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The motion of a neutrally buoyant spherical particle along the axis of an axisymmetric 
stagnation point flow a t a  r igid a nd s mooth fl at wa ll (H iemenz–Homann flow) 
is investigated in the presence of low-to-moderate inertia effects. The particle 
dynamics is elucidated using numerical simulation. At distances large compared to 
the characteristic thickness of the boundary layer δ = (ν/B)1/2, with ν the kinematic 
viscosity and B the strain rate of the carrying flow, t he p article d ecelerates a s it 
approaches the wall, due to the ambient pressure increase toward the stagnation 
point. In this part of the path, its velocity is nearly identical to that of the local 
undisturbed fluid a t t he p osition o f i ts c entre. R elative m otion b etween t he particle 
and fluid increases as the wall–particle gap reduces, due to wall-induced hydrodynamic 
interaction forces. Two distinct evolutions of the net force on the particle are observed, 
depending on the relative particle size, a/δ ∼ Re1/2, where a is the particle radius and
Re = 2Ba2/ν is the Reynolds number. For a/δ . 2, the force decays monotonically 
to zero, while it undergoes a sharp rise before returning to zero for larger particles. 
In the latter case, the particle retains a sufficient v elocity e ven f or v ery s mall gap 
widths such that, under usual roughness levels, a rebounding collision would occur. 
The stress profiles a t t he p article s urface a re i nvestigated t o s eparate t he various 
contributions to the hydrodynamic force. Theoretical predictions for near-wall viscous 
and inertial forces available in the creeping-flow a nd l ow-but-finite Reynolds-number 
limits, respectively, are used to pinpoint the origin of the dominant inertia effect that 
controls the particle dynamics when the particle gets very close to the wall.
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1. Introduction
The dynamics of solid–liquid mixtures and slurries plays an important role in

natural settings as well as environmental, process and biomedical engineering. The
study presented here is motivated by the need for a fundamental understanding to
support modelling of inertial flows of liquid–solid suspensions in general bounded
geometries. It is well established that inertia may have a significant influence on
particle motion, leading for example to heterogeneity in the spatial distribution of the
particle concentration and to the modulation of transport properties (Haddadi et al.
2014). We focus in this work on the case of inertial effects on the motion of a
spherical particle in a flow with a strong wall-normal component, a case which has
seen limited investigations so far.

We refer to fluid inertia at the particle scale, evaluated through the Reynolds
number Re = 2ρBa2/µ, where a is the particle radius, B is the characteristic strain
rate of the flow and ρ and µ denote the fluid density and viscosity, respectively
(hence the kinematic viscosity is ν = µ/ρ). Particle inertia is intrinsically related
to the particle response time, characterized by the Stokes number St = (ρp/ρ)Re/9,
with ρp the particle density. An early demonstration of the influence of inertia on
the mixture properties was presented by Bagnold (1954), who showed that the stress
in a neutrally buoyant suspension varies linearly with the shear rate, γ̇ , at small
rates, transitioning to a γ̇ 2-dependence as the shear rate increases. Later, this work
was criticized and bulk effects of particles at large inertia were reconsidered (Hunt
et al. 2002). To understand flows in arbitrary geometries, we must focus attention
beyond parallel shear flows, e.g. Poiseuille or Couette flows, the study of which
(Segré & Silberberg 1962; Ho & Leal 1976; Vasseur & Cox 1976; Matas, Morris &
Guazzelli 2004; Loisel et al. 2015) has led to a well-developed characterization of
inertial migration of particles, and to a better understanding of the modulation of flow
turbulence by suspended particles (Matas, Morris & Guazzelli 2003; Shao, Wu & Yu
2012; Wang, Abbas & Climent 2017; Zade et al. 2018). In other geometries, such
as the flow around an obstacle or in a pipe bend, there are regions where the flow
is incident onto a surface. While studies of gas–solid jets inducing surface erosion
are known, for instance in turbo-machinery (Hamed, Tabakoff & Wenglarz 2006),
liquid–solid mixtures impinging on an obstacle have rarely been considered, yet these
are encountered in a number of applications, including slurry mixing with impellers
(Cumby 1990), water ice-jet machining (Gupta et al. 2017), surface dust removal
(Maynard & Marshall 2012) as well as in river transport of sand past bridge pilings.

As a foundation for understanding suspension flows with wall-normal velocity, we
investigate in detail the dynamics of a single sphere approaching a stagnation point
on a flat and smooth wall, as shown schematically in figure 1(a). Here, the flow
kinetic energy is converted into a pressure increase which decelerates the flow, as
illustrated in figure 1(b). This is well described for the pure fluid motion by the
well-known Hiemenz boundary-layer solution (Hiemenz 1911) and its axisymmetric
counterpart, the Homann solution (Homann 1936). The present study focuses on
the latter base flow, abbreviated as Hiemenz–Homann or ‘HH flow’ throughout the
paper. We find that, even for a neutrally buoyant particle, the particle is driven
under inertial conditions to approach the wall more rapidly than expected under
creeping-flow conditions. A natural question then arises as to whether this leads to
necessary conditions for a particle–wall collision with rebound, a phenomenon that
would have significant consequences for the boundary condition to be applied to
continuum modelling of the mixture flow. Fluid mechanical analysis alone is not
sufficient to ascertain whether collisions may occur or not, since the Navier–Stokes





liquid near the stagnation point located at the bifurcation of a symmetric T-shaped 
junction. Their study was mostly concerned with particles denser than the fluid, 
although some cases approached neutral buoyancy. The particle trajectory equation 
based on a simple empirical model for the hydrodynamic forces (the sum of viscous 
drag, added mass, rotation-induced lift and lubrication effects) allowed reasonable 
prediction of the conditions yielding impact events.

When the particle size is such that a/δ ∼ O(1), a finite s lip v elocity ( defined as 
the relative velocity between the particle and the undisturbed flow a t t he position 
of its centre) is expected near the wall, since the particle is rigid and stops with 
its centre apart from the wall, whereas an equivalent volume of fluid w ould deform 
continuously. In such a situation, the work of Vigolo et al. (2013) suggests that the 
particle approach to the wall is retarded and the rate of particle–wall collisions is 
reduced. Their approximate model of hydrodynamic forces agrees qualitatively with 
the measurements in the stagnation point region, but systematically over-predicts 
the particle impact velocity at the stagnation point. A theoretical prediction of the 
hydrodynamic forces in this flow c onfiguration is  ch allenging, si nce th e inertial 
contribution to the stress distribution at the particle surface, outside the gap, may be 
important. Moreover, the viscous resistance may be insufficient t o s top t he particle 
against the fluid d riving f orce, a llowing t he g ap w idth t o a pproach t he roughness 
length scale of solid surfaces such that continuum fluid m echanics m ay b reak down 
in the gap.

The dynamics of a spherical neutrally buoyant finite-size p article i n a  wall-normal 
flow t hus r aises s everal f undamental o pen q uestions. U nderstanding t he particle 
approach to the stagnation point in the range of large-to-moderate dimensionless
gaps, say ε = h/a & 1, is one of them, as little is known regarding viscous and 
inertial wall-induced hydrodynamic forces in this flow c onfiguration. Th is st ate of 
affairs motivated a specific t heoretical s tudy r eported e lsewhere ( Magnaudet &  Abbas 
2020). In that work, viscous and inertial forces acting on a spherical particle moving 
near the stagnation point of a HH flow a re p redicted u nder r estrictive conditions,
especially Re . 1, a/δ �1 and ε & 1. Here, we are mainly interested in larger particles,
especially in the transition from non-impacting conditions, where the motion is purely 
controlled by hydrodynamics, to impacting conditions, where continuum mechanics 
may break down, which is expected to occur for particles such that a/δ ∼ 1. Indeed,
the surface of large particles such that a/δ & 1 may closely approach the wall while 
their centre still stands outside the boundary layer, as illustrated in figure 4 . To 
address this range of conditions, we examine the particle dynamics in the HH flow 
using numerical simulation, the particle and fluid m otions b eing c oupled t hrough an 
immersed boundary approach. The simulations are carried out using extremely refined 
grid distributions in the gap, in order to fully resolve lubrication effects; they are 
eventually stopped at very small gaps typical of roughness effects.

We pause to emphasize central points of this work, which addresses a basic scenario 
in suspension flow t oward a  w all. T he n eutrally b uoyant c onditions i solate t he inertial 
influence c ontrolled b y p article s ize, a nd t he p article s ize r elative t o t he boundary 
layer is the critical parameter defining t he p article d ynamics. A t s ufficient distance, 
the particle decelerates on approach to the wall almost as the equivalent volume of 
fluid w ould u ntil i t n ears t he b oundary l ayer. B ecause o f i ts fi nite si ze, th e particle 
surface nearest the wall moves more rapidly toward the wall than the fluid a t this 
point in the carrying flow, a nd t hus b egins t o d rive l iquid o ut o f t he i ntervening gap. 
This induces an elevated pressure that decelerates the particle, eventually resulting in 
the dominant lubrication force that in theory would stop any finite-size p article from



touching the wall. A slip velocity is caused by this interaction, the slip (the relative
motion between the particle and local fluid) being relatively stronger for smaller
particles (radius a with a/δ = 0.8 and 1.6), which decelerate efficiently in response
to the hydrodynamic interaction with the wall, with the net force (strictly due to
the hydrodynamic traction) tending toward zero monotonically as they approach the
stagnation point. The larger particles (a/δ= 2.4 and 3.2) display a strikingly different
force response because substantial deceleration is delayed until the particle surface
is much closer to the wall; this requires a sharp increase in the force to slow the
particle, with the peak force both increasing and approaching the contact condition
with particle size. For the conditions studied in the present work, the extreme values
of a/δ studied lead to a small particle which is fully immersed in the boundary layer
of thickness 3δ, while the largest is roughly only half immersed in the boundary
layer when it is at contact with the wall. As a result, the interaction of the particle
with the boundary-layer flow varies significantly over this range of particle sizes, and
we explore this in order to provide insight into the stress distribution on the particle
surface during the approach to the wall. As the larger particles carry significant
velocity down to gap scales that would approach roughness scales, these results
indicate a previously unexplored mechanism for neutrally buoyant particle impact
and rebound. One direction of further study for which this is critical input is the
development of boundary conditions in wall-normal suspension flows at elevated
Reynolds number.

The paper is organized as follows. Section 2 introduces the computational approach,
some validations of which are reported in appendix A, while § 3 presents the main
features of the carrying flow. We present and discuss the characteristics of the particle
motion and surface stress distribution as the particle approaches the stagnation point in
§ 4. Section 5 specifically examines the respective roles of viscous and inertial effects
on the particle motion in the limit of small gaps, together with related modelling
issues. A summary of the findings of this investigation is provided in § 6.

2. Numerical approach
The axisymmetric time-dependent Navier–Stokes equations are solved using the

in-house JADIM code. This code is based on a finite-volume spatial discretization
on a staggered grid, combined with a third-order Runge–Kutta Crank–Nicolson
time-advancement algorithm. Incompressibility is enforced at the end of the complete
time step through a projection technique (Calmet & Magnaudet 1997). Centred
schemes are used to evaluate the spatial derivatives. The corresponding solution of
the Navier–Stokes equations is second-order accurate in space and time on a uniform
grid.

An immersed boundary technique (Mittal & Iaccarino 2005) is used to determine
the particle position as a function of time. To this end, an artificial force density, FIBM,
is added to the fluid momentum equation to enforce the no-slip boundary condition
at the particle surface. This force density is prescribed in the form

FIBM = αρ
UD −U
τ

, (2.1)

where U is the local fluid velocity, UD is the desired velocity in the solid volume and
τ denotes a characteristic time which is set equal to the time step in computational
practice. The volume fraction α equals 1 in the solid, and decreases to 0 in the
surrounding fluid following a sine distribution within a spherical shell of thickness



3∆, where ∆ denotes the local cell size. Within the solid volume, UD is set to V, 
the translational velocity of the solid particle (no rotation has to be considered here 
since the problem is axisymmetric). As τ goes to zero, any difference between the 
fluid a nd s olid p article v elocities t ends t o g enerate a n i nfinite fo rce de nsity in  the 
regions where α 6= 0, thus enforcing the no-slip condition. The particle motion follows 
Newton’s second law, so that the overall momentum balance over its surface reads

ρpVp
dV
dt
=

∫
S
Σ · n dS, (2.2)

where Σ = −PI + µ(∇U + ∇UT) is the stress tensor (P denoting the local pressure
in the fluid), n is the outward unit vector normal to the particle surface S, Vp is the
particle volume and I is the Kronecker tensor.

The coupling between the flow solver and the immersed boundary scheme follows
Ulhmann’s approach (Uhlmann 2005) and the improvement by Kempe & Fröhlich
(2012) to make it applicable to particle-to-fluid density ratios close to unity. To this
end, the surface integral in (2.2) is replaced by a volume integral which is simpler to
compute and remains well defined for arbitrary ρp/ρ. The previous momentum balance
then takes the form (Kempe & Fröhlich 2012)

ρpVp
dV
dt
=

d
dt

∫
Vp

ρU dV −
∫
Vp

FIBM dV . (2.3)

The time derivative of the fluid momentum integral is evaluated within each substep
of the Runge–Kutta algorithm using a forward Euler scheme. More details on
the numerical scheme, interpolation procedures (especially the one used to switch
gradually from UD = V within the body to UD = U within the fluid) and validations
may be found in Pierson & Magnaudet (2018).

In § 4.2 we shall examine the angular stress distributions at the particle surface.
As the cylindrical grid does not fit exactly the sphere shape, a direct interpolation
of these quantities from the computational grid to the sphere surface yields spurious
angular oscillations. To avoid these oscillations, we first extract the pressure and
velocity gradients from a thin shell of grid points surrounding the particle; this shell
is 0.025a in thickness around the part of the sphere closest to the wall and 0.04a
in thickness around the rest of the sphere surface. Then we interpolate the desired
quantities on a polar grid centred at the current position of the particle centre of mass
and uniformly discretized in the angular direction. As will be shown in § 4.2, this
method yields smooth angular stress profiles provided the particle surface is described
by enough grid cells, i.e. ∆/a is small enough (for a given ∆, residual oscillations
occur if the particle size falls below a critical value, as may be seen in figure 10c).

Two validations relevant to the configuration considered in the rest of this work are
discussed in appendix A. In the first of them, we compare computational predictions
with experimental data in the case of a negatively buoyant particle settling very close
to a horizontal wall. In the second one, we consider a rigid sphere held fixed at
the hyperbolic point of a biaxial straining flow and compute the corresponding flow
disturbance which we compare with the creeping flow solution.

3. Characteristics of the Hiemenz–Homann boundary-layer flow
The simulations employ boundary conditions corresponding to the axisymmetric HH

flow (see figure 1 for a schematic of the numerical set-up). The velocity components
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FIGURE 2. Comparison between computational predictions (dashed lines) and the
theoretical HH solution (solid coloured lines) for the undisturbed fluid velocity distribution.
(a) Radial velocity profiles at various radial positions, namely r/δ = 1.54 (blue),
3.12 (magenta) and 7.86 (red); (b) wall-normal velocity profile at r/δ = 1.54. The grid
is identical to that used in cases c1–d0 defined in table 1.

Case a/δ (∆m
z /δ)× 104 (∆m

r /δ)× 104 (B1t)× 104

c1 0.8 0.16 0.32 0.25
c2 1.6 0.16 0.32 0.25
c3 2.4 0.16 0.32 0.25
d0 3.2 0.16 0.32 0.25
d1 3.2 0.16 3.2 1.0
d2 3.2 1.6 3.2 1.0

TABLE 1. Parameters used in the simulations. Second column: particle radius scaled by δ;
third and fourth columns: normalized minimum grid size in the axial and radial directions,
respectively; fifth column: normalized time step.

corresponding to the theoretical Homann solution (Homann 1936) are imposed on
the inlet boundary of the computational domain, corresponding to the upper plane
in figure 1. On the lateral surface, we use either an outflow non-reflecting condition
(Magnaudet, Rivero & Fabre 1995) or impose again the two components of the
theoretical solution. In the former (respectively latter) case, the size of the cylindrical
computational domain is set to 32δ and 64δ (respectively 32δ) in the radial and
wall-normal directions, respectively.

As figure 2 shows, the computed radial and wall-normal components of the
velocity field at steady state are in good agreement with the theoretical solution.
The corresponding computation makes use of a non-uniform grid distribution; the
minimum grid size (near the stagnation point) in both directions is reported in table 1
(case c1). A set of several tests allowed us to conclude that simulation achieves grid
independence with respect to the single-phase flow as soon as the minimum cell size
in the wall-normal direction, ∆m

z , is below 0.08δ. The boundary condition imposed
on the peripheral surface is found to have a negligible effect. The flow incident to
the wall must decelerate to satisfy the no-penetration condition. This deceleration
leads to a volume force directed away from the wall. Before examining the particle



3.0

2.5

2.0

1.5

1.0

0.5

0

´

0 200 400

F∞
z  /µBa2

600 800

FIGURE 3. Ambient inertial force F∞z acting on a fluid sphere with radius a standing a
distance zc from the wall, as a function of the dimensionless gap ε= h/a, with h= zc− a.
Red, green, blue and black lines correspond to a/δ = 0.8, 1.6, 2.4 and 3.2, respectively.

dynamics, let us consider the force F∞ that would be experienced by a fluid element
with the same finite volume as the rigid particle, namely Vp =

4
3πa3. This force is

merely (Maxey & Riley 1983; Auton, Hunt & Prud’Homme 1988)

F∞ =
∫
Vp

ρ
DU∞

Dt
dV, (3.1)

where D/Dt denotes the material derivative along the path of the fluid element and
U∞ refers to the undisturbed fluid velocity. Equation (3.1) indicates that a finite-size
rigid body transported by the HH flow is subject to an inertial force, irrespective of
the disturbance it introduces in the flow. Away from the boundary layer, the flow is
virtually inviscid and the fluid deceleration is just balanced by the pressure increase
toward the stagnation point. In that region, the strain is uniform and the velocity
distribution varies linearly with the current position. Consequently, the ambient force
defined in (3.1) tends to F∞ = ρVp(DU∞/Dt)|x=xc , where xc denotes the position of
the sphere centre.

Figure 3 shows the axial profiles of the wall-normal component F∞z of F∞
computed according to (3.1) for four fictitious fluid spheres with increasing size.
Since the ambient force scales as the sphere volume, F∞z increases with the sphere
size once normalized by the viscous force scale µBa2. The force also increases with
the axial sphere position zc with respect to the wall, hence with the dimensionless
gap ε = h/a = zc/a − 1. This is a direct consequence of the increase of the fluid
acceleration, (U∞ · ∇)U∞, with zc. When ε = 0 (i.e. the sphere touches the wall),
the fluid acceleration at the position zc = a of the sphere centre remains non-zero
because a is finite. This is why, in figure 3, F∞z is observed to be non-zero at the
wall, although it clearly goes to zero as a/δ→ 0.

4. How neutrally buoyant particles approach the stagnation point
We now consider the dynamics of a solid sphere in the HH flow in the case

where the fluid and particle densities are equal. This neutrally buoyant system allows



us to explore the role of inertial effects associated specifically with the size of the
suspended particle, and disentangle them from the role of the solid-to-fluid inertia
ratio, ρp/ρ. The parameters of the computational study are presented in table 1. Once
the carrying flow has reached a steady state, a rigid particle is released from rest with
its centre of mass standing on the symmetry axis, far outside the boundary layer, and
away from the outer boundary of the simulation domain. The initial particle position
was arbitrarily set at zp0=16δ in most of the simulations, a position at which the local
fluid velocity is approximately −2Bzp0. After being released from rest, the particle
quickly reaches the local fluid velocity, so that the relative velocity between the
particle and fluid takes negligibly small values well before the particle starts to interact
with the boundary layer. We varied the initial position (12 6 zp0/δ 6 20) in order to
verify that it has no influence on the near-wall dynamics. We consider particles with
sizes a/δ= 0.8, 1.6, 2.4 and 3.2, so that the Reynolds number Re= 2Ba2/ν = 2(a/δ)2
ranges approximately from 1 to 20. The computational grid is non-uniform, being
highly refined near the stagnation point to capture lubrication effects without resorting
to a model. The minimum size of the near-stagnation-point grid cells in both
directions is indicated in table 1. With the largest particle, a typical grid comprises
3.6 × 105 cells approximately, and 1.2 × 104 time steps are required to track the
particle from its initial position down to very small gaps. Each computation run on
a single node equipped with 20 cores of the Olympe supercomputer of the CALMIP
computing centre (see https://www.calmip.univ-toulouse.fr/spip.php?rubrique93) lasts
for approximately 2.5 h.

4.1. Flow disturbance, slip velocity and hydrodynamic force
The flow field about the smallest and largest particles considered throughout
§§ 4 and 5 is displayed in figure 4 at two near-wall positions corresponding to
dimensionless gaps ε = 0.5 and ε = 0.01. Keeping in mind that the outer edge of
the boundary layer is located at the wall-normal position z ≈ 3δ, the small particle
is seen to be already totally immersed within the boundary layer when ε = 0.5. In
contrast, only the lower one fourth of the large particle stands within the boundary
layer at the same ε, and this fraction has only increased to one half by the time
the dimensionless gap has decreased to 0.01. Consequently, one may expect the
two particles to experience quite different near-wall dynamics. This is confirmed by
comparing the two streamline patterns for ε = 0.01. As these streamlines are based
on the absolute velocity with respect to the wall, the local angle they make with the
particle surface gives insight into the ratio of the radial and tangential components of
the relative fluid velocity with respect to the particle. Considering the upper half of
each particle, this angle is seen to be large in both cases when ε = 0.5. In contrast,
streamlines have become almost parallel to the upper half of the surface of the small
particle when the gap has reduced to 0.01, while they keep a significant angle with
the surface in the case of the large particle. This is a clear indication that the small
particle has virtually been brought to rest in between the two positions, while the
velocity of the large particle is still significant when it gets very close to the wall.
On the part of the particle nearest to the wall, the angle made by the streamlines
with the surface has decreased in between the two positions but is still far from zero
for both particles when ε = 0.01. We emphasize this non-zero angle to call attention
to the existence of a substantial radial fluid motion in the thin film filling the gap, a
configuration prone to produce large lubrication forces. This radial motion weakens
as the distance to the flow axis increases, as underlined by the marked bulge visible
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FIGURE 4. Flow streamlines (in the wall reference frame) about two particles moving
toward the wall, at wall-normal positions zp/a = 1.5 (a,b) and zp/a = 1.01 (c,d). (a,c)
‘Small’ particle with a/δ = 0.8; (b,d) ‘large’ particle with a/δ = 3.2. The dashed line
indicates the distance z/a= δ/a from the wall.

in the streamline pattern around the small particle in the range 1 . r/a . 1.5. This
zone marks the transition between the squeezing of the film in the thin wall–particle
gap and the undisturbed boundary layer of the HH flow.

Variations of the particle velocity are shown in figure 5 as a function of the
wall-normal position zp/δ, for the four particle sizes listed in table 1. The particle
velocity is compared with the fluid velocity along the z-axis. Far from the wall, the
particle is carried with negligible relative motion (slip) with respect to the undisturbed
flow. However, the slip increases as the distance separating the particle from the wall
decreases. Figure 5(b) shows the slip profiles as a function of the dimensionless gap.
The slip is scaled by the undisturbed fluid velocity taken a distance z = a from the
wall, which is approximately equal to −2Ba for a = O(δ). This scaling limits slip
variations between 0, when the particle is not affected by the wall, and 1, when
it touches it, so that all curves in figure 5(b) converge to 1 as ε → 0. This figure
indicates that the separation distance (scaled by a) at which the slip starts to depart
from zero decreases with the particle size (compare the slip at ε = 1 for the smallest
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FIGURE 5. Particle velocity and particle–fluid slip velocity as a function of the distance
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(b): a/δ = 0.1. The pink line in (b) corresponds to the theoretical prediction for the slip
in the Stokes flow limit obtained with a/δ = 0.01 and ε→ 0 (Rallabandi et al. 2017).

two particles with that corresponding to the other three). For large particles, the slip
velocity remains negligible down to small gaps. Then it increases abruptly after the
gap decreases to a fraction of the particle radius.

Some theoretical insight may be obtained into the way the slip velocity varies
with respect to the gap in the creeping-flow limit, which here corresponds to the
limit of small particles such that a/δ � 1. Using bipolar coordinates, Rallabandi
et al. (2017) computed the various contributions to the hydrodynamic force involved
in the approach of a rigid sphere to a wall in the case the sphere is immersed in
a non-uniform quadratic axisymmetric flow. For the HH flow considered here, their
results show that the force balance reduces to

−6πµa2B(ε)∇zU︸ ︷︷ ︸
FB

+ 6πµa3C(ε)∇z∇zU︸ ︷︷ ︸
FC

+ 6πµaA(ε)(U − V)︸ ︷︷ ︸
FA

≈ 0, (4.1)

where ∇z = ez · ∇ is the wall-normal gradient (with ez the unit vector pointing in the
direction of increasing z), U≡U∞z =U∞ · ez, V ≡V · ez and A(ε), B(ε) and C(ε) are
dimensionless positive gap-dependent coefficients. In the limit of large gaps, A(ε)→1,
B(ε)→ 15

16ε
−2 and C(ε)→1/6, while all three coefficients diverge as 1/ε when the gap

tends to zero. The force FA is just the drag force the particle would experience, were
it settling toward the wall in a uniform flow. As discussed by Magnaudet & Abbas
(2020), the force FB results from the interaction of the sphere-induced disturbance,
dominated by a stresslet (the first contribution on the right-hand side of (A 1)), with
the wall. This interaction generates a flow correction directed away from the wall,
therefore tending to repel the particle from the wall, hence enhancing the slip velocity
V − U. Within the boundary layer, the wall-normal velocity U becomes gradually a
quadratic function of z as z→ 0. Therefore, in addition to the aforementioned stresslet,
the sphere-induced disturbance also contains a Stokes quadrupole, the magnitude of
which increases as the gap goes to zero. The force FC combines the familiar Faxén
force resulting from the non-zero curvature of U, with a specific wall-induced effect
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FIGURE 6. Two characteristics of the differential motion between the particle and fluid for
different particle sizes: (a) slip Reynolds number, Res; (b) relative acceleration, (DU/Dt)−
(dV/dt), normalized by aδ = δB2. a/δ= 3.2 (black line), 2.4 (dotted blue line), 1.6 (dash-
dotted green line), 0.8 (red line).

resulting from the interaction of this quadrupole with the wall. As the curvature ∂2
z U

is negative, the force proportional to C tends to drive the particle toward the wall.
The slip velocity predicted by (4.1) is plotted in figure 5(b) (pink line) in the limit
ε � 1. Note that the solution in the Stokes limit depends on the particle size with
respect to the flow macro-scale, i.e. δ in the present configuration. The pink line was
obtained using a/δ = 0.01. The slip velocity of a small particle with a/δ = 0.1 is
also displayed in that figure, as it represents an intermediate case between the Stokes
limit and particles with a = O(δ). Clearly, there is a non-monotonic change in the
profiles of the slip velocity when the particle size increases. In the Stokes limit as
well as for the small particle with a/δ=0.1, the slip increases monotonically while the
particle approaches the wall. As the particle size becomes of the order of δ, the profile
undergoes a qualitative shape change. Indeed, profiles corresponding to a/δ= 0.8 and
1.6 exhibit an inflexion point. The larger the particle, the closer to the wall the position
of the inflexion point. We shall come back to this feature later. No inflexion point is
observed on the profiles corresponding to the largest two particles with a/δ= 2.4 and
3.2, for which the slip departs significantly from zero only in the late stage of the
approach toward the wall.

Figure 6(a) shows how the slip Reynolds number, Res = 2a(V −U)/ν, varies with
the distance to the wall. Starting from negligible values for large separations, Res

grows as the wall is approached. While this increase remains moderate down to the
wall when a/δ < 1, it becomes dramatic for larger particles when ε→ 0. In particular,
Res reaches wall values in the range [15, 30] for the largest two particles. Similarly,
the differential acceleration between the fluid and the particle grows sharply while the
wall is approached, as seen in figure 6(b). Since the slip goes from near-zero values
when the gap is large to a finite positive value when ε=0, the differential acceleration
DU/Dt − dV/dt is generally negative throughout the near-wall region. Nevertheless
it may change its sign near the wall, as seen for a/δ = 1.6 and 2.4. We shall come
back to this point later. Large particles reach the wall while their centre is still outside
the boundary layer. Therefore, in the neighbourhood of the upper part of the particle
surface, the fluid is slowed down (due to the no-slip condition) at positions where it is
not yet undergoing viscous slowing due to boundary-layer effects. As a consequence
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FIGURE 7. Variation of the forces experienced by the particle with respect to the
wall-normal position. (a) Total force, FT ; (b) hydrodynamic force, FH = FT − F∞z . In (b),
symbols indicate the value taken by FH when the particle is held fixed at the stagnation
point (the colour code is identical to that used for the force profiles). The inset shows
the variations of FH for the particle corresponding to a/δ = 0.8 very close to the wall.
The line style refers to the particle size: a/δ = 3.2 (black line), 2.4 (dotted blue line),
1.6 (dash-dotted green line), 0.8 (red line).

the magnitude of the differential acceleration dramatically increases with the particle
size in the immediate wall vicinity.

Figure 7(a) displays the profiles of the total force FT exerted by the fluid on the
particle, defined as the z-projection of the right-hand side of (2.3). Profiles of the
difference FH=FT −F∞z between the total and ambient forces are shown in figure 7(b)
for ε6 1. In what follows, the force difference FH is termed the ‘hydrodynamic’ force,
as it results entirely from the disturbance induced by the presence of the particle. By
the way it is defined, FH is proportional to the difference between the particle and
fluid accelerations, as the comparison with figure 6(b) confirms. Although it is the
most obvious indicator that can be extracted from the simulations to characterize the
particle dynamics, the force FH provides limited insight into the physical mechanisms
involved. The reason for this is that FH represents the sum of all hydrodynamic
forces acting on the particle, with the exception of the ambient force F∞z . For
instance, suppose the particle is small enough for the creeping-flow analysis of
Rallabandi et al. (2017) to be applicable. Then, inertial effects such as the force
associated with the particle inertia, ρpVp dV/dt (with here ρp = ρ), or the ambient
force, F∞z , are negligibly small compared to zero-Reynolds-number effects such as
the viscous drag. As FH is merely the difference between these two inertial forces, it
is also negligibly small, as figure 7(b) confirms in the case of the smallest particle
(a/δ= 0.8). However, FH may alternatively be written as the sum of all viscous forces
involved in (4.1), i.e. FH = FA + FB + FC . Although each of these forces is large in
magnitude, their sum is small, and thus FH provides no insight into the magnitude
of individual viscous effects.

At the present stage, the only expectation with respect to FH is that, given its
nature, it should be an increasing function of the Reynolds number at a given ε. This
is confirmed by figure 8 in which FH is plotted against Re= 2Ba2/ν at the location
corresponding to ε = 1 for particles corresponding to a/δ > 0.1. Once normalized
using the viscous scaling µBa2, FH is seen to increase gradually from a negligibly
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FIGURE 8. Variation of the ‘hydrodynamic’ force FH with the particle Reynolds number
at the location corresponding to ε= 1 for each particle in the range 0.16 a/δ6 3.2. Error
bars correspond to the maximum deviation observed when the particle initial position zp0/δ
is varied from 12 to 20.

small value to approximately 4 while Re goes from ≈0.02 for the smallest particle
to ≈20.5 for the largest one. In this figure, we have gathered results obtained using
various release positions of the particle, 12 6 zp0/δ 6 20. Considering the small
variations of the hydrodynamic force recorded at ε = 1, it may be concluded that
present computational predictions in the near-wall region are insensitive to the choice
of zp0 and are therefore representative of a particle approaching the wall from infinity.

Let us now focus on the dynamics of the particle very close to the wall (ε � 1).
First of all, it is important to note that FT must eventually vanish when the particle
touches the wall. This directly results from the definition of FT as the z-projection of
the right-hand side of (2.3) and of the vanishing of the particle acceleration at the wall:
since dV/dt = V dV/dz and V = 0 when ε = 0, it follows that FT(ε = 0)= 0. When
ε�1, the evolution of the particle velocity and that of the hydrodynamic force depend
strongly on the particle size, as figures 5–7 revealed. The particle speed decreases
below that of a fluid tracer, as shown in figure 5, owing to additional wall-induced
forces, especially the one associated with the wall-normal gradient of the carrying
flow in (4.1) or its finite-Re counterpart. The smaller-size particles (a/δ = 0.8 and
1.6) decelerate drastically and the total force FT tends monotonically to zero as seen
in figure 7(a). For these particles, FH becomes negative (see figure 7b), which means
that the (toward wall) drag force exceeds the sum of all wall-induced contributions
(to be detailed later).

As seen in figure 5, the rate of approach to the wall of larger particles (a/δ = 2.4
and 3.2) remains considerably larger for small gaps. As a consequence, the magnitude
of the total force does not decrease monotonically. Instead, FT decreases on approach
only until ε ≈ 0.2. Then the resistive force due to lubrication grows and becomes
dominant, yielding a strong particle deceleration, i.e. a large positive dV/dt since
V < 0. For a/δ = 2.4, the lubrication force is able to bring the particle virtually to
rest, so that dV/dt becomes small and FT eventually tends to zero. Since the fluid
decelerates down to the wall, F∞z remains positive down to ε = 0 (i.e. it pushes the
particle away from the wall), so that FH = FT − F∞z eventually becomes negative.
As figure 7(b) shows, the latter trend is actually observed whatever the particle size.
For the largest particle (a/δ = 3.2), FT is still dramatically rising at ε = 0.01, the
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FIGURE 9. Effect of the near-wall numerical resolution on the total force FT acting on
the largest particle (a/δ = 3.2) at small gaps. The line style refers to the grid in table 1:
d2 (black), d1 (red solid), d0 (red dashed). Additional under-resolved runs with a minimum
cell size ∆m

z /δ = 0.08 (blue) and 0.04 (green), both with B1t= 1× 10−4.

minimum value allowed by the computational grid. A zoom of its behaviour very
close to the wall is provided in figure 9. This zoom emphasizes how refined the grid
resolution has to be close to the wall for the force divergence to be correctly captured
at gaps less than a few per cent of the particle radius. As may be expected, the curves
obtained with a purposely under-refined grid (blue and green lines in figure 9) exhibit
a ‘kink’ when ε→ 0, due to under-resolution. This is totally distinct from the local
maximum exhibited in figure 7(a) by FT for a/δ= 2.4 which has a real physical basis
as discussed above. With the grid parameters used here, it is clear that we do not
resolve the flow sufficiently well to capture the return to zero of FT for a/δ = 3.2.
However, theory predicts that lubrication eventually decelerates the particle whatever
its size, so that FT should also reach a local maximum in that case. Considering the
last stage of approach observed with a/δ= 2.4, we may infer that FH also decreases
and becomes eventually negative with a/δ = 3.2, although our computations do not
capture this stage.

A primary finding obtained from the simulations analysed above is that the total
force acting on a decelerating neutrally buoyant particle approaching a stagnation point
at a wall exhibits a transition according to its size. For a/δ . 1.6, the total force
experienced by the particle decreases monotonically to zero, while for a/δ & 2.4 it
increases sharply near the wall, before returning to zero. In the former case, long-
range hydrodynamic effects, such as the repelling wall-induced force in (4.1), are
capable of efficiently slowing down the particle before lubrication effects come into
play. In contrast, inertial effects associated with the disturbance flow for large enough
particles make them able to keep a significant speed down to separations where part
of their surface is already very close to the wall. Their abrupt deceleration imposed
by lubrication effects is responsible for the non-monotonic evolution of the total force
at very small gaps. This change of behaviour has a significant practical importance:
if the gap between the particle and the wall becomes comparable to the characteristic
surface roughness of the wall or particle while the particle velocity is still finite, the
continuum description breaks down and solid contact is expected to occur.
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FIGURE 10. Angular distribution of the contribution f (θ) to the hydrodynamic force at
various gaps and for three particle sizes; θ is in degrees from the position of closest
approach to the wall. (a) a/δ = 3.2, (b) 2.4 and (c) 0.8, with ε = 0.005 (green),
0.01 (black), 0.05 (blue), 0.10 (red) and 0.20 (magenta). Inset: FH computed from the
right-hand side of (2.3) (circles) or defined as FH =

∫ π

0 f (θ) dθ (squares).

4.2. Stress distribution at the particle surface
We now examine several features of the local stress distribution at the particle surface
when the gap is small, using the interpolation technique outlined in § 2.

First, defining Σ∞ as the stress tensor associated with the undisturbed flow, we
compute the disturbance traction t= (Σ −Σ∞) ·n at the particle surface as a function
of the angular position θ with respect to its ‘lower’ pole (the point closest to the
wall, see figure 1). This allows us to obtain the quantity f (θ) = 2πa2 sin θez · t
which is nothing but the local contribution to the overall hydrodynamic force, since∫ π

0 f (θ) dθ =FH . Profiles of f (θ) are shown in figure 10 at several gap values and for
three different particle sizes. As the insets in this figure show, values of FH obtained
by integrating f (θ) over the particle surface agree well with those found directly by
subtracting F∞z from the right-hand side of (2.3). Nevertheless, differences occur for
the smallest particle (figure 10c), an indication that the stress distribution about that
small particle is only marginally resolved by the selected discretization (see table 1).
The spurious oscillations discernible in some regions of the corresponding angular
distributions corroborate this point.

Before commenting on the profiles in figure 10, it is worth pointing out that the
characteristics of the small particle (a/δ = 0.8) are distinctly different from those of
the larger two particles. Indeed, the Reynolds number of the former is of O(1) and
this particle is entirely immersed within the boundary layer of the HH flow throughout
the range of gaps considered here. For instance, for ε = 0.2, its top pole stands a
distance 1.76δ from the wall, whereas the outer edge of the boundary layer, where
the radial component of U∞ reaches 98 % of its free-stream value, stands a distance
3δ (see figure 1). In contrast, the other two particles have Reynolds numbers in the
range [10, 20], and their top pole stands well beyond the outer edge of the boundary
layer. In particular, more than half of the largest particle surface is still outside the
boundary layer when ε = 0.



Although the splitting between pressure and viscous stress contributions is not
shown in the figure, examination of the two separate contributions reveals that the
former is by far the dominant contributor to FH . Only for the smallest particle is
the viscous stress significant far from the poles, say for 45◦ 6 θ 6 135◦. When the
gap decreases to ε = 0.1, f (θ) rises in the region closest to the wall for the largest
two particles, say for θ . 30◦, whereas it remains almost unchanged on the rest of
their surface. For the smallest particle, f (θ) also rises in the region θ . 20◦, but
it decreases on the rest of the half of the surface closest to the wall. For all three
particles, the rise of f (θ) on this leading part goes on as the gap further decreases.
However, changes in the distribution also start to affect the rest of the surface for
the largest two, and become prominent for ε = 0.01. Indeed, for this gap value,
the distribution of f (θ) exhibits two marked minima respectively located around
θ = 45◦ and θ = 155◦, especially for the largest particle (black line in figure 10a).
In the case of the smallest particle, changes in f (θ) remain confined to the half of
the surface nearest the wall throughout the entire range of gaps. Considering the
evolution of the complete pole-to-pole distribution, it appears that the part of the
surface on which f (θ) is negative increases with time, i.e. as the flow brings the
particle closer to the wall, in all cases. As regions with negative f (θ) contribute to
make FH negative, i.e. to drive the particle to the wall, the repulsive contribution only
comes from the part of the surface nearest the wall, the extent of which decreases
with the gap. More precisely, defining θc as the smallest angle at which f (θ) becomes
negative, the evolutions reported in figure 10 indicate that θc(ε = 0.2) ≈ 50◦, while
θc(ε = 0.01)≈ 20◦.

For the largest two particles, combining the above observations with the behaviour
of FH displayed in the insets of panels (a) and (b) of figure 10, one can conclude that,
despite the increase in the surface percentage over which f (θ) is negative, the much
larger positive values of f (θ) in the region θ . θc provide the dominant contribution
to FH until ε becomes very small. The green line in panel (b) shows the very last
stage of the evolution once the particle has decelerated to a small velocity. Here, the
magnitude of the above two minima and that of the much larger maximum near the
front pole have decreased dramatically and θc has fallen to ≈15◦. In this configuration,
the negative contribution has become dominant, making FH negative. In the case of the
smallest particle, no such qualitative changes happen. As mentioned above, the rise of
f (θ) for θ < θc is accompanied by the gradual increase of negative values of f (θ) in
the range θc <θ < 90◦. This is not unexpected: since the particle Reynolds number is
small, positive and negative contributions have to almost balance each other whatever
ε, as predicted by (4.1). Hence, FH keeps a small magnitude throughout the entire gap
range considered here. Since the particle deceleration is very small throughout this
range, the total force FT is almost zero, so that FH = FT − F∞z has to be negative, as
confirmed by the inset in figure 10(c). The same is true for the intermediate particle
(a/δ = 2.4) in the very last stage of its approach: the green symbol in the inset of
panel (b) indicates that FH has become negative after the qualitative changes noticed in
the f (θ) distribution in between ε= 0.01 and ε= 0.005 have taken place. This implies
that the negative stress applied by the flow over most of the particle surface has
become able to balance (and presumably exceed) the positive contribution provided
by the lubrication effect on the small portion closest to the wall, corresponding to
θ < θc. The same would occur with the largest particle, had the grid resolution been
sufficient to resolve gaps thinner than those reported in figure 10. Nevertheless, the
negative values of FH reported in the insets of panels (b) and (c) for the smallest gap
are smaller than those found in the case the same particle is held fixed at the wall,



as shown by the blue and red symbols in figure 7 (b), r espectively. T hus, i n b oth cases, 
the flow r esistance i n t he g ap h as s till a  r esidual p ositive contribution.

As mentioned above, the divergence of the lubrication force as ε → 0 can in 
principle bring the particle to rest whatever its size. Actually, the particle–wall 
interaction at very small gaps is not likely to be exclusively hydrodynamic. On the 
one hand, the viscous force reaches extremely high values, which may lead to particle 
and wall deformation depending on their respective mechanical properties (Davis, 
Serayssol & Hinch 1986). On the other hand, the roughness of the two surfaces 
may come into play. Since elasto-hydrodynamic interactions are not accounted for 
by the immersed boundary technique used here and both surfaces are considered 
perfectly smooth, we stopped the numerical simulations at the smallest gap displayed 
in figure 1 0, a ssuming t hat s tandard fl uid me chanics do es no t ap ply fo r sm aller gaps.

There is no doubt that lubrication effects are responsible for the sharp increase of 
f (θ) noticed on the front part of the particle as it approaches the wall. Nevertheless, 
a quantitative comparison of the corresponding pressure distribution with predictions 
from lubrication theory is worthwhile. From this theory, it is known that when a 
rigid body approaches a wall with a finite v elocity V , t he v iscous r esistance grows 
as 1/ε when ε � 1, yielding a diverging force scaling as µa|V|/ε (Cox & Brenner 
1967). This is a consequence of the large pressure required to drive the fluid out 
of the squeezed film l ocated i n t he g ap. F or a  r igid s phere a pproaching a  planar 
wall, the quasi-steady axisymmetric solution for the radial pressure distribution in the 
creeping-flow r egime m ay b e w ritten i n t he f orm ( Leal 2007)

P(r)− P(R)= 6µVε

∫ r

R

s
h3(s)

ds. (4.2)

In (4.2), h(r) is the gap thickness expressed as a function of the radial coordinate
r (with h(r = 0) = εa), Vε = |V|(zp/a= 1+ ε) is the current sphere speed and R is
the outermost point of the thin-film region. Since pressure variations across the gap
(i.e. in the z-direction) are assumed to be negligibly small, P(R) is almost equal to
the pressure P0 at the stagnation point in the single-phase HH flow. Setting ε = 0.01
and making use of the particle velocity determined at that position in the simulations,
predictions of (4.2) are compared in figure 11 with the previously determined surface
pressure distributions. The agreement is good in all cases. The pressure at the point
closest to the wall is slightly over-predicted by the lubrication approximation for the
largest two particles (by approximately 8 % for a/δ = 3.2), while it is slightly under-
predicted for the smallest two.

To summarize, we see that the primary findings in terms of the particle dynamics
developed in § 4.1 are associated with the controlling influence of the size of the
particles, which affects their relation to the boundary-layer thickness. For smaller
particles of a/δ = 0.8 and 1.6, the hydrodynamic interaction with the wall is able
to efficiently reduce the velocity of the particle at sufficient distance to allow a
monotonic decrease in the net force on the particle, so that there is an asymptotic
approach to the surface in which a drag force due to a lagging slip relative to the
carrying flow is balanced by the lubrication flow in the decreasing gap. For the larger
particles of a/δ = 2.4 and 3.2, the onset of large slip is delayed until near contact,
so that the particle still moves with a velocity near that of the fluid at its centre
while part of its surface is very close to the wall, resulting in a very large lubrication
force, which grows with the particle size and peaks progressively closer to contact
for larger a/δ. The importance of the boundary-layer flow in determining the detailed
form of the stresses has been developed in § 4.2, where the portions of the surface
resulting in the drag force toward the surface and the lubrication force are illustrated
at several separations.
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FIGURE 11. Pressure profiles along the thin-gap region of the particle surface at ε= 0.01,
as a function of the angle in degrees measured from θ =0 on the axis of the motion. Solid
lines: numerical predictions; dashed lines: thin-gap approximation (4.2), both for a/δ= 3.2
(black), 2.4 (blue), 1.6 (green) and 0.8 (red).

5. Viscous and inertial effects in the thin-gap limit
In addition to the global hydrodynamic force FH extracted from the simulations,

the material discussed in §§ 4.1 and 4.2 provides two separate ways to estimate the
viscous forces at work in the thin-gap limit. First, we may use the force balance
(4.1) which is valid down to the wall, provided fluid inertia does not affect the
particle-induced disturbance. Second, the leading-order viscous contribution to the
force may be obtained through the lubrication approximation, since we just showed
that the actual surface pressure distribution in the lubrication gap closely agrees
with the corresponding prediction. Assuming that the dimensionless gap ε and gap
Reynolds number ε|Rev| are both much smaller than unity, with Rev(ε) = aV(ε)/ν,
lubrication theory predicts that, in a still fluid, a spherical particle approaching the
wall with strictly normal velocity V(ε) experiences a wall-normal lubrication force
FL(ε) such that (Cox & Brenner 1967)

FL(ε)=−6πµa
V(ε)
ε

[
1−

ε

5

(
1−

1
2

Rev

)
ln ε
]
. (5.1)

As Rev is negative (respectively positive) when the particle moves toward (respectively
away from) the wall, inertial effects increase the lubrication force in the situation
considered here. Using the particle velocity V(ε) provided by the simulations, it is
straightforward to compute FL(ε). Similarly, all forces in (4.1) may be computed using
V(ε) and the U(z)-distribution of the undisturbed wall-normal velocity in the vicinity
of the particle centre location, zp/a= 1+ ε.

Figure 12 displays the corresponding predictions together with the ‘hydrodynamic’
force FH , for the smallest and largest particles examined in § 4.2 and gaps less
than 0.1. In (5.1), the inertial correction is negligibly small (60.3 %) throughout the
considered range of ε for the smallest particle. In contrast, it is significant for the
largest one (≈3.2 % for ε = 0.01) but the gap Reynolds number is approximately 2.6
when ε = 0.1, well beyond the limit of validity of the asymptotic theory. For these
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FIGURE 12. Force profiles in the thin-gap region for (a) a/δ = 0.8, and (b) a/δ = 3.2.
Hydrodynamic force FH (green), lubrication force FL (red dashed) and sum F0 = FA +
FB + FC of the three forces involved in the creeping-flow prediction (4.1) (black solid).
The blue lines correspond to individual contributions to (4.1): FA (solid), FB (dashed) and
FC (dotted). Inset in (a): zoom on the FH , FL and F0 profiles.

reasons, the inertial correction is disregarded in the estimate of FL(ε) plotted in
figure 12. This figure also displays the individual forces involved in (4.1), namely the
drag force FA, and forces FB and FC resulting from the wall-normal gradient ∂zU and
curvature ∂2

z U of the undisturbed fluid velocity, respectively. In addition to FA, it is
no surprise that FC diverges as the wall is approached, since ∂2

z U is non-zero at the
wall and the pre-factor C in (4.1) is known to diverge as 1/ε (Rallabandi et al. 2017).
It is somewhat more subtle to understand why FB also diverges as ε→ 0, although
the wall-normal velocity gradient ∂zU vanishes at the wall, owing to the no-slip
condition. The reason stands in the finite size of the particle, more specifically in
the fact that the particle radius, a, is not small compared to the characteristic length
scale of the flow inhomogeneity, |∂zU|/|∂2

z U|, which is necessarily of O(δ) in the
configuration we consider. For this reason, ∂zU, which depends on a(1 + ε), tends
toward a finite value at the position zp = a corresponding to ε = 0. This is why
the velocity gradient, hence FB, provides another O(ε−1) contribution to F0 in the
small-gap limit for particles whose size is of the order of δ.

Let us now discuss the trends observed in figure 12(a) with the small particle. In
line with the discussion in § 4.1, this figure indicates that each of the three forces
in (4.1) is much larger than their sum, say F0. The repulsive contribution FB is
significantly larger than either of the two forces toward the wall, among which is the
drag. The resultant force F0 has the same order of magnitude as FL, although the
inset reveals that the two follow somewhat different evolutions as the gap decreases.
The dominant contribution responsible for the ε−1-divergence of F0 as ε → 0 is
provided by the part of the particle surface closest to the wall, which is also by
construction the one responsible for the lubrication force, as (4.2) shows. Combined
with the fact that F0 and FL were both computed using the actual particle velocity,
this remark implies that they necessarily have comparable magnitudes. The lubrication
force exceeds F0 for ε & 0.035, because it does not include the contribution resulting
from the stress on the portion of the particle surface away from the wall, which is
negative (i.e. directed toward the wall) as was made clear by figure 10(c). Conversely,
the ε−1-divergence of FL occurs later (i.e. for smaller gaps) than that of F0. This
is because the prediction (5.1) assumes the fluid to be at rest far from the particle,



so that possible lubrication-type contributions due to the inhomogeneity of the carrying
flow are not directly accounted for. For instance, figure 4(a) revealed the existence
of a bulge in the near-wall streamline pattern, in the region where the lubrication
film meets the HH flow. This bulge indicates that, compared to the classical situation
of a particle settling toward a wall in a fluid at rest, the flow structure within the
lubrication film is modified by the outer flow. In the creeping-flow limit, these
modifications yield the O(ε−1)-divergence of forces FB and FC in (4.1), which in
the present case persists down to the wall for the reasons discussed above. Instead,
the standard lubrication theory on which (5.1) is grounded only accounts for the
ε−1-divergence of FA in (4.1). Since the repulsive force FB is larger than the force
FA toward the wall for all ε, equation (5.1) is expected to under-predict the overall
repulsive force experienced by the particle when the gap becomes very small, which
is consistent with the behaviour observed in figure 12 for ε→ 0. Note, however, that
the particle velocity used in (5.1) is the one provided by the simulation, and this
velocity is obviously influenced by the flow inhomogeneities. So (5.1) is actually a
mixed approximation in which the lubrication effect is evaluated as if the fluid were
at rest at infinity, while the velocity that drives the film squeezing in the gap does
take into account the actual properties of the carrying flow.

For reasons similar to those discussed above, F0 and FL still exhibit similar profiles
and magnitudes throughout the considered gap range in the case of the largest particle
(figure 12b). It may also be remarked that the contribution FC due to the curvature
of the undisturbed flow profile is much smaller than in figure 12(a). The reason is
merely that the centre of the large particle considered here stands slightly outside the
boundary layer (see figure 4), a position at which the curvature of the U∞-profile is
still small. In contrast the particle examined in figure 12(a) is fully immersed in the
boundary layer, and the parabolic component ∂2

z U of the U∞-profile is large at that
position.

The difference F0 − FH represents (in absolute value) the sum of all inertial
contributions to the force experienced by the particle, apart from the ambient force
F∞z . This difference is positive for all ε for both particles. According to figures 6
and 8, the slip and shear Reynolds numbers of the small particle in figure 12(a)
are both of O(1) at such small gaps. Consequently, inertial corrections are expected
to alter the zero-Re expression of the three forces involved in (4.1), especially that
of the drag. The noticeable imbalance between F0 and FH confirms that inertial
effects are already significant for Reynolds numbers of O(1). In the case of the
large particle considered in figure 12(b), the shear Reynolds number is approximately
20 (see figure 8), while figure 6 indicates that the slip Reynolds number increases
from Res ≈ 7 at ε = 0.1 to Res ≈ 27 at ε = 0.01. It is therefore no surprise that the
resultant force F0 based on the (now barely relevant) creeping-flow approximation
is larger than in the case of the small particle. More precisely, the dimensionless
difference (F0 − FH)/µBa2 is larger by a factor of 4–6 in the former case. Since
forces are normalized by µBa2 in that figure, and the ratio of the two particle
radii is 4, this comparison confirms that the difference F0 − FH scales as a3, i.e.
it is proportional to the particle volume, which is a hallmark of inertial effects.
This prompts a qualitative discussion of near-wall inertial effects in the present
flow configuration, especially those yielding a negative force apt to compensate for
the imbalance F0 − FH . Wall-induced inertial forces in the HH flow were recently
computed by Magnaudet & Abbas (2020) in the low-but-finite Reynolds-number
limit, assuming the particle to be small compared to the boundary layer thickness
(a/δ� 1) and close enough to the wall for the latter to stand within the inner region





Consequently the former effects are not dominant when the Reynolds number is
small, and they merely contribute to the O(ε0)-term in (5.2).

Clearly, FU has potentially the desired characteristics to make the sum F0 + FU

close to FH (a difference should remain, given the presence of the other inertial
contributions just reviewed). Indeed, it is the only inertial force that is directed
toward the wall as the particle decelerates. Obviously, no closed-form expression for
FU is available when Re is moderate or large, which makes the theoretical prediction
of the deceleration of the large particle in figure 12(b) out of reach. In contrast,
equation (5.2) might be applicable to the small particle considered in figure 12(a),
whose Reynolds number is of O(1). Unfortunately, for the reason explained above,
this expression is not valid down to the small range of ε of interest here. A limited
insight into the influence of FU on the overall force balance may, however, be obtained
by computing F0, FU and FH for this particle at the position corresponding to ε = 1,
for which (5.2) should still be fairly accurate. Normalizing all three forces with µBa2

and using computational results, we determine F0(ε = 1) ≈ 7.1, FU(ε = 1) ≈ −6.0
and FH(ε = 1) ≈ 1.3. Hence, F0 + FU ≈ 1.1, which is very close to FH as could
be anticipated from the above discussion. This result reinforces the view that the
force resulting from the particle relative acceleration plays a key role in the way it
approaches the wall when the gap becomes small. This provides a strong motivation
to extend the validity of (5.2) to small gaps in future work.

6. Summary and concluding remarks

In this paper we report fully resolved simulations to investigate the unsteady
motion of a neutrally buoyant spherical particle transported toward a flat wall along
the axis of an axisymmetric stagnation point flow, the Hiemenz–Homann flow. For this
purpose, the fluid and particle motions were coupled through an immersed boundary
approach. By suitably refining the grid in the near-wall region and adapting the
temporal resolution, we were able to capture lubrication effects in the wall–particle
gap, until this gap has decreased to 1 % of the particle radius on the flow axis. We
considered a range of particle sizes, from radii slightly less than the boundary-layer
characteristic thickness, to radii such that the particle centre still stands outside the
boundary layer when the gap becomes very small. Computational results show that
the particle size relative to the boundary layer thickness has a dramatic influence on
the particle wall-normal motion.

Far from the wall, the particle follows the local fluid motion while transported
toward the stagnation point. Near the wall, hydrodynamic interactions modify the
particle-induced disturbance, and hence the overall force experienced by the particle,
in such a way that the particle lags the local fluid flow. The paper focused on the
near-wall dynamics for dimensionless gaps ε less than unity, where the particle
decelerates faster than the local carrying flow. Computational results were analysed
by considering several gap-dependent indicators, especially the slip velocity between
the particle and local fluid, and the ‘hydrodynamic’ force FH defined as the difference
between the total force acting on the particle and the ‘ambient’ force resulting from
the pressure gradient associated with the wall-normal deceleration of the fluid in the
carrying flow.

Results revealed that the smaller the particle, the larger the distance from the
wall (scaled by the particle radius) at which the slip velocity departs from zero.
The slip continuously increases while the particle approaches the stagnation point.
However, its variation when the dimensionless gap ε is in the range 0<ε6 1 depends



dramatically on the particle size, more specifically o n w hether o r n ot t he p article is 
entirely immersed within the boundary layer. We examined two ‘small’ particles 
with radii of the order of the boundary-layer characteristic thickness, a/δ = 0.8 and 
1.6, respectively. Since the total thickness of the boundary layer of the HH flow is 
approximately 3δ, their entire surface is subject to the modifications o f t he ambient 
flow t hat t ake p lace w ithin t he b oundary l ayer. A s a  r esult, v ariations o f t he slip 
velocity with respect to the gap exhibit an inflection p oint a t t he l ocation w here the 
differential acceleration between the particle and the ambient flow c hanges i ts sign. 
This provides an indication that the particle motion is already sufficiently slowed 
down by the wall that it would be gently brought to rest at the wall if the simulation 
were further continued.

We also considered two ‘large’ particles with a/δ = 2.4 and 3.2, respectively. In 
this case, a substantial part of the particle surface stands beyond the outer edge of 
the boundary layer. For such particles, the slip velocity departs from zero only in the 
late stages of the approach to the wall, i.e. for small values of ε, so that FH increases 
continuously until ε � 1. We compared pressure distributions in the narrow gap region 
between the particle and wall with predictions based on the lubrication approximation. 
This comparison confirmed that the large pressure increase in that region as ε  becomes 
small is controlled by viscous lubrication. We were able to track the motion of the 
particle corresponding to a/δ = 2.4 down to a small-gap situation in which it is already 
virtually brought to rest. We could not reach the same stage with the largest particle 
corresponding to a/δ = 3.2, which is still strongly decelerating (and experiencing a 
sharply growing FH) when the dimensionless gap has decreased to 0.01.

Last, we used the recorded particle velocity and ‘hydrodynamic’ force to evaluate 
the respective roles of viscous and inertial effects when the gap has become small. We 
compared available theoretical predictions for the various components of the viscous 
force valid whatever the gap in the creeping-flow l imit, w ith p redictions b ased on 
the lubrication approximation. This comparison revealed a good overall quantitative 
agreement for all particle sizes studied. It also made some limitations of the available 
lubrication-based prediction apparent. Especially, effects of the carrying flow (which 
is spatially inhomogeneous at the particle scale while the theory assumes a quiescent 
fluid) a re o verlooked i n t his t heory, w hile p redictions f rom t he e xact creeping-flow 
theory show that they provide a significant c ontribution t o t he v iscous f orce w hen the 
gap becomes very small. The difference between the overall hydrodynamic force and 
the viscous force acting on the particle was found to be large, even for the smallest 
particle for which the Reynolds number is close to unity. To better understand the 
origin of this difference, we briefly r eviewed t he v arious n ear-wall l ow-Re inertial 
effects recently predicted in the same flow t hrough a n a symptotic a pproach valid 
for large-to-moderate gaps. We identified t he ‘ unsteady O seen f orce’ r esulting from 
changes induced in the particle’s wake by the relative acceleration between the 
particle and fluid a s t he k ey c ontribution o f i nertial e ffects i n t he l ate s tages o f the 
approach to the wall.

This work calls for new investigations in several directions and may stimulate 
developments in some others. Regarding numerical methodology, findings o f the 
present study may be used as a guide in the development of lubrication-type 
subgrid-scale models aimed at avoiding the need of capturing the flow details 
in the gap. Although the idea has been around for some time, current attempts 
have essentially focused on uniform flows. R esults r eported h ere i ndicate t hat the 
flow n on-uniformity c ontinues t o i nfluence th e pa rticle dy namics wh en th e ga p has 
become very small, which calls for further improvements. Another more general



issue stands in the coupling of the fluid flow with the mechanical behaviour of
the particle and wall when surface stresses in the gap have become large enough
for elasto-hydrodynamic effects to come into play. Designing immersed boundary
methods capable of dealing with elastic solid surfaces in the presence of both viscous
and inertial effects in the fluid is a difficult challenge with potential impact in many
applications; the very-near-wall dynamics of particle-laden flows is just one of them.

Turning to basic hydrodynamic phenomena, this investigation helped identify several
open issues. Since the ‘unsteady Oseen force’ was recognized as a crucial component
of the force balance on small particles when the gap becomes small, obtaining an
expression for this force valid in the range ε 6 1 is of special importance. The
reflection technique is not well suited in this range, and use of bipolar coordinates
is probably required, although non-trivial since nonlinear contributions have to be
computed. Obviously, moderate-to-large Re situations are out of reach for asymptotic
approaches. Therefore specific numerical studies have to be performed with the
particle held fixed at a prescribed gap, in order to determine the drag force as a
function of Re and ε. The same approach may be used to obtain the moderate-Re
extension of the ‘unsteady Oseen force’. That is, the particle being still held fixed,
a uniform wall-normal flow with a prescribed acceleration may be imposed at a
large distance from the wall, allowing acceleration-induced drag variations to be
recorded. A force decomposition similar to that designed by Rivero, Magnaudet &
Fabre (1991) may then be employed to obtain a semi-empirical expression for the
Re- and ε-dependent pre-factor of the relative acceleration involved in FU.

Going beyond the specific configuration on which the present paper has focused is
also desirable. Since the code we use is fully three-dimensional and the immersed
boundary treatment implemented therein is not restricted to a single body, more
complex flow geometries can easily be considered. A natural extension in this
direction is to examine the dynamics of particles initially released at some distance
from the symmetry axis of the HH flow. This configuration was also worked out
theoretically by Magnaudet & Abbas (2020) in the low-but-finite Reynolds-number
limit. Their asymptotic radial force balance indicates that near-wall radial forces of
viscous origin tend to make the particle lag behind the fluid in the radial direction.
Conversely, finite-Re inertial forces tend to make it lead the fluid. In addition to the
wall-normal linear and parabolic flow components, the carrying flow at the particle
position now comprises a radial shear component. This component grows with the
radial distance to the flow axis, so that the flow turns virtually into a parallel shear
flow when this distance becomes large. Inertial forces then comprise lift contributions
coupling the wall-normal and radial evolutions of the slip velocity. Exploring how
these predictions are modified at higher Reynolds number is a natural continuation
of the present investigation. Last, the single-particle dynamics discussed here is
presumably deeply modified when two or more particles are introduced in the flow
and start to interact through long-range hydrodynamic effects. Considering selected
configurations in which such interactions take place should provide valuable insights
into finite-concentration effects affecting near-wall inertial suspensions.
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FIGURE 15. Velocity disturbance induced by a sphere held at the hyperbolic point of a
biaxial straining flow: (a) axial velocity along the z-axis, (b) radial velocity within the
(x, y)-diametrical plane. Black line: theoretical solution, red line: simulation results.

Stokes velocity, VSt = 2(ρp/ρ − 1)ga2/9ν, is plotted against the dimensionless gap.
Computations make use of a non-uniform grid much refined in the vicinity of the
wall, similar to those employed with the HH flow. In the case of the smallest
particle, which corresponds to a Stokes number St = 1.72, with St = 2(ρp/ρ)aVSt/9ν,
the typical cell size in the bulk is such that ∆/a = 1 × 10−2, i.e. 100 grid cells
are distributed over one particle radius. In the gap, the cell size is decreased to
a minimum ∆m

z = 2.5 × 10−4. The time step is set to 2 × 10−4a/VSt. As the inset
in figure 13 reveals, the agreement is very good when the dimensionless gap goes
down to a few per cent. When the gap increases, numerical predictions somewhat
under-predict the experimental settling velocity. A possible cause for this departure is
that independence with respect to the time step is not fully achieved ‘far’ from the
wall, despite the very small time step used. For instance, tests show that dividing the
time step by a factor of 4 reduces the drag on the smallest particle by approximately
3 % when ε = 0.15, thus increasing its settling velocity by the same amount.

A.2. Sphere held at the hyperbolic point of a biaxial straining flow
To probe the accuracy of our simulation approach with respect to finite-size effects in
non-uniform flows, we considered the situation in which a rigid sphere with radius a is
held fixed at the hyperbolic point of a biaxial straining flow with characteristic strain
rate B and velocity U∞ = aB(x− 3zez), where x= (x, y, z) is the dimensionless local
position with respect to the sphere centre and ez is the unit vector in the z-direction.
The axisymmetric computational domain, displayed in figure 14, is a 25a-radius 50a-
height cylinder. The grid is uniform, with a cell size ∆ = a/40 in both directions.
Both components of U∞ are imposed on the top, bottom and lateral surfaces of the
computational domain. The particle Reynolds number, Re= 2Ba2/ν, is set to 0.01. In
the creeping-flow limit, the disturbance velocity induced by the no-slip condition at
the sphere surface is the sum of a stresslet and an irrotational quadrupole, namely
(Leal 2007)
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FIGURE 16. Same as figure 15 within the diagonal plane inclined by +45◦ with respect
to the (x, y)-plane. Black line: theoretical solution, blue line: simulation results.

with σ = (r2
+ z2)1/2. As figures 15 and 16 show, the computed flow disturbance agrees

well with the theoretical solution throughout the domain, making us confident that the
coupling of the immersed boundary approach with the Navier–Stokes solver properly
captures the flow induced by a finite-size particle immersed in a straining flow.
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