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Acrylic acid can be polymerized by precipitation in different solvents. Carbon dioxide is an interesting 
solvent given its tunable density and solvent power depending on the pressure and temperature. These 
physicochemical characteristics make it possible to solubilize some polar compounds in CO 2 depending 
on temperature and pressure. ln this work. we report pressure vs volume pseudo-continuous curves at 
re constant temperature for the CO 2 + M binary mixture. They were determined in a fully computerized 
variable-volume high-pressure view cell capable of monitoring the position of the piston. The exper
imental data is simultaneously isoplethic and isothermal and it covers a wide range of pressures (up 
to 20MPa). Using this raw experimental data, other properties were determined such as liquid-vapor 
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n new technologies with the aim of reducing waste streams [2].
O2 has many unique properties and constitutes an increasingly
opular alternative in polymer processing [2]. Is a low dielec-
ric constant compound and a weak Lewis acid with a significant
uadrupole moment. Further, CO2 is a gas at normal conditions but,
ompressed, can reach the supercritical domain (TC =304.25 K, PC
7.38 MPa) at relatively moderate conditions. CO2 has interesting
roperties in the supercritical region including tunable density and
olvent power, intermediate viscosities between vapor and liquid
iscosities and “liquid-like” heat capacity depending on pressure
nd temperature [3]. Particularly, in polymer synthesis, CO2 has
ther interesting advantages, such as high mass transport rates,
o Trommsdorff effect and no chain transfer to solvent [2]. Super-
ritical CO2 can solubilize low molecular weight polar molecules
uch as ethanol, acetone, tetrahydrofuran [4], and even some car-
oxylic acids such as acrylic acid (AA) [5]. Therefore, supercritical
O2 (scCO2) can also be used as a reaction medium in radical
olymer synthesis, as many unsaturated monomers are soluble at
elatively moderate conditions [6–8]. However, the corresponding
olymers are typically insoluble in scCO2, giving rise to a typical
eterogeneous polymerization.

Hydrophilic polymers can be obtained by various heterogeneous
olymerization processes in organic solvent, including precipita-
ion, inverse emulsion, suspension and dispersion polymerizations.
hese systems differ in the initial phase behavior of the polymeriza-
ion mixture, polymerization kinetics, and mechanism of particle
ormation [9]. Although widely used, these processes sometimes
equire purification steps. Desorption of the surfactant from par-
icles and removal of volatile organic compounds (VOCs), like
esidual monomer and/or solvent from the polymer, are among the
rawbacks of these processes [10]. Precipitation polymerization

s a stabilizer-free process in which both initiator and monomer
re soluble in the reaction medium while the polymer is insolu-
le and precipitates as it is formed and allows the preparation of
igh-purity polymer powders [11].

Poly(acrylic acid) (PAA) is used in many applications: as a
uperabsorbent polymer for hygiene products and agriculture,
cale inhibitor for water treatment and dispersant for paints and
he paper industry. On an industrial scale, it is produced either
y solution free-radical polymerization in water or in heteroge-
eous media [12]. AA has been polymerized successfully in CO2
y precipitation polymerization in a batch reactor [2,11,13,14] and
y continuous precipitation polymerization in Continuous Stirred
ank Reactors (CSTR) [7]. To properly design supercritical reactors,

t is important to consider the phase behavior of the initial reactive
ixture. In this context, one of the main goals of the present work

s to experimentally find conditions of homogeneity for the binary
ixture CO2 + AA at different temperatures to carry out the initial

tages of the polymerization in single fluid phase conditions. On
he other hand, density data is important for the design of continu-
us supercritical reactors, given that the volumetric flow rates and
he residence time are related to this property of the fluid mixture.
o experimentally find conditions of homogeneity for the solvent
ixtures, an isothermal/isoplethic method was used in this work,
ith a continuous scan of the pressure and the density of the mix-

ure. This method was developed by Prof. Kiran’s group and there
re several publications showing its importance [15–17].

The main goal of this work is to provide new experimental
ata on phase boundaries at different temperature and volumetric
ata for the ‘CO2 + AA’ binary system. Pressure vs Volume pseudo-
ontinuous curves at constant temperature were determined in

variable volume high-pressure view cell, in a wide range of

ressures. As part of these experiments, liquid-vapor boundaries
ere determined, and Density vs Pressure and Density vs Tem-

erature plots were built. Six different mixture compositions
ere loaded to the cell from 0.044 to 0.594 mol fraction of AA in
the 313.15–363.15 K temperature range. The maximum pressure
recorded was 20 MPa and the maximum density 980 kg/m3. With
this volumetric data, excess volume plots at high pressure for
the mixture were obtained, resulting in negative deviations. The
experimental window swept in this work is in accordance with the
polymerization conditions described previously in the literature
for AA in CO2 [7,11,13,14]. The phase boundaries were correlated
with a simple model. A three-parameter cubic equation of state
(3P-EoS), the RKPR EoS, developed by Cismondi et al. [18], was
applied in order to improve the representation of densities for
different types of compounds, while maintaining the relative
simplicity of cubic equations of state. This EoS has shown to
predict very well the phase behavior of CO2-containing mixtures
[19–21], but this is the first time, to our knowledge, that is applied
to a carboxylic acid binary system. This work forms part of a
wider project involving the copolymerization of AA and other
comonomers in compressed solvents.

2. Materials and methods

2.1. Materials

SEPPIC (Toulouse, France) provided acrylic acid (AA) (79-10-7
CAS number) 97 % pure, according to gas chromatography (GC) con-
taining 200 ppm of inhibitor (monomethylether of hydroquinone
(MEHQ)) and it was used without further purification. Carbon diox-
ide (CO2) (124-38-9 CAS number) with a purity of 99.95 % (GC)
was purchased from Air Liquide (Toulouse, France) and was used
as received.

2.2. Experimental setup and operational procedures

The volumetric data and phase boundaries were obtained in a
variable volume high pressure cell (Top Industrie No 2607 0000)
that incorporates a linear variable differential transducer (LVDT) for
continuous sensing of the position of the movable piston inside the
variable-volume part of the cell. A motorized screw is connected to
the back part of the piston and is used to change the inner volume of
the system and, therefore, the pressure. The volume, pressure and
temperature of the system together with the rate of increasing or
decreasing volume can be controlled and recorded by the software
provided with the phase equilibrium cell. Temperature was mea-
sured by a thermocouple (J type, precision of ±0.1 K) placed in the
center of the cell. Pressure was measured using a pressure trans-
ducer (Keller, precision of ±0.13 MPa) equipped with a pressure
numerical display. The body of the view cell is built in stainless steel
and it has internal tubing for temperature control. The maximum
internal volume of the cell is 31.8 × 10−5 m3 while the minimum
volume is 9.8 × 10−5 m3. These values were confirmed by measur-
ing the mass of a low surface tension solvent, i.e. n-hexane, that can
be loaded into the cell at the maximum (minimum piston stroke)
and minimum volume (maximum piston stroke). A sapphire win-
dow permits visual observations as well as the recording of the
system (by using the camera (5), see Fig. 1) during a given experi-
ment. The temperature of the cell is controlled using a circulation
bath (Lauda Eco Silver) and tubing incorporated in the body of the
cell as it was described above. Fig. 1 shows a diagram of the phase
equilibrium cell used in this work.

In a typical experiment, liquid AA is charged to the cell using a
regular syringe through the inlet port (10) (see Fig. 1) The mass of
AA is weighted in a Sartorius analytical balance with a weighing
range of 1 × 10−5–0.2 kg and a weighing uncertainty of 1 × 10−7 kg.

The amount of acid transferred is measured gravimetrically. Car-
bon dioxide is charged through the inlet valve (6), connected to a
high pressure electronically controlled syringe pump (Top Industrie
PMHP 100–500). The amount of carbon dioxide charged is deter-
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ation from the NISTweb book database (22). The mass 

ioxide loaded into the cell is obtained simply by multi
 the density of CO2 obtained from NIST by the difference 
.-V .. }. Total charge was typically about 0.014 kg. After 

e system. the cell is heated to the temperature and the 
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 and thermal equilibrium is observed (no change in 
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Table 1
Phase boundaries and saturation densities for CO2 + AA (this work). Grey lines: pure AA saturation data extracted from DIPPR [23]. The percentual average relative deviation
(ARD) is shown at the bottom of each isotherm.

Temperature [K] AA mole fraction Pressure [MPa] Saturation density [kg/m3] Transition type*

313.15

0.044 ± 0.001 8.14 613 ± 10 DP
0.175 ± 0.001 8.31 805 ± 13 BP
0.214 ± 0.002 7.12 826 ± 16 BP
0.300 ± 0.002 6.45 837 ± 9 BP
0.594 ± 0.004 4.00 959 ± 10 BP

Ref. [23] 1.000 0.014 1028
ARD (%) 6.24

323.15

0.044 ± 0.001 9.91 497 ± 8 DP
0.175 ± 0.001 10.00 729 ± 12 BP
0.214 ± 0.002 8.87 803 ± 15 BP
0.300 ± 0.002 8.04 849 ± 9 BP
0.594 ± 0.004 5.10 952 ± 10 BP

Ref. [23] 1.000 0.0024 1017
ARD (%) 8.82

333.15

0.044 ± 0.001 11.12 485 ± 8 DP
0.175 ± 0.001 11.06 678 ± 11 BP
0.214 ± 0.002 10.19 784 ± 15 BP
0.300 ± 0.002 9.18 840 ± 9 BP
0.594 ± 0.004 5.77 938 ± 10 BP

Ref. [23] 1.000 0.0041 1005
ARD (%) 6.74

343.15

0.044 ± 0.001 12.81 454 ± 8 DP
0.175 ± 0.001 12.68 660 ± 11 BP
0.214 ± 0.002 12.14 781 ± 15 BP
0.300 ± 0.002 10.84 792 ± 8 BP
0.594 ± 0.004 6.99 937 ± 10 BP

Ref. [23] 1.000 0.0067 994
ARD (%) 7.76

353.15

0.044 ± 0.001 13.90 427 ± 7 DP
0.175 ± 0.001 14.02 626 ± 10 BP
0.214 ± 0.002 13.68 748 ± 14 BP
0.300 ± 0.002 12.34 776 ± 8 BP
0.594 ± 0.004 7.91 926 ± 10 BP

Ref. [23] 1.000 0.0105 982
ARD (%) 7.02

363.15

0.044 ± 0.001 15.16 397 ± 7 DP
0.175 ± 0.001 15.45 587 ± 10 BP
0.214 ± 0.002 15.75 743 ± 14 BP
0.300 ± 0.002 14.30 778 ± 8 BP
0.594 ± 0.004 9.260 909 ± 9 BP

Ref. [23] 1.000 0.0161 970
ARD (%) 8.31

u(T) = ±0.1 K. u(p) = ±0.13 MPa. u is the standard uncertainty in the measurement.
* BP: Bubble Point; DP: Dew Point.

Table 2
Pure compound parameters for the RKPR EOS used in this work.

Carbon dioxide Acrylic acid

Acentric factor 0.2236 0.5383
ac (MPa. m6/mol2) 0.38751 × 10−7 2.20618 × 10−6

b (m3/mol) 2.76 × 10−5 6.52 × 10−5

ı1 1.9722 3.3181

Table 3
RKPR EoS binary interaction parameters granted by the minimization of relative
errors of bubble pressure.

kij lij

(
e
u
t
t
t
d
m

density was found in the literature. The results are shown in Fig. 20.
CO2+AA −0.06 −0.1

%ARD) between experimental and predicted value is given at the
nd of each isotherm in Table 1. Although the prediction of the liq-
id densities obtained with the EoS was not quantitatively accurate,
he general trends were well represented by the model. In general,
he predicted liquid densities of the mixtures were always lower

han the experimental values, mostly at high pressure. The model
eviations increase with increasing carbon dioxide content of the
ixture.
3.3. Excess volume

The excess volumes for the mixtures, representing the differ-
ence between real and ideal molar volume of the mixture, were
determined from Eq. (2), where �m is the density of the mixture
and xi, Mi, and �i are the mole fraction, the molar mass, and the
density of the component i, respectively:

VE = xCO2MCO2 + xAAMAA
�m

− xCO2MCO2

�CO2
− xAAMAA

�AA
(2)

In this relationship, densities are expressed on mass basis,
whereas the resulting excess volumes are dimensionally on molar
basis. Using the density data (in kg/m3) for the pure com-
pounds and for the mixtures, and the molar mass values for CO2
(0.04401 kg/mol) and AA (0.07206 kg/mol), the excess volumes
(m3/mol of mixture) were evaluated as a function of the mole frac-
tion of AA in the saturated liquid mixtures at different temperatures
(333.15 and 343.15 K) at a given pressure of 15 MPa. The density of
AA was considered as the saturated liquid density at 333.15 and
343.15 K, given that no experimental data of compressed liquid
The excess volumes are negative in the whole composition range.
The minimum of the excess volume seems to be around xAA∼=0.25,
a composition similar to those used for radical polymerization of
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