descriptors. To improve the robustness of TDDs, two
normalization methods to transform convolutional feature maps, namely
spatio-temporal normalization and channel normalization are designed. The
advantages of these features come from (i) TDDs which are automatically
learned and contain highly discriminative capacity compared with those
hand-crafted features; (ii) TDDs take account of the intrinsic characteristics
of temporal dimension and introduce the strategies of trajectory-constrained
sampling and pooling for aggregating deep-learned features.

A lightweight action recognition architecture based on deep neural
networks is addressed by just using RGB data (Wang, et al, 2018). The

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

162

architecture comprises CNN, long short-term memory (LSTM) units, and
temporal-wise attention model. First, the CNN is used to extract spatial
features to differentiate objects from the background with both local and
semantic characteristics. Next, two kinds of LSTM networks are accomplished
on the spatial feature maps of different CNN layers (pooling layer and fully-
connected layer) to extract temporal motion features. Then, one temporal-
wise attention model is designed after the LSTM to learn which parts in which
frames are more important. Lastly, a joint optimization module is designed to
explore intrinsic relations between two kinds of LSTM features.

A new deep learning network for action recognition that integrates
quaternion spatial-temporal convolutional neural network (QST-CNN) and
Long Short-Term Memory network (LSTM), called QST-CNN-LSTM (Meng,
Liu, & Wang, 2018). Unlike a traditional CNN, the input for a QST-CNN
utilizes a quaternion expression for an RGB image, and the values of the red,
green, and blue channels are considered simultaneously as a whole in a spatial
convolutional layer, avoiding the loss of spatial features. As the raw images
in video datasets are large and have background redundancy, pre -extraction
of key motion regions is conducted from RGB videos using an improved
codebook algorithm. Furthermore, the QST-CNN is combined with LSTM for
capturing dependencies between different video clips.

The low-level feature-based framework for human activity recognition
includes feature extraction and descriptor computing, early multi-feature
fusion, video representation, and classification. A spatio-temporal bigraph-
based multi-feature fusion algorithm (Yao, Liu, & Huang, 2016) is proposed
to capture useful visual information for recognition. Dense trajectory features
are extracted from the videos and each feature is encoded to three different
descriptors which are Histogram of Oriented Gradients (HOG), Histogram of
Optical Flow (HOF), and Motion Boundary Histogram (MBH). The features
are sampled and clustered into k-visual words. Then, a spatio-temporal biograph
is constructed and an efficient k-way segmentation algorithm is employed to
segment the graph. Visual words with strong spatio-temporal relationships
are fused while visual words with weak spatio-temporal relationships are
segmented and support vector machine (SVM) is used for action recognition.

PROPOSED MODEL

A new approach for human activity recognition from video scenes is proposed
by developing an enhanced technique of feature extraction. Initially, optical
flow computation scheme for video information extraction is applied and
temporal information of input sequence is obtained. In optical flow, sequential
frames are considered for analysis and initial optical flow vectors need to be

163

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

calculated for these frames. This provides significant information about the
flow in the image. Figure 1 shows a block diagram of the proposed model.

Figure 1. Block diagram of the proposed model.

Optical Flow Estimation

Optical flow refers to the pattern of deceptive movements of objects in a
visual scene. In order to model and compute the optical flow, Lucas-Kanade
approach is considered for a given video sequence. Video sequences have
huge information which can be analyzed efficiently via trajectory information
extraction using the optical flow computation approach. The algorithm for
optical flow computation is as shown in Figure 2.

Optical flow methods attempt to calculate the motion between two
image frames which are taken at times and at every voxel position.
These methods are called differential since they are based on local Taylor
series approximations of image signals; that is, they use partial derivatives
with respect to spatial and temporal coordinates.

Video frame corners are also considered for analysis and hence this
process helps to preserve information during trajectory computation and
feature extraction. Here, corner points can be detected and information can be
extracted by optimizing the problem and is given by Equation 1.

where is the displacement across two frames in time, is
the previous frame with some intensity and is the current
frame with shifted intensity.

5

Histogram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF), and Motion Boundary
Histogram (MBH). The features are sampled and clustered into k-visual words. Then, a spatio-
temporal biograph is constructed and an efficient k-way segmentation algorithm is employed to
segment the graph. Visual words with strong spatio-temporal relationships are fused while visual
words with weak spatio-temporal relationships are segmented and support vector machine (SVM) is
used for action recognition.

PROPOSED MODEL

A new approach for human activity recognition from video scenes is proposed by developing an
enhanced technique of feature extraction. Initially, optical flow computation scheme for video
information extraction is applied and temporal information of input sequence is obtained. In optical
flow, sequential frames are considered for analysis and initial optical flow vectors need to be
calculated for these frames. This provides significant information about the flow in the image. Figure
1 shows a block diagram of the proposed model.

 Figure 1. Block diagram of the proposed model.

Optical Flow Estimation

Optical flow refers to the pattern of deceptive movements of objects in a visual scene. In order to
model and compute the optical flow, Lucas-Kanade approach is considered for a given video
sequence. Video sequences have huge information which can be analyzed efficiently via trajectory
information extraction using the optical flow computation approach. The algorithm for optical flow
computation is as shown in Figure 2.

Input
Video

Sequences

Feature
Extraction

SIFT
Feature

Extraction

Optical
Flow

Model

Human action
recognition

CNN based
training and

testing
model

Recognized
actions

Tracking
using

Gaussian
Mixture
Model

(GMM)

(1)

8

Figure 2. Flowchart of optical flow computation algorithm

Optical flow methods attempt to calculate the motion between two image frames which are taken at

times and at every voxel position. These methods are called differential since they are based

on local Taylor series approximations of image signals; that is, they use partial derivatives with respect

to spatial and temporal coordinates.

Video frame corners are also considered for analysis and hence this process helps to preserve

information during trajectory computation and feature extraction. Here, corner points can be detected

and information can be extracted by optimizing the problem and is given by Equation 1.

Start

Input frames

Detection of corner points

Construct optical flow vector

Construct feature description vector

Calculate average vector flow with
angular grouping

Compute velocity in the vector flow
direction

Stop

Compute final optical flow vector

8

Figure 2. Flowchart of optical flow computation algorithm

Optical flow methods attempt to calculate the motion between two image frames which are taken at

times and at every voxel position. These methods are called differential since they are based

on local Taylor series approximations of image signals; that is, they use partial derivatives with respect

to spatial and temporal coordinates.

Video frame corners are also considered for analysis and hence this process helps to preserve

information during trajectory computation and feature extraction. Here, corner points can be detected

and information can be extracted by optimizing the problem and is given by Equation 1.

Start

Input frames

Detection of corner points

Construct optical flow vector

Construct feature description vector

Calculate average vector flow with
angular grouping

Compute velocity in the vector flow
direction

Stop

Compute final optical flow vector

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

164

Figure 2. Flowchart of optical flow computation algorithm.

Appropriate parameter selection of and are used to obtain a
better optical vector which contains sufficient temporal information. Here,
video aperture problem remains unaddressed which may lead to inappropriate
temporal information extraction resulting in degraded feature extraction for

6

 Figure 2. Flowchart of optical flow computation algorithm.

Optical flow methods attempt to calculate the motion between two image frames which are

taken at times and at every voxel position. These methods are called differential since they
are based on local Taylor series approximations of image signals; that is, they use partial derivatives
with respect to spatial and temporal coordinates.

Video frame corners are also considered for analysis and hence this process helps to preserve
information during trajectory computation and feature extraction. Here, corner points can be detected
and information can be extracted by optimizing the problem and is given by Equation 1.

Start

Input frames

Detection of corner points

Construct optical flow vector

Construct feature description vector

Calculate average vector flow with
angular grouping

Compute velocity in the vector flow
direction

Stop

Compute final optical flow vector

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

165

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

video analysis. In order to deal with this issue, neighboring points of current
pixel locations are also considered for computation process and this function
is given by Equation 2

Summation of these vectors in direction can provide a solution
for aperture problems. With the help of a window , centered at point
 the neighboring points are calculated and estimated. In this work,
optical flow vector computation process is used for each frame and these flow
vectors are combined to formulate the feature vector which contains trajectory
information. Optical flow vector set can be constructed and is given by the
Equation 3,

where denotes set of optical flow vector and denotes
descriptor vector. These vectors are helpful for identifying the relationship
between optical flow feature vector and sequential frame. With the help of
these relationships, temporal information of video can be extracted. This is a
generic process which can be adapted easily for various other operations. This
technique is widely used for optical flow representation of video sequences. In
optical flow computation, histogram based optical flow computation process
shows significant results by splitting the histograms. These histograms are
used to formulate the feature vector. However, conventional methods of optical
flow computation have impact on video analysis; however, performance can
still be improved through refining the feature vectors by preserving the edge
information.

Video scenes contain huge amounts of temporal information which
may face dimensionality issues. hence a new model for optical flow feature
representation is presented by considering feature magnitudes. To deal with
this issue, average frame velocity concept is developed to interpret information
of input video sequence. Conventional approach in histogram computation
considers similarity as its segments, whereas it needs to be computed in the
form of mean of histograms. According to the proposed approach, optical flow
vectors for each frame are considered and computed at the first step. This can
be obtained by using Equation 3 where generic representation of optical flow
is achieved. In order to construct the feature representation model, a descriptor
vector is used and is given by Equation 4

(2)

(3)

(4)

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed
9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed
9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

9

(,) = (,) (+ , +) (1)

where (,) is the displacement across two frames in time, (,) is the previous frame with some

intensity and (+ , +) is the current frame with shifted intensity.

Appropriate parameter selection of and are used to obtain a better optical vector which contains

sufficient temporal information. Here, video aperture problem remains unaddressed which may lead to

inappropriate temporal information extraction resulting in degraded feature extraction for video

analysis. In order to deal with this issue, neighboring points of current pixel locations are also

considered for computation process and this function is given by

(,) = [(,) (+ , +)] (2)

Summation of these vectors in direction can provide a solution for aperture problems. With the

help of a window , centered at point (,) the neighboring points are calculated and estimated. In this

work, optical flow vector computation process is used for each frame and these flow vectors are

combined to formulate the feature vector which contains trajectory information. Optical flow vector set

can be constructed and is given by the equation,

= [(),] (3)

where () denotes set of optical flow vector and denotes descriptor vector. These vectors are helpful

for identifying the relationship between optical flow feature vector and sequential frame. With the help

of these relationships, temporal information of video can be extracted. This is a generic process which

can be adapted easily for various other operations. This technique is widely used for optical flow

representation of video sequences. In optical flow computation, histogram based optical flow

computation process shows significant results by splitting the histograms. These histograms are used to

formulate the feature vector. However, conventional methods of optical flow computation have impact

on video analysis; however, performance can still be improved through refining the feature vectors by

preserving the edge information.

Video scenes contain huge amounts of temporal information which may face dimensionality issues.

hence a new model for optical flow feature representation is presented by considering feature

magnitudes. To deal with this issue, average frame velocity concept is developed to interpret

information of input video sequence. Conventional approach in histogram computation considers

similarity as its segments, whereas it needs to be computed in the form of mean of histograms.

According to the proposed approach, optical flow vectors for each frame are considered and computed

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

166

where denotes total number of optical flow vector in current video frame
 denotes set of optical flow vector which has the angle between
 and in current frame. If the input video sequence is denoted by where
total number of frames is given by , total angle intervals are denoted by
 and length of video is in the terms of seconds, then the average vector
flow with the angular grouping can be given by Equation 5.

where denotes a vector of optical flow which contains a magnitude and
angle The above given expression is used to denote the optical flow vector.
However, this representation lacks in terms of velocity which is improved by
including a velocity computation vector. Velocity is a main component which
affects the analysis of various activities such as walking, running standing, etc.
In order to deal with this, average weight frame velocity computation model
is presented. In this model, the velocity of each video segment is computed in
the given vector flow direction and is expressed by Equation 6.

where is the velocity of each video segment computed in the given vector
flow direction. The average frame velocity is also considered as a component
of feature representation, with the help of this analysis, a final optical flow
vector can be represented which is given by Equation 7.

where is the final optical flow vector, is the velocity in vector flow
direction, vector of optical flow consisting of magnitude and direction.

Feature Extraction

Feature extraction refers to the process of extracting informative characteristics
called features from a video frame. There is a variety of feature extraction
techniques such as Histogram of Oriented Gradients (HOG), Speeded-Up
Robust Features (SURF), Local Binary Patterns (LBP), Haar Wavelets,
Color histograms, Scale Invariant Feature Transform (SIFT) and Space-Time
Interest Points (STIP). The SIFT technique of feature extraction is one of the
classic techniques and is more accurate than other feature descriptors which
are rotation and scale invariant. SIFT features are local and has an ability to
find distinctive keypoints that are invariant to location, scale and rotation, and
robust to affine transformations. In addition to these properties, they are highly
distinctive, relatively easy to extract and allow for correct object identification
with low probability of mismatch.

(5)

(6)

(7)

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.
10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

10

at the first step. This can be obtained by using equation (3) where generic representation of optical flow

is achieved. In order to construct the feature representation model, a descriptor vector is used and is

given by,

(, ,) = { (,) | < } (4)

where () denotes total number of optical flow vector in current video frame , , , denotes

set of optical flow vector which has the angle between and in current frame. If the input video

sequence is denoted by where total number of frames is given by , total angle intervals are denoted

by and length of video is in the terms of seconds, then the average vector flow with the angular

grouping can be given by Equation 5.

= (,)

, ,

, (,)

, ,

… , (,)

, ,

(5)

where () denotes a vector of optical flow which contains a magnitude and angle . The above

given expression is used to denote the optical flow vector. However, this representation lacks in terms

of velocity which is improved by including a velocity computation vector. Velocity is a main component

which affects the analysis of various activities such as walking, running standing, etc. In order to deal

with this, average weight frame velocity computation model is presented. In this model, the velocity of

each video segment is computed in the given vector flow direction and is expressed by Equation 6.

(,) =
(,)(, ,) . | (, ,)|

| (, ,)|
(6)

where (,) is the velocity of each video segment computed in the given vector flow direction.

The average frame velocity is also considered as a component of feature representation, with the help

of this analysis, a final optical flow vector can be represented which is given by Equation 7.

= (,) ()(, ,) , (,), (), , , … , (,) (7)

where is the final optical flow vector, (,) is the velocity in vector flow direction, ()

vector of optical flow consisting of magnitude and direction.

167

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

where denotes total number of optical flow vector in current video frame
 denotes set of optical flow vector which has the angle between
 and in current frame. If the input video sequence is denoted by where
total number of frames is given by , total angle intervals are denoted by
 and length of video is in the terms of seconds, then the average vector
flow with the angular grouping can be given by Equation 5.

where denotes a vector of optical flow which contains a magnitude and
angle The above given expression is used to denote the optical flow vector.
However, this representation lacks in terms of velocity which is improved by
including a velocity computation vector. Velocity is a main component which
affects the analysis of various activities such as walking, running standing, etc.
In order to deal with this, average weight frame velocity computation model
is presented. In this model, the velocity of each video segment is computed in
the given vector flow direction and is expressed by Equation 6.

where is the velocity of each video segment computed in the given vector
flow direction. The average frame velocity is also considered as a component
of feature representation, with the help of this analysis, a final optical flow
vector can be represented which is given by Equation 7.

where is the final optical flow vector, is the velocity in vector flow
direction, vector of optical flow consisting of magnitude and direction.

Feature Extraction

Feature extraction refers to the process of extracting informative characteristics
called features from a video frame. There is a variety of feature extraction
techniques such as Histogram of Oriented Gradients (HOG), Speeded-Up
Robust Features (SURF), Local Binary Patterns (LBP), Haar Wavelets,
Color histograms, Scale Invariant Feature Transform (SIFT) and Space-Time
Interest Points (STIP). The SIFT technique of feature extraction is one of the
classic techniques and is more accurate than other feature descriptors which
are rotation and scale invariant. SIFT features are local and has an ability to
find distinctive keypoints that are invariant to location, scale and rotation, and
robust to affine transformations. In addition to these properties, they are highly
distinctive, relatively easy to extract and allow for correct object identification
with low probability of mismatch.

SIFT Feature Extraction

SIFT feature extraction approach obtains scale-invariant features with the
help of a staged filtering technique. In this process, key locations are identified
by computing the maxima and minima of a Difference-of-Gaussian (DoG)
function. Each point helps to generate the feature vector which can describe
the complete local region of image. This feature information contains local
variations, image projections and image gradients and the resulting set of
features is called SIFT keys. In this process, image is transformed into pyramid
which can be used for feature extraction using re-sampling at each level of
input image. The flowchart of the SIFT algorithm is as shown in Figure 3.

Figure 3. Flowchart of SIFT algorithm.

Shape Feature Extraction

A brief description of shape feature extraction is presented here which is
carried out by using the following stage computations: edge map computation,
orientation estimation and curvature computation.

9

describe the complete local region of image. This feature information contains local variations, image
projections and image gradients and the resulting set of features is called SIFT keys. In this process,
image is transformed into pyramid which can be used for feature extraction using re-sampling at each
level of input image. The flowchart of the SIFT algorithm is as shown in Figure 3.

 Figure 3. Flowchart of SIFT algorithm.

Shape Feature Extraction

A brief description of shape feature extraction is presented here which is carried out by using the
following stage computations: edge map computation, orientation estimation and curvature
computation.

Edge Map Computation

First stage of this process is to compute the edges of any given input image. A robust Canny edge

Start

Input frames

Construct DoG pyramid

Detect extrema across scales and octaves

Compute stable keypoints

Assign orientation to keypoints

Compute descriptor for each keypoint

Stop

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

168

Edge Map Computation

First stage of this process is to compute the edges of any given input image.
A robust Canny edge detector is used which provides the edge map of each
image by traversing through each pixel of the input image.

Orientation Estimation

Once the edge map of the input image is computed, orientation computation
for image map gradient estimation is carried out which can be calculated as
given by Equation 8.

where denotes the range of orientation computation given as
 and denotes the position of pixel for which orientation and
gradients are computed.

Curvature Computation

Curvature of any edge map is given by the Equation 9

 (9)

where is the curvature of edge map, is the minimum
orientation, is the maximum orientation and

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation,
translation and scale. Main stages of this technique are: Scale space extrema
detection, Keypoint localization, Orientation assignment, and Keypoint
descriptor.

Scale space Extrema Detection

This is the first stage of SIFT feature extraction implementation where
keypoints are extracted which are invariant to change of scale. In order to
extract the stable features, Gaussian function is applied. Let be a
scale-space function of an image, obtained by applying convolution on image
 convolution with a Gaussian function For keypoint location
estimation, Difference-of-Gaussian function is used which is denoted by

12

Figure 3. Flowchart of SIFT algorithm

Shape feature extraction

A brief description of shape feature extraction is presented here which is carried out by using the

following stage computations: edge map computation, orientation estimation and curvature

computation.

Edge map computation

First stage of this process is to compute the edges of any given input image. A robust Canny edge

detector is used which provides the edge map of each image by traversing through each pixel of the

input image.

Orientation estimation

Once the edge map of the input image is computed, orientation computation for image map gradient

estimation is carried out which can be calculated as given by Equation 8.

(,) = 2 (,), (,) (8)

where (,) denotes the range of orientation computation given as (,] and (,) denotes the

position of pixel for which orientation and gradients are computed.

Curvature computation

Curvature of any edge map is given by the Equation (9)

(,) = ((,), (,) (9)

(8)

12

Figure 3. Flowchart of SIFT algorithm

Shape feature extraction

A brief description of shape feature extraction is presented here which is carried out by using the

following stage computations: edge map computation, orientation estimation and curvature

computation.

Edge map computation

First stage of this process is to compute the edges of any given input image. A robust Canny edge

detector is used which provides the edge map of each image by traversing through each pixel of the

input image.

Orientation estimation

Once the edge map of the input image is computed, orientation computation for image map gradient

estimation is carried out which can be calculated as given by Equation 8.

(,) = 2 (,), (,) (8)

where (,) denotes the range of orientation computation given as (,] and (,) denotes the

position of pixel for which orientation and gradients are computed.

Curvature computation

Curvature of any edge map is given by the Equation (9)

(,) = ((,), (,) (9)

12

Figure 3. Flowchart of SIFT algorithm

Shape feature extraction

A brief description of shape feature extraction is presented here which is carried out by using the

following stage computations: edge map computation, orientation estimation and curvature

computation.

Edge map computation

First stage of this process is to compute the edges of any given input image. A robust Canny edge

detector is used which provides the edge map of each image by traversing through each pixel of the

input image.

Orientation estimation

Once the edge map of the input image is computed, orientation computation for image map gradient

estimation is carried out which can be calculated as given by Equation 8.

(,) = 2 (,), (,) (8)

where (,) denotes the range of orientation computation given as (,] and (,) denotes the

position of pixel for which orientation and gradients are computed.

Curvature computation

Curvature of any edge map is given by the Equation (9)

(,) = ((,), (,) (9)

12

Figure 3. Flowchart of SIFT algorithm

Shape feature extraction

A brief description of shape feature extraction is presented here which is carried out by using the

following stage computations: edge map computation, orientation estimation and curvature

computation.

Edge map computation

First stage of this process is to compute the edges of any given input image. A robust Canny edge

detector is used which provides the edge map of each image by traversing through each pixel of the

input image.

Orientation estimation

Once the edge map of the input image is computed, orientation computation for image map gradient

estimation is carried out which can be calculated as given by Equation 8.

(,) = 2 (,), (,) (8)

where (,) denotes the range of orientation computation given as (,] and (,) denotes the

position of pixel for which orientation and gradients are computed.

Curvature computation

Curvature of any edge map is given by the Equation (9)

(,) = ((,), (,) (9)

12

Figure 3. Flowchart of SIFT algorithm

Shape feature extraction

A brief description of shape feature extraction is presented here which is carried out by using the

following stage computations: edge map computation, orientation estimation and curvature

computation.

Edge map computation

First stage of this process is to compute the edges of any given input image. A robust Canny edge

detector is used which provides the edge map of each image by traversing through each pixel of the

input image.

Orientation estimation

Once the edge map of the input image is computed, orientation computation for image map gradient

estimation is carried out which can be calculated as given by Equation 8.

(,) = 2 (,), (,) (8)

where (,) denotes the range of orientation computation given as (,] and (,) denotes the

position of pixel for which orientation and gradients are computed.

Curvature computation

Curvature of any edge map is given by the Equation (9)

(,) = ((,), (,) (9)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

 is the difference between the minimum and maximum orientation.

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

169

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

 Extrema is computed by taking the difference of nearby scales given
by Equation 10.

where is a constant factor.
This image is processed in octave manner where in each octave convolution
is applied resulting in scale space images. Similarly, DoG is produced by
subtracting the adjacent Gaussian images. After applying octave process,
images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which
helps to obtain the position of keypoints. Furthermore, keypoints which are
prone to noise, and contains lower contrast results in performance degradation
will be eliminated.

Orientation Assignment

Orientation assignment is used to obtain invariance image rotation relative to
keypoint descriptors. Since image samples are Gaussian smoothed, keypoints
are selected; orientation, magnitude and gradients are computed as given
by Equation 11.

Consider two images are denoted by and respectively. The keypoints
detection of these two images uses a saliency based scheme to represent the
matching of keypoints. The detected keypoint of image is denoted as and
for the image, respectively. In order to find the match between key points
of the first image and the second image keypoint, the nearest neighbor
of and the Euclidean distance based criteria are used which is given by
Equation 12.

(12)

where denotes the threshold for detection and denotes the second nearest
neighbor distance to

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

(10)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)

13

where (,) is the curvature of edge map, (,) is the minimum orientation, (,) is the

maximum orientation and (,) (,)) is the difference between the minimum and

maximum orientation.

Overview of SIFT algorithm

Keypoints can be extracted since features are invariant to the image rotation, translation and scale. Main

stages of this technique are: Scale space extrema detection, Keypoint localization, Orientation

assignment, and Keypoint descriptor.

Scale space extrema detection

This is the first stage of SIFT feature extraction implementation where keypoints are extracted which

are invariant to change of scale. In order to extract the stable features, Gaussian function is applied. Let

(, ,) be a scale-space function of an image, obtained by applying convolution on image (,)

convolution with a Gaussian function (, ,). For keypoint location estimation, Difference-of-

Gaussian function is used which is denoted by (, ,). Extrema is computed by taking the difference

of nearby scales given by Equation 10.

(, ,) = (, ,) (,) (, ,) (,)

= (, ,) (, ,)

(10)

where is a constant factor.

This image is processed in octave manner where in each octave convolution is applied resulting in scale

space images. Similarly, DoG is produced by subtracting the adjacent Gaussian images. After applying

octave process, images are down sampled by factor of 2.

Keypoint Localization

Interpolation approach is conducted on detected candidate keypoints which helps to obtain the position

of keypoints. Furthermore, keypoints which are prone to noise, and contains lower contrast results in

performance degradation will be eliminated.

Orientation assignment

Orientation assignment is used to obtain invariance image rotation relative to keypoint descriptors.

Since image samples are Gaussian smoothed, keypoints are selected; orientation, magnitude and

gradients are computed as given by Equation 11.

(,) = (+ 1,) (1,) + (, + 1) (, 1) (11)(11)

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

170

Motion Descriptor Matching

In this work, along with action detection, human tracking is also performed
using Gaussian Mixture Model technique. The Gaussian Mixture Modeling
technique is used for motion modeling and its variations during tracking is
used to compute motion descriptors. Initially, video stream is converted into
multiple frames and optical flow computation is applied on the extracted
frames. The extracted optical flow is partitioned into two scalar fields: and
 where and denote the direction of optical flow. Further, these vectors
are divided into four non-negative channels corresponding to each direction as
 and After obtaining these channels, Gaussian
kernel scheme is applied and this provides the complete information of
all the four channels. For further matching of the motion descriptor, these
channels are also considered where each channel is divided into various
patches such as and and these patches are concatenated
for vector formulation. Similarly, patches are divided for direction as
 and For robust distance matching between patches of
each video clip, the mean of each patch direction is computed as
 and
 Hence, the similarity between and direction can be
computed using Equation 13.

(13)

where denotes the positive constant which is used to make distance as
a non-negative value and is a small constant. This distance measure is
used for identifying the most similar video clip which is further processed for
feature computation and convolutional neural network classifier.

CNN Classification Model

Convolutional Neural Networks (CNN) is considered as a special type of
neural network which is based on the feedforward neural network processing.
According to the process of CNN (Farhadi & Tabrizi, 2008), prior knowledge
of data attributes is incorporated into the CNN architecture. Video clips are
considered as input signals where action recognition and classification are
performed because of the robust nature of CNN for pause variations for 2D
shape recognition. CNN models utilize spatial subsampling which helps to
ensure scale shift, data deformation and combines local features with neural
network weights. In this process, CNN models can extract local simple visual
features such as end-points and corner edges. In the next phase, these features
are passed to the succeeding layer to identify the more complex features.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

14

(,) = (+ 1,) (1,) + (, + 1) (, 1)

Consider two images are denoted by and respectively. The keypoints detection of these two images

uses a saliency based scheme to represent the matching of keypoints. The detected keypoint of image

is denoted as and for the image, respectively. In order to find the match between key points

of the first image and the second image keypoint, , the nearest neighbor of and the Euclidean

distance based criteria are used which is given by Equation 12.

,

,
< (12)

where denotes the threshold for detection and denotes the second nearest neighbor distance to .

Motion descriptor matching

In this work, along with action detection, human tracking is also performed using Gaussian Mixture

Model technique. The Gaussian Mixture Modeling technique is used for motion modeling and its

variations during tracking is used to compute motion descriptors. Initially, video stream is converted

into multiple frames and optical flow computation is applied on the extracted frames. The extracted

optical flow is partitioned into two scalar fields: and where and denote the direction of

optical flow. Further, these vectors are divided into four non-negative channels corresponding to each

direction as = and = . After obtaining these channels, Gaussian kernel scheme

is applied and this provides the complete information of all the four channels. For further matching of

the motion descriptor, these channels are also considered where each channel is divided into various

patches such as , , and and these patches are concatenated for vector formulation.

Similarly, patches are divided for direction as , , and . For robust distance matching

between patches of each video clip, the mean of each patch direction is computed as =

[, , … ,] and = , , … , . Hence, the

similarity between and direction can be computed using Equation 13.

(,) =
+

(+)(+
(13)

where denotes the positive constant which is used to make distance as a non-negative value and is

a small constant. This distance measure is used for identifying the most similar video clip which is

further processed for feature computation and convolutional neural network classifier.

171

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

 Generally, convolutional neural networks contain set of the layer which
contains various layers along with one or more planes for computation which
is connected to the local neighborhood of the previous layer. These units
are also considered as local feature detector whose activation functions are
determined at the learning phase resulting in feature map formulation. These
feature maps can be obtained by using input image scanning through a single
weight unit by forming a local field with a combination of previous features
and stores in the output. This process of feature generation is similar to data
convolution with kernel. Later, this feature map generation can be considered
as a plane which shares the weight of each unit. In the next phase of CNN,
data subsampling is performed that follows local and convolutional feature
maps for generating feature distortions; it reduces the spatial resolution of the
data and increases its complexity. This spatial resolution reduction and data
complexity increment are detected in each successive layer. CNN contains 6
layers where layer 1 performs convolution on the pre-processed data. This
formulates a convolution mask where weights of each input data are shared on
the same feature map.

For data scanning, the window selection is chosen as 20x20 pixels for
each incoming data of mask size 5x5 and the feature map size is considered as
16x16. The next layer is denoted by S2 which is also known as averaging or
sub-sampling layer where 4 planes are formulated, each plane is of size 16x16
pixels. Here each unit receives the feature set as input from the corresponding
layer C1. Receptive fields do not overlap the weights in single unit. Hence,
local averaging is performed and a subsampling of 2 to 1. After performing
the feature extraction process, spatial and substantial feature relationships are
obtained during the next phase of CNN which shows that layers S1 and C2
are connected to each other based on the different feature maps. Layer C2
contains SIFT and optical flow features. In this model, a total of 40 features
are considered and operated in 3x3 size receptive field. The first 20 features
are considered into a single receptive field and formulated into two groups of
action where similar or non-similar actions are stored. Finally, the last layer
of CNN model contains feature points which are connected to all previous
layers in the network. In this approach, weight sharing helps to reduce the
free parameters and improves the database training capacity in a supervised
learning process using back-propagation approach adopted for convolutional
neural network.

EXPERIMENTAL RESULTS AND DISCUSSION

In order to analyze the performance of the proposed algorithm, two open
source action datasets: (a) Weizmann human action dataset (Blank, Gorelick,
Shechtman, Irani, & Basri, 2005, October) and (b) KTH human action dataset
(Schuldt, Laptev, & Caputo, 2004) were considered.

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

172

Dataset Description

Two public datasets, Weizmann and KTH datasets were used for
experimental analysis of the work.

Weizmann Human Action Dataset

The dataset contained 90 video sequences with a resolution of 180x144 where
nine users performed ten different actions such as: walking, running, skipping,
one hand-waving, two-hand waving, jacking, jumping, sideways movement,
etc. Each video sequence contained about 40–120 frames. Figure 4 shows
examples of some frames of each action in the Weizmann dataset.

Figure 4. Weizmann dataset action sample frames.

KTH Activity Recognition Dataset

The dataset was created by KTH Royal Institute of Technology in 2004 for
developing a new approach in computer vision application for human activity
recognition. This database contained various video sequences of actions
which were obtained for various scenarios. Similar to the Weizmann dataset,
this dataset was also captured over homogenous backgrounds, using a static
camera. This dataset consisted of six types of actions such as jogging, walking,
running, boxing, hand waving and hand clapping which were performed by 25
people for several times in different scenarios. Sample frames corresponding
to each action are depicted in Figure 5. The video sequences were divided
with respect to the subjects into a training set (eight persons), a validation set
(eight persons) and a test set (nine persons).

13

EXPERIMENTAL RESULTS AND DISCUSSION

In order to analyze the performance of the proposed algorithm, two open source action datasets: (a)
Weizmann human action dataset (Blank, Gorelick, Shechtman, Irani, & Basri, 2005, October) and (b)
KTH human action dataset (Schuldt, Laptev, & Caputo, 2004) were considered.

Dataset Description

Two public datasets, Weizmann and KTH datasets were used for experimental analysis of the work.

Weizmann Human Action Dataset

The dataset contained 90 video sequences with a resolution of 180x144 where nine users performed
ten different actions such as: walking, running, skipping, one hand-waving, two-hand waving,
jacking, jumping, sideways movement, etc. Each video sequence contained about 40–120 frames.
Figure 4 shows examples of some frames of each action in the Weizmann dataset.

 Figure 4. Weizmann dataset action sample frames.

KTH Activity Recognition Dataset

The dataset was created by KTH Royal Institute of Technology in 2004 for developing a new
approach in computer vision application for human activity recognition. This database contained
various video sequences of actions which were obtained for various scenarios. Similar to the
Weizmann dataset, this dataset was also captured over homogenous backgrounds, using a static
camera. This dataset consisted of six types of actions such as jogging, walking, running, boxing, hand
waving and hand clapping which were performed by 25 people for several times in different
scenarios. Sample frames corresponding to each action are depicted in Figure 5. The video sequences
were divided with respect to the subjects into a training set (eight persons), a validation set (eight
persons) and a test set (nine persons).

173

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

Figure 5. KTH sample frames on action recognition.

Experimental Study for Weizmann Dataset

Initially, the experiment was conducted on the Weizmann dataset. In the
proposed approach, tracking, optical flow, SIFT feature extraction and
classification were performed. This complete process for each activity is
depicted in Figure 6 for the Weizmann dataset. The dataset of 226 videos (10
classifications) was divided into two parts: training (150 videos) and testing
(76 videos).
 Similarly, tracking, optical flow, SIFT feature extraction and classification
were performed on the other action videos of Weizmann’s dataset. A feature
vector was formulated which was processed through CNN where multiple
layers were connected to each other to formulate a trained network. Based on
the performance of the Convolutional Neural Network approach, the obtained
confusion matrix for Weizmann dataset is shown in Table 1 as follows.

14

 Figure 5. KTH sample frames on action recognition.

Experimental Study for Weizmann Dataset

Initially, the experiment was conducted on the Weizmann dataset. In the proposed approach, tracking,
optical flow, SIFT feature extraction and classification were performed. This complete process for
each activity is depicted in Figure 6 for the Weizmann dataset. The dataset of 226 videos (10
classifications) was divided into two parts: training(150 videos) and testing (76 videos).

Bending Forward Jumping Jumping in one place Running

(a) Original frame

(a) Original frame

(a) Original frame

(a) Original frame

(b) Bending track

(b) Forward jumping

track

(b) Jumping track

(b) Running track

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

174

Figure 6. Action and their corresponding stages using proposed
approach.

Figure 6. Action and their corresponding stages using proposed approach.

Bending

(a) Original frame

Forward Jumping

(a) Original frame

Jumping in one place

(a) Original frame

Running

(a) Original frame

(b) Bending track

(b) Forward jumping

track

(b) Jumping track

(b) Running track

(c) Optical flow

(c) Optical flow

(c) Optical flow

(c) Optical flow

(d) SIFT feature

(d) SIFT feature

(d) SIFT feature

(d) SIFT feature

175

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

Table 1

Confusion Matrix for Weizmann Dataset Action Classification

 Bend Jump Run P Jump Skip Side Jack Walk Wave
1

Wave
2

Bend 0.9669 - - 0.0331 - - - - - -

Jump - 0.9602 - - 0.0398 - - - - -

Run - 0.0301 0.9699 - - - - - - -

P Jump - - - 0.98988 - - 0.01012 - - -

Skip - - - - 0.9877 - - 0.0123 - -

Side - - - - 0.0088 0.9912 - - - -

Jack 0.01288 - - - - - 0.98712 - - -

Walk - - - - - - - 0.9877 - 0.0123

Wave 1 - - 0.0178 - - - - - 0.9822 -

Wave 2 - - - - - - 0.0197 - - 0.9803

From the obtained confusion matrix, the overall classification accuracy
obtained was 98.03% which was comparatively better when compared with
other techniques. Misclassification of few actions were due the similarity in
features of the actions. The side movement action achieved the highest accuracy
of classification while the jump activity had less accuracy. A comparative
classification performance analysis is shown in Table 2.

Table 2

Classification Performance Comparison for Weizmann Dataset

Reference Paper Technique used Classification
Accuracy

Cai et al. (2017) Discriminative two-phase
dictionary learning framework
for classifying human action by
sparse shape representations

97.85%

Cai et al. (2017) Discriminative two-phase
dictionary learning framework
for classifying human action by
sparse shape representations

95.70%

(continued)

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

176

Reference Paper Technique used Classification
Accuracy

Chaaraoui et al. (2013) Pose representation by means
of a distance signal feature with
model learning approach

92.77%

Cheema et al. (2011) Scale invariant contour-
based pose feature extraction,
weighted voting scheme for
classification

91.6%

Wang et al. (2012) Continuous motion segment
descriptor and modified sparse
model for classification

96.7%

Cheng et al. (2015) Supervised temporal t-stochastic
neighbor embedding (ST-tSNE)
and incremental learning

94.44%

Proposed Method SIFT Feature Extraction,
Optical Flow Computation,
Convolutional Neural
Networks Classifier

98.03%

Experimental Study for KTH Dataset

The proposed approach tracking, optical flow, SIFT feature extraction and
classification for KTH dataset is shown in Figure 7.

Boxing Clapping Jumping in one place Running

(a) Original frame

(a) Original frame

(a) Original frame

(a) Original frame

(b) Boxing track

(b) Clapping track

(b) Jogging track

(b) Running track

(c) Optical flow

(c) Optical flow

(c) Optical flow

(c) Optical flow

(d) SIFT feature

(d) SIFT feature

(d) SIFT feature

(d) SIFT feature

Figure 7. Action and their corresponding stages using proposed approach.

177

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

Figure 7. Action and their corresponding stages using proposed
approach.

A similar process of tracking, optical flow, SIFT feature extraction and
classification were applied on the remaining video clips. These feature sets were
considered for training and testing using CNN. Based on CNN classification
study, the obtained confusion matrix for the dataset is shown in Table 3.

Table 3

Confusion Matrix for KTH Database Action Classification

Walking Jogging Running Boxing Hand
clapping

Hand
waving

Walking 0.9242 0.0758 - - - -

Jogging 0.056 0.944 - - - -

Running - - 0.987 - 0.013 -

Boxing - - - 0.941 0.059 -

Hand
clapping 0.02 - - - 0.98 -

Hand
Waving - 0.08 - - - 0.92

Boxing Clapping Jumping in one place Running

(a) Original frame

(a) Original frame

(a) Original frame

(a) Original frame

(b) Boxing track

(b) Clapping track

(b) Jogging track

(b) Running track

(c) Optical flow

(c) Optical flow

(c) Optical flow

(c) Optical flow

(d) SIFT feature

(d) SIFT feature

(d) SIFT feature

(d) SIFT feature

Figure 7. Action and their corresponding stages using proposed approach.

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

178

Based on this study, the proposed approach achieved a classification accuracy
of 94.96% which was comparatively good with respect to other techniques.
The comparative analysis of classification accuracy is given in Table 4. In the
activity recognition process, walking, jogging and running were misclassified
because of the moderate similarity among these activities. However, the
proposed feature extraction process helped to segregate these features distinctly.
According to the proposed approach, hand clapping activity achieved the
highest accuracy because of less movements involved. Running and boxing
also achieved better performance in terms of activity recognition.

Table 4

Classification Accuracy Comparison for KTH Dataset

Reference Paper Technique Used Classification
Accuracy

Kamiński et al. (2017) MPEG-7 Compact descriptors for
visual search (CDVS) to describe
a human pose and distance based
ranking system for classification.

81.80%

Niebles et al. (2008) Probabilistic Latent Semantic
Analysis (pLSA) model and
Latent Dirichlet Allocation
(LDA).

83.33%

Klaser et al. (2008) Histograms of oriented 3D spatio-
temporal gradients, 3D orientation
quantization

91.40%

Lu and Zhang (2014) HOG3D, K-means clustering
algorithm, Support Vector
Machine (SVM)

91.5%

Liu et al. (2017) 3D SIFT, Principal Component
Analysis (PCA), Support Vector
Machine (SVM) and AdaBoost-
SVM Classifiers

94.92%

Proposed Method SIFT feature extraction, Optical
flow computation, Convolutional
Neural Networks Classifier

94.96%

Misclassification of actions occurred due to background and feature similarity.
The quantitative comparison of the proposed approach was made with other
reviewed techiques for the two publicly available datasets KTH and Weizmann.
The computational cost of the 2D approaches was comparatively less than the
3D and currently, is still a better choice for activity recognition.

179

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

CONCLUSION

This paper focuses mainly on human action recognition and classification
using machine learning techniques. A novel approach in feature extraction
where previously, input video stream is converted into multiple frames and
processed through feature extraction techniques. Feature extraction in this
improvized cascaded approach is presented where optical flow computation
and SIFT features are extracted and combined to avoid misclassification
due to pose variations. Moreover, a distance based similarity scheme is
also incorporated to avoid videos or frames which are dissimilar to the
input; therefore reducing time taken for computation. Finally, a CNN based
classifier model is utilized to classify the activities. The proposed approach is
implemented on two publicly available open-source datasets: Weizmann and
KTH datasets. Moreover, a comparative analysis is also presented to highlight
that the proposed approach is capable of delivering a promising classification
performance for action recognition as compared to state-of-the-art techniques.
In future, this work can be extended to own datasets and comparative analysis
conducted to evaluate the performance of the method used.

ACKNOWLEGEMENT

The authors would like to express their gratitude to the Research Center,
Department of Electronics and Communication Engineering, Vidyavardhaka
College of Engineering, Mysuru, India which is recognized by the Visvesvaraya
Technological University, Belagavi, India for providing the support and
facilities to carry out the research work. This research received no specific
grant from any funding agency in the public, commercial, or not-for profit
sectors.

REFERENCES

Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis. ACM computing
surveys, 43(3), 1–43. https://doi.org/10.1145/1922649.1922653

Burghouts, G. J., & Schutte, K. (2013). Spatio-temporal layout of human actions
for improved bag-of-words action detection. Pattern Recognition Letters,
34(15), 1861–1869. https://doi.org/10.1016/j.patrec.2013.01.024

Cai, J., Tang, X., Zhang, L., & Feng, G. (2017). Learning zeroth class dictionary
for human action recognition. Communications in Computer and
Information Science, vol. 773, 651–666. https://doi.org/10.1007/978-
981-10-7305-2_55

Chaaraoui, A. A., Climent-Pérez, P., & Flórez-Revuelta, F. (2013). Silhouette-
based human action recognition using sequences of key poses. Pattern

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

180

Recognition Letters, 34(15), 1799–1807. https://doi.org/10.1016/j.
patrec.2013.01.021

Cheema, S., Eweiwi, A., Thurau, C., & Bauckhage, C. (2011). Action
recognition by learning discriminative key poses. Paper presented at
the IEEE International Conference on Computer Vision Workshops
(ICCV Workshops). Retrieved from https://doi.org/10.1109/
iccvw.2011.6130402

Cheng, J., Liu, H., Wang, F., Li, H., & Zhu, C. (2015). Silhouette analysis
for human action recognition based on supervised temporal t-SNE
and incremental learning. Paper presented at the IEEE Transactions
on Image Processing, 24(10), 3203–3217. https://doi.org/10.1109/
tip.2015.2441634

Dollar, P., Rabaud, V., Cottrell, G., & Belongie, S. (2019). Behavior
recognition via sparse spatio-temporal features. Paper presented at the
IEEE International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance. https://doi.org/10.1109/
vspets.2005.1570899

Farhadi, A., & Tabrizi, M. K. (2008). Learning to recognize activities from
the wrong view point. Lecture Notes in Computer Science, vol. 5302,
154–166. https://doi.org/10.1007/978-3-540-88682-2_13

Gorelick, L., Blank, M., Shechtman, E., Irani, M., & Basri, R. (2005). Actions
as space-time shapes. Paper presented at the IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(12), 2247–2253. https://
doi.org/10.1109/tpami.2007.70711

Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3D convolutional neural networks
for human action recognition. Paper presented at the IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(1), 221–231. https://
doi.org/10.1109/tpami.2012.59

Ji, X.-F., Wu, Q.-Q., Ju, Z.-J., & Wang, Y.-Y. (2014). Study of human action
recognition based on improved spatio-temporal features. International
Journal of Automation and Computing, 11(5), 500–509. https://doi.
org/10.1007/s11633-014-0831-4

Jiang, H., Drew, M. S., & Ze-Nian Li. (2010). Action detection in cluttered
video with successive convex matching. Paper presented at the IEEE
Transactions on Circuits and Systems for Video Technology, 20(1),
50–64. https://doi.org/10.1109/tcsvt.2009.2026947

Kaminski, L., Mackowiak, S., & Domanski, M. (2017). Human activity
recognition using standard descriptors of MPEG CDVS. Paper
presented at the IEEE International Conference on Multimedia & Expo
Workshops (ICMEW). https://doi.org/10.1109/icmew.2017.8026248

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei,
L. (2014). Large-scale video classification with convolutional neural

181

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

networks. Paper presented at the IEEE Conference on Computer Vision
and Pattern Recognition. https://doi.org/10.1109/cvpr.2014.223

Klaser, A., Marszałek, M., & Schmid, C. (2008). A spatio-temporal descriptor
based on 3D-gradients. Proceedings of the British Machine Vision
Conference, 99.1-99.10. https://doi.org/10.5244/C.22.99

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification
with deep convolutional neural networks. Communications of the ACM,
60(6), 84–90. https://doi.org/10.1145/3065386

Laptev, I., Marszalek, M., Schmid, C., & Rozenfeld, B. (2008). Learning
realistic human actions from movies. Paper presented at the IEEE
Conference on Computer Vision and Pattern Recognition. https://doi.
org/10.1109/cvpr.2008.4587756

Lee, S., Le, H. X., Ngo, H. Q., Kim, H. I., Han, M., & Lee, Y. K. (2011). Semi-
Markov conditional random fields for accelerometer-based activity
recognition. Applied Intelligence, 35(2), 226-241.

Li, X., Zhang, Y., & Liao, D. (2017). Mining Key Skeleton Poses with Latent
SVM for Action Recognition. Applied Computational Intelligence and
Soft Computing, 1–11. https://doi.org/10.1155/2017/5861435

Liu, M., Chen, C., & Liu, H. (2017). Time-ordered spatial-temporal interest
points for human action classification. Paper presented at the IEEE
International Conference on Multimedia and Expo (ICME), 655–660.
https://doi.org/10.1109/icme.2017.8019477

Lu, M., & Zhang, L. (2014). Action recognition by fusing spatial-temporal
appearance and the local distribution of interest points. Proceedings of the
2014 International Conference on Future Computer and Communication
Engineering. https://doi.org/10.2991/icfcce-14.2014.19

Meng, B., Liu, X., & Wang, X. (2018). Human action recognition based on
quaternion spatial-temporal convolutional neural network and LSTM in
RGB videos. Multimedia Tools and Applications, 77(20), 26901–26918.
https://doi.org/10.1007/s11042-018-5893-9

Moghaddam, Z., & Piccardi, M. (2014). Training initialization of hidden
Markov models in human action recognition. Paper presented at the
IEEE Transactions on Automation Science and Engineering, 11(2),
394–408. https://doi.org/10.1109/tase.2013.2262940

Niebles, J. C., Wang, H., & Fei-Fei, L. (2008). Unsupervised learning of
human action categories using spatial-temporal words. International
Journal of Computer Vision, 79(3), 299–318. https://doi.org/10.1007/
s11263-007-0122-4

Ramasso, E., Panagiotakis, C., Pellerin, D., & Rombaut, M. (2007). Human
action recognition in videos based on the transferable belief model.
Pattern Analysis and Applications, 11(1), 1–19. https://doi.org/10.1007/
s10044-007-0073-y

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

182

Schuldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A
local SVM approach. Proceedings of the 17th International Conference
on Pattern Recognition, Vol.3, 32–36. https://doi.org/10.1109/
icpr.2004.1334462

Shao, L., Zhen, X., Tao, D., & Li, X. (2014). Spatio-temporal laplacian
pyramid coding for action recognition. Paper presented at the IEEE
Transactions on Cybernetics, 44(6), 817–827. https://doi.org/10.1109/
tcyb.2013.2273174

Taylor, G. W., Fergus, R., LeCun, Y., & Bregler, C. (2010). Convolutional
Learning of Spatio-temporal Features. Computer Vision – ECCV, 140–
153. https://doi.org/10.1007/978-3-642-15567-3_11

Varol, G., Laptev, I., & Schmid, C. (2018). Long-term temporal convolutions
for action recognition. Paper presented at the IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(6), 1510–1517. https://
doi.org/10.1109/tpami.2017.2712608

Wang, Haoran, Yuan, C., Hu, W., & Sun, C. (2012). Supervised class-
specific dictionary learning for sparse modeling in action recognition.
Pattern Recognition, 45(11), 3902–3911. https://doi.org/10.1016/j.
patcog.2012.04.024

Wang, Heng, Kläser, A., Schmid, C., & Liu, C.-L. (2013). Dense trajectories
and motion boundary descriptors for action recognition. International
Journal of Computer Vision, 103(1), 60–79. https://doi.org/10.1007/
s11263-012-0594-8

Wang, Lei, Xu, Y., Cheng, J., Xia, H., Yin, J., & Wu, J. (2018). Human action
recognition by learning spatio-temporal features with deep neural
networks. IEEE Access, 6, 17913–17922. https://doi.org/10.1109/
access.2018.2817253

Wang, Lei, Xu, Y., Cheng, J., Xia, H., Yin, J., & Wu, J. (2018). Human action
recognition by learning spatio-temporal features with deep neural
networks. IEEE Access, 6, 17913–17922. https://doi.org/10.1109/
access.2018.2817253

Wang, Limin, Qiao, Y., & Tang, X. (2015). Action recognition with trajectory-
pooled deep-convolutional descriptors. Paper presented at the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
4305–4314. https://doi.org/10.1109/cvpr.2015.7299059

Wang, Limin, Qiao, Y., & Tang, X. (2015). Action recognition with trajectory-
pooled deep-convolutional descriptors. Paper presented at the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
4305–4314. https://doi.org/10.1109/cvpr.2015.7299059

Wong, S.-F., & Cipolla, R. (2007). Extracting spatiotemporal interest
points using global information. Paper presented at the IEEE 11th
International Conference on Computer Vision, 1–8. https://doi.
org/10.1109/iccv.2007.4408923

183

Journal of ICT, 19, No. 2 (April) 2020, pp: 157-183

Wong, S.-F., & Cipolla, R. (2007). Extracting spatiotemporal interest
points using global information. Paper presented at the IEEE 11th
International Conference on Computer Vision, 1–8. https://doi.
org/10.1109/iccv.2007.4408923

Wu, S., Oreifej, O., & Shah, M. (2011). Action recognition in videos
acquired by a moving camera using motion decomposition of
Lagrangian particle trajectories. Paper presented at the International
Conference on Computer Vision, 1419-1426. https://doi.org/10.1109/
iccv.2011.6126397

Wu, S., Oreifej, O., & Shah, M. (2011). Action recognition in videos acquired
by a moving camera using motion decomposition of Lagrangian
particle trajectories. International Conference on Computer Vision,
1419-1426. https://doi.org/10.1109/iccv.2011.6126397

Yao, L., Liu, Y., & Huang, S. (2016). Spatio-temporal information for human
action recognition. EURASIP Journal on Image and Video Processing,
2016(1). https://doi.org/10.1186/s13640-016-0145-2

Yao, L., Liu, Y., & Huang, S. (2016). Spatio-temporal information for human
action recognition. EURASIP Journal on Image and Video Processing,
2016(1). https://doi.org/10.1186/s13640-016-0145-2

Zhang, B., Yang, Y., Chen, C., Yang, L., Han, J., & Shao, L. (2017). Action
recognition using 3D histograms of texture and a multi-class
boosting classifier. Paper presented at the IEEE Transactions on
Image Processing, 26(10), 4648–4660. https://doi.org/10.1109/
tip.2017.2718189

Zhang, B., Yang, Y., Chen, C., Yang, L., Han, J., & Shao, L. (2017). Action
recognition using 3D histograms of texture and a multi-class
boosting classifier. Paper presented at the IEEE Transactions on
Image Processing, 26(10), 4648–4660. https://doi.org/10.1109/
tip.2017.2718189

Zhen, X., Zheng, F., Shao, L., Cao, X., & Xu, D. (2017). Supervised local
descriptor learning for human action recognition. Paper presented at
the IEEE Transactions on Multimedia, 19(9), 2056–2065. https://doi.
org/10.1109/tmm.2017.2700204

Zhen, X., Zheng, F., Shao, L., Cao, X., & Xu, D. (2017). Supervised local
descriptor learning for human action recognition. Paper presented at
the IEEE Transactions on Multimedia, 19(9), 2056–2065. https://doi.
org/10.1109/tmm.2017.2700204

Zhu, S., & Xia, L. (2015). Human action recognition based on fusion features
extraction of adaptive background subtraction and optical flow
model. Mathematical Problems in Engineering, 1–11. https://doi.
org/10.1155/2015/387464

