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Abstract In this paper, large scale structural opti-
mization problems involving both non-ordinal categor-
ical and continuous design variables are investigated.
The aim is to minimize the weight of a truss structure
with respect to the cross-section areas, with optimal
materials and cross-section type selection. The targeted
structure counts more than one hundred elements. The
proposed methodology consists of using a bi-level de-
composition involving two problems, named master and
slave. For given categorical choices, the slave addresses
the continuous variables of our optimization problem.
The master consists of minimizing a first order like ap-
proximation of the slave problem with respect to the
categorical design variables. Such approximation helps
to drastically reduce the combinatorial raised by the
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categorical variables. The proposed heuristic algorithm
is tested on three different structural optimization test
cases. The comparison to state-of-the-art algorithms
emphasizes the efficiency of the proposed algorithm in
terms of the optimum quality, computation cost, as well
as its scalability with respect to the problem dimension.
A result of a 120-bar truss mixed-categorical optimiza-
tion problem instance solved by the proposed heuristics
is discussed.

1 Introduction

In the field of structural design, weight minimization
of the structure is a major concern for engineers. In
the aircraft industry for example, structural optimiza-
tion problems can combine changes in choices of ma-
terials, cross-section types, or sizes of elements based
on manufacturer catalogs (Grihon, 2012, 2018). As a
consequence, the number of design variables grows sig-
nificantly and prevents practical resolution of the asso-
ciated optimization problems.

In this article, we aim to solve large scale struc-
tural weight minimization problems with both categor-
ical and continuous variables, subject to stress and dis-
placements constraints. The topology of the structure is
fixed. The categorical variables take values belonging to
an unordered set. Typically, in the context of structural
optimization, the choices of materials or cross-section
types are depicted by categorical variables. Most exist-
ing algorithms used to handle such classes of problems
(Fister et al., 2013) are known to scale badly as the
number of the categorical design variables increases. To
illustrate the curse of dimensionality encountered for
such problems, an order of magnitude of the targeted
industrial problem’s dimensions can be as follows. Con-
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sider an engine pylon structural model as addressed in
(Gazaix et al., 2019) with 100 elements, each one hav-
ing a hundred possible choices of material and stiffen-
ing principles. In this case, the categorical design space
counts 100100 possible configurations to describe the
whole structure. Thus, the high combinatorial dimen-
sion of the categorical design space enforces the need
for a methodology to solve such problems efficiently.

In general, to handle mixed categorical-continuous
optimization problems, many optimization algorithms
can be used, e.g., metaphor-based metaheuristics and
swarm intelligence algorithms (Liao et al., 2014; Gold-
berg, 1989; Nouaouria and Boukadoum, 2011). How-
ever, this type of methods is not designed to solve ef-
ficiently large scale optimization problems (Sigmund,
2011; Stolpe, 2011). Pattern search strategies have also
been proposed to solve mixed variable optimization prob-
lems with categorical variables (Audet and Dennis, 2001;
Abramson et al., 2009; Audet et al., 2018). In these ap-
proaches, mixed variables programming (MVP) is com-
bined with mesh adaptive direct search (MADS) and
a surrogate-assisted strategy (Audet et al., 2018). The
drawback of such approaches is mainly related to the
definition of a suitable neighborhood to be able to han-
dle the categorical choices. Other approaches based on
the discrete global descent method have been proposed
to solve mixed optimization problems (Lindroth and
Patriksson, 2011).

In the context of structural optimization problems,
various surrogate-based optimization strategies have been
extended to categorical variables (Filomeno Coelho, 2014;
Müller et al., 2013; Herrera et al., 2014; Roy et al., 2017,
2019; Garrido-Merchán and Hernández-Lobato, 2018;
Pelamatti et al., 2019). One of the main challenges of
such approaches is related to their efficiency when han-
dling large dimension categorical design space. Further-
more, a definition of a neighborhood is often required
during the construction of the surrogate model. As an
example, in (Pelamatti et al., 2019), the neighborhood
is defined through an appropriate kernel definition. In
these approaches, once the surrogate model is built, the
optimizer still faces a large scale discrete optimization
problem. A recent work (Gao et al., 2018) also sug-
gests reducing the dimension of a structural optimiza-
tion problem by finding implicit correlation between the
design variables. Existing works propose to solve struc-
tural optimization problems (with multi-material and
multi-cross-section design variables) using a continuous
formulation of the design space which is provided by
means of interpolation schemes (Stegmann and Lund,
2005; Krogh et al., 2017). Although such approaches
allow to leverage the efficiency of gradient-based op-
timization algorithms, there is no guarantee that the

optimization will retrieve integer values corresponding
to a given material, for instance.

Other existing approaches rely on the structure of
the mathematical mixed variable problem to decompose
the intial problem into several more tractable subprob-
lems. For instance, by the use of Benders decomposition
(Benders, 1962; Geoffrion, 1972) or by outer approxi-
mation schemes (Duran and Grossmann, 1986; Hijazi
et al., 2014). For structural optimization, decomposi-
tion schemes have been mostly applied to continuous
optimization problems, e.g., StiffOpt (Samuelides et al.,
2009), Quasi Separable Decomposition (QSD) (Haftka
et al., 2006; Schutte et al., 2004). The QSD has then
been applied to structural optimization of large scale
composite structures (Bettebghor et al., 2011, 2018).
In this context, the composite stacking sequences were
formulated as continuous variables by using lamination
parameters. In (Allaire and Delgado, 2015), both the
composite fiber, lay-up sequence and the ply topology
are optimized into a bi-level scheme. The main difficulty
of existing decomposition schemes is related to the fact
that they are not able to handle large scale mixed opti-
mization problems with categorical variables. In the in-
dustry, methodologies have emerged to tackle the curse
of dimensionality when dealing with categorical vari-
ables in structural optimization. For instance, (Grihon,
2018) uses a bi-step strategy involving massively paral-
lel element-wise optimizations. This approach industri-
ally used at Airbus simplifies the impact of each cat-
egorical choice on the overall optimal internal loads
distribution by deporting the optimization at element
(subsystem) level. Although the proposed approach is
highly scalable, it can not handle system-level behavior
(optimum internal load distribution) nor system-level
constraints (e.g., flutter, modal or displacement con-
straints). The absence of such constraints in the prob-
lem formulation is not representative of aircraft struc-
ture design problems, in a multidisciplinary context for
instance.

In this article, a bi-level methodology is proposed
to solve mixed categorical-continuous structural opti-
mization problems while trying to cover all the afore-
mentioned gaps. To the best of our knowledge, in the
context of weight minimization subject to stress and
displacement constraints, problems combining simulta-
neously both materials, cross-section types, and contin-
uous design variables are not tackled in the literature.
The problem is formulated using a bi-level decomposi-
tion involving master and slave problems. The contin-
uous design variables are handled by the slave prob-
lem, where the categorical variables are driven by the
master. The latter consists of solving a first order-like
approximation of the slave problem with respect to the
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categorical design variables. This helps to drastically
reduce the combinatorial explosion raised by the cate-
gorical variables. In a previous work (Barjhoux et al.,
2017), the master problem was solved without approx-
imation by a branch and bound algorithm. However,
the computational cost scaling with the number of ele-
ments prevents the use of the algorithm for large scale
industrial applications. For this reason, we choose here
to solve the master problem by using a first order like
approximation.

This paper is organized as follows. In Section 2, we
describe the problem formulation, the physical model
involved, and the links with the design variables. In
Section 3, the bi-level decomposition and the approx-
imation at the upper level are presented. Finally, the
accuracy of the optimum and the scalability of the pro-
posed approach are compared with state-of-the-art al-
gorithms in Section 4. Possible future extensions and
concluding remarks will be given in the last Section.

2 Problem Statement

2.1 Design variables

In this article, our goal is to minimize the weight of
a structure, at fixed topology, by exploring the inter-
nal geometry as well as material description of all the
structural elements of the problem. Two kinds of design
variables are thus involved when handling these kind of
problems.

First, the areas of stiffeners cross-section, also named
sizing variables, are continuous design variables. For-
mally, the areas can be represented as a vector a ∈ Rn
where the number of components n corresponds to the
number of structural elements. For a given choice of
cross-section type, the areas scale the internal shape of
the structural elements (Grihon, 2018; Barjhoux et al.,
2017). Fig. 1 shows how internal parameters, and thus
area moments of inertia, can be scaled using the area
of the cross-section. Several examples of cross-section
types are given in Fig. 2. This means that the param-
eters that describe the internal cross-section are not
directly driven by the optimizer, they are latent vari-
ables. One advantage of such parameterization is that it
keeps the number of sizing variables independent from
the number of detailed geometrical parameters of the
stiffeners. Furthermore, this removes from the design
space impractical or non-physical configurations (Gao
et al., 2018).

The second type of design variables that are in-
volved during the optimization process are categorical
choices. Indeed, in this work, the possible choices of

a[mm2]

I[mm4]

Fig. 1: Trend of area moment of inertia of a “I”-stiffener
in Fig. 2a with respect to areas.

material and stiffener for each element will also be re-
garded as a part of the design variables and that have
to be explored as well. The categorical choices will be
represented by a vector c that has n components where
n is the number of elements in the structure. In this
context, we assign to each element a choice of material
and stiffener, all described by one categorical design
variable. Where Γ is the enumerated set that contains
all possible choices of materials and stiffeners for each
element of the structure. Assuming that there are p pos-
sible choices per element, the categorical set is given by
Γ = {1, . . . , p}. Each value of this set is called a cata-
log. The vector of categorical variables c belongs to Γn,
meaning that each component of the categorical vari-
able can take a value among the same set of catalogs Γ .
The size of the categorical and continuous design space
remains fixed during the optimization.

2.2 Problem definition

In this paper, we consider the following mixed categor-
ical continuous optimization problem:

minimize
c∈Γn,a∈Rn

w(a, c) (P)

subject to s(a, c) ≤ 0n,m

δ(a, c) ≤ 0d

¯
a ≤ a ≤ ā

where
¯
a ∈ Rn and ā ∈ Rn are the lower and up-

per bounds on areas, respectively. The constraints δ
on displacements u ensures that on d given nodes of
the truss the displacements will not exceed predefined
upper bounds ū ∈ Rd. With P a projector that selects
the elements on which the displacement constraint will
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x3
x1

x2 x4

(a) Example of an “I”-stiffener,
described by 4 geometrical variables.

x3

x1

x2 x1

(b) Example of a “T”-stiffener,
described by 3 geometrical variables.

x2
x1

x3

(c) Example of a “C” profile, described
by 2 geometrical variables.

Fig. 2: Examples of commonly used stiffeners in aircraft structural design. The internal geometrical variables are
latent variables, scaled by the area of the cross-section.

apply, the definition of δ function is given as follows:

δ : Rn × Γn → Rd

(a, c) 7→ Pu(a, c)− ū.

The structural constraints function s

s : Rn × Γn →M(Rn,m)

is of the form




Constraint type 1 . . . Constraint type m

elt1 s11(a1, c1,Φ1(a, c)) . . . s1m(a1, c1,Φ1(a, c))
elt2 s21(a2, c2,Φ2(a, c)) . . . s2m(a2, c2,Φ2(a, c))
...

...
...

. . .
eltn sn1(an, cn,Φn(a, c)) . . . snm(an, cn,Φn(a, c))




and ensures, element per element, that the structural
stress does not exceed a limit stress value.

Note that the continuous and categorical variables
(i.e., the areas a and the categorical variables c hid-
ing material or stiffeners choices) have a significant role
in this problem. In fact, the categorical variables af-
fect the weight w, the internal forces Φ ∈ Rn, the con-
straints δ on displacements and the stress constraints
s. On the other hand, the continuous variables affect
the weight, the internal forces, the stress constraints
and the constraints on displacements. It is worth not-
ing that a change in a categorical variable or area will
modify the loads distribution Φ along the whole struc-
ture. Since the stresses s require the value of Φ, each
component of s vector depends on the whole structure
description.

In the context of this work, there is no change in
the topology of the structure. Internal forces Φ and
displacements u will be computed using the direct stiff-
ness method, introduced in (Turner, 1959; Turner et al.,
1964). Structural elements are considered as truss ele-
ments with pin-jointed connections. This means that
the bars will only carry axial forces. At each node, dis-
placements are allowed along the global axes. Each el-
ement i is defined by the elementary stiffness matrix

Ke
i (ai, ci) ∈ Rq,q, with q the number of free nodes mul-

tiplied by the number of physical space dimensions. The
global stiffness of the whole truss is given by the matrix
K(a, c) ∈ Rq,q in global coordinates. Such matrix can
be computed as the sum of each elementary stiffness
matrix expressed after its transformation with the ith
element rotation matrix Ti, i.e., (Turner, 1959; Turner
et al., 1964):

K(a, c) =
n∑

i=1
[Tt

iK
e
i (ai, ci)Ti].

Given a vector f ∈ Rq of external loads applied on each
of the free nodes in the global coordinates, the vector
of displacements u ∈ Rq can be obtained by solving the
following equation:

K(a, c)u(a, c) = f .

The vector of internal forces Φ ∈ Rn is then given by:
∀i ∈ {1, . . . , n},

Φi(a, c) = Ke
i (ai, ci)Tiui(a, c),

where Φi is the axial force through element i and ui its
displacement vector.

3 Methodology

3.1 Decomposition

For a given c, let Ω(c) be the set of feasible constraints
given by

Ω(c) := { a ∈ Rn;
s(a, c) ≤ 0n,m ;
δ(a, c) ≤ 0d ;

¯
a ≤ a ≤ ā }.

An efficient way to solve pure continuous optimization
problems is by taking advantage of gradient-based al-
gorithms. In the problem introduced in Section 2, it
can be seen that by fixing (temporarily) the categorical
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variables in (P), the problem becomes a continuous op-
timization problem, parameterized with c. This means
that given c, the weight w can be minimized with re-
spect to the continuous design variables, that are the
areas a subject toΩ(c). This leads to the following slave
problem, that reduces to a structural sizing optimiza-
tion problem (sP):

Ψ(c) := min
a∈Ω(c)

w(a, c). (sP)

The structure of the problem is such that this remain-
ing optimization problem becomes more tractable. In
fact, the decomposition leverages the use of the gradi-
ents (with respect to a) of the objective and constraints
to solve (sP). This is the main motivation in handling
the continuous variables separately from the categorical
ones. In our approach, the categorical variables will be
handled by a master problem (mP) of the form

min
c∈Γn

Ψ(c), (mP)

where Ψ(c) is the result of the slave Problem (sP).
The slave Problem (sP) takes these complicating

variables as parameters while optimizing with respect
to continuous design variables. This follows the gener-
alized Benders decomposition in (Geoffrion, 1972), ini-
tially designed to handle linear optimization problems
in (Benders, 1962). For given choices of materials and
cross-sectional types for all elements, the continuous
optimization will be performed using a gradient-based
method. The result of this optimization can be seen
as a function Ψ(c) which is parameterized by the cate-
gorical choices. Namely, Ψ(c) corresponds to the opti-
mal weight of the slave problem knowing the categorical
variables c. This function is then taken as the objective
of the master optimization Problem (mP). Although
the slave problem can be easy to handle using gradient-
based algorithm, the difficult part remains in the master
problem. In fact, the (mP) problem is a large-scale cat-
egorical optimization problem, that usual metaheuris-
tic algorithms fail to solve efficiently. In this work, we
propose to consider, at the master level, the minimiza-
tion of an approximated model Ψ̂(c) instead of Ψ(c),
so that the combinations can be reduced drastically, as
explained later.

For that, we use the following iterative scheme: given
an iteration (k), the master problem (mP) of the bi-level
formulation reduces to the following :

c(k+1) := argmin
c∈Γn

Ψ̂k(c) (amP)

where Ψ̂k is a given approximation function of Ψ at the
iteration (k) that depends locally on the previous iter-
ation. Such a problem will be called the approximation

master mixed Problem (amP) at iteration (k). At each
iteration (k) of the algorithm, instead of Ψ , an approx-
imation function Ψ̂k is minimized with respect to the
global variable c.

Let’s call a(k) the optimal areas obtained by solving
Problem (sP) for given choices c(k) :

a(k) := argmin
a∈Ω(c(k))

w(a, c(k)).

Let also w(k) be the optimal weight returned by the
evaluation of the weight function taken at a(k), c(k),
i.e.,

w(k) := w(a(k), c(k)).

In this article, the termination criterion is based on
the stationarity of the optimal weights, i.e., |w(k+1) −
w(k)| ≤ ε for a given small ε > 0. However, there will
be no guarantee that a weight decreases lower than
ε during the optimization process. A possible way to
justify such decrease would be to prove that the pro-
posed algorithm converges to a fixed point w∗ inde-
pendently of the starting point. Ensuring this in the
general case would require imposing a decrease on the
weight sequence {w(k)} over the iterations. In Section
3.4, a heuristic is proposed to handle that by further
exploration of the design space.

The generic process of the proposed iterative scheme
is given in Algorithm 1.

Algorithm 1 A generic Bi-level framework
1: initialize c(0)and set k = 0
2: while a termination criteria is not reached do
3: Step 1 c(k+1) ← argmin Ψ̂k(c) s.t c ∈ Γn
4: Step 2 a(k+1) ← argmin w(a, c(k+1)) s.t. a ∈
Ω(c(k+1))

5: Increment k
6: end while
7: return a(k+1), c(k+1), and w(k+1) ← w(a(k+1), c(k+1)).

3.2 On the approximation Ψ̂k

The problem (mP) involves a number of categorical
combinations that increases exponentially (pn) with the
number of catalogs and structural elements. In this Sec-
tion, we aim to propose an approximation Ψ̂k to the
function Ψ so that one can reduce the resulting problem
complexity. In fact, we propose solving an approxima-
tion Ψ̂k by using a first order approximation of Ψ . The
expression of the approximation Ψ̂k around the categor-
ical variable c(k) is given by:

Ψ̂k(c) = Ψ(c(k)) +
n∑

i=1

∆Ψ

∆ci

∣∣∣∣∣
c(k)

(ci − c(k)
i ), (1)
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where the scalar value ∆ci denotes the perturbation of

the ith component of c starting from c(k), ∆Ψ
∆ci

∣∣∣∣
c(k)
∈ R

model the rate of the Ψ function taken at c(k) after a
perturbation ∆ci. The term ∆Ψ

∆ci

∣∣∣∣
c(k)

is computed as

follows :

∆Ψ

∆ci

∣∣∣∣∣
c(k)

= Ψ(c(k) +∆ciei)− Ψ(c(k))
∆ci

, (2)

with ei a vector of size n where the ith component is
equal to 1 and 0 everywhere else.

We note that the term ∆ci has no physical meaning
and, due to the categorical nature of the set Γ , there is
no straightforward neighborhood definition. This pre-
vents from choosing ci so that ci − c(k) is close to the

perturbation ∆ci used to compute the rate ∆Ψ

∆ci

∣∣∣∣
c(k)

.

To overcome this issue, we propose setting the pertur-
bation ∆ci equal to ci − c(k)

i . In this case, combining
(1) and (2), one results in

Ψ̂k(c) = Ψ(c(k)) +
n∑

i=1

(
Ψ(c(k) +∆ciei)− Ψ(c(k))

)
.(3)

Equation (3) verifies, in the trivial case where the struc-
ture is composed of one element (n = 1), that the ap-
proximation Ψ̂k(c) is equal to Ψ(c), for every c(k) +
∆ciei in Γ . Knowing ∆ci = ci − c(k)

i , the term c(k) +
∆ciei is equal to c(k) except the ith component which
is equal to ci.

Physically, the approximation (1) relies on the hy-
pothesis that the effects of the couplings between the
categorical variables on the optimized weight solutions
of (sP) can be neglected. The block-diagonal dominance
property of the stress constraints jacobian (Haftka and
Gürdal, 1992), in our case with respect to both material
properties and quadratic moments, makes the problem
quasi-separable. This property has been largely used in
the literature in the context of structural sizing prob-
lems, as in (Haftka and Watson, 2005; Haftka et al.,
2006), and in the context of simultaneous sizing and
material optimal selection (Bettebghor et al., 2018).
However, a breakdown of the categorical variables as
proposed in the Quasi Separable Decomposition scheme
(Haftka and Watson, 2005) in the context of sizing vari-
ables, is not investigated here. The categorical variables
are taken as design variables in the master problem
(mP) only. The same remark applies for the areas, that
are optimized in the slave problem only. In the pro-
posed approach, the quasi-separable property is lever-
aged through the result of the areas optimizations in
(sP). It is worth noting that the couplings between the
elements are still partially impacting the optimizations

thanks to the optimized areas, solutions of (sP). Ele-
ments are not optimized independently, since at each
change of categorical variable, a sizing of the whole
structure is performed. We note that the first order-like
approximation does not introduce any loss of symmetry
(when symmetric results are expected).

3.3 On the minimization of Ψ̂k

In the previous Section, it was proposed to replace the
expression of Ψ with the approximation Ψ̂k when solving
the master level problem (amP). Since Ψ(c(k)) is con-
stant, the minimization of (3) according to Step 1 of
the Algorithm 1 is equivalent to :

∀i ∈ {1, ..., n}, min
ci∈Γ

Ψ
(
c(k) + (ci − c(k)

i )ei
)
.

Indeed, the approximated master problem (amP)
can be written as a number of n independent categorical
optimizations (sP). This reduces drastically the combi-
natorial explosion, i.e., instead of minimizing over Γn
we get n minimizations but only over the space Γ . This
is a crucial point of the methodology proposed in this
article. In fact, at each iteration (k) of the algorithm,
the first order like assumption of the model Ψ̂k makes
the combinatorial of problem (mP) drop from pn to
k×n× (p−1) combinations of choices with k the num-
ber of overall iterations.

Namely, in Step 1 of the Algorithm 1, the cur-
rent categorical choices c(k+1) :=

[
c(k+1)

1 , . . . , c(k+1)
n

]

is given by solving the following approximated master
problem:

c(k+1)
1 := argmin

c1∈Γ
Ψ

([
c1, c(k)

2 , . . . , c(k)
n

])
,

for i ∈ {2, . . . , n− 1}:

c(k+1)
i := argmin

ci∈Γ
Ψ

([
. . . , c(k)

i−1, ci, c(k)
i+1, . . .

])
, (amP2)

and

c(k+1)
n := argmin

cn∈Γ
Ψ

([
c(k)

1 , . . . , c(k)
n−1, cn

])
.

Each of these n optimizations is solved by enumer-
ation of all the remaining values that can take ci over
Γ . This means that at each iteration (k) of the algo-
rithm, Ψ is evaluated n× (p− 1) times to build a new
solution c(k+1). All these evaluations can be performed
in parallel. The results of all the optimal weights com-
puted during this enumeration process will be stored in
a matrix W (k), i.e.,

(∀i ∈ {1, . . . , n}) c(k+1)
i = argmin

j∈Γ
W

(k)
ij . (amP3)
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initialize c(0) and set w(0) = Ψ(c(0))

Step 1

W
(k)
ij = Ψ

(
[. . . , c(k)

i−1, j, c
(k)
i+1, . . . ]

)
∀j ∈ Γ

W
(k)
1j = Ψ

(
[j, . . . , c(k)

n−1, c
(k)
n ]

)
∀j ∈ Γ

W
(k)
nj = Ψ

(
[c(k)

1 , . . . , c(k)
n−1, j]

)
∀j ∈ Γ

c(k+1)
1 = argmin

j∈Γ
W

(k)
1j c(k+1)

i = argmin
j∈Γ

W
(k)
ij c(k+1)

n = argmin
j∈Γ

W
(k)
nj

w(k+1) = Ψ(c(k+1))

Step 2

w(k+1) > w(k)

decrease strategy

yes

no

w(k+1) < w(k) − εno
increment k

c(k+1) and w(k+1)

yes

Fig. 3: Illustration of the proposed methodology.

A detailed view of the resulting Bi-level process is
given in Fig. 3. As described in Algorithm 1, each it-
eration (k) counts two main steps. Step 1 consists of
building a new solution c(k+1). Physically, for every
change of material and cross-section type of one ele-
ment in the structure, sizing optimization is performed.
The new categorical choice of the current element is
made so that the corresponding optimal weight (with
respect to the continuous variables) is the lowest. This
process is repeated for each of the n elements, in par-
allel. In Step 2, the materials and cross-section types
of every elements are updated with the new categori-
cal variables. A sizing optimization is then performed,
leading to a new optimal weight.

However, in practice the first order approximation
(3) can be responsible for convergence issues during the
optimization : an increase in the optimized weight could
be observed from one iteration to the next. For cases
where this situation occurs, it is proposed applying a
strategy that iteratively builds a new solution based on
information stored in W (k). The proposed strategy is
detailed in the next Section.

3.4 A strategy to ensure weight decrease

As only a first order like approximation of Ψ is used,
the coupling between the structural elements through
the categorical variables are neglected. This may be
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responsible for convergence issues as the resulting op-
timal weight at the current iteration w(k+1) may be
greater than the previous optimal weight w(k). In the
context of continuous optimization, adaptive strategies
based on step-size control are typically used (e.g., line
search, trust-region methods) (Ivanov and Zadiraka,
1975). However, in the context of categorical optimiza-
tion, the use of such a strategy is not straightforward
anymore due to the lack of a neighborhood definition.

In order to fix this convergence issue observed on
some cases, the following iterative strategy is proposed.
At a given iteration (k), the proposed process is trig-
gered if the new optimal weight w(k+1) candidate is
higher than the previous one w(k). It can be seen as
an additional third step that would be introduced in
Algorithm 1.

For each iteration (k) where the w(k+1) candidate is
higher than the previous candidate w(k), we activate the
following iterative strategy starting from c(k+1). Where
(t) denotes the outer iteration number of the proposed
strategy related to the kth iteration of Algorithm 1. At
each iteration (t) of the strategy, a new categorical so-
lution c(t+1) will be built. The first step of the process
consists of retrieving the element number i and corre-
sponding choice j of the (t+ 1)th best weight in W (k),
i.e.,

i, j := argmin
(i,j)∈J1,nK×J1,pK\Ft

W (k),

where Ft denotes the set of indices i, j of all sub-iterations
anterior to t + 1. The new candidate solution c(t+1) is
given by

c(t+1) := [c(t)
1 , . . . , c(t)

i−1, j, c(t)
i+1, . . . , c(t)

n ].

Once Ψ(c(t+1)) is evaluated, the corresponding optimal
weight w is compared to w(k) in the following way: if the
new optimal weight is found lower than w(k), then the
candidate solution c(t+1) becomes the new c(k+1). The
process stops and goes back to the main algorithm with
the new optimal solution of iteration (k+1). Algorithm
2 gives a detailed description of the proposed strategy.

Note that another possible decrease strategy would
consist of repeating Step 1 by changing only one struc-
tural element. In other words, from an iteration (k) to
(k+1), one would change only one categorical variable.
In this case, equation (3) would lead to Ψ(c) = Ψ̂(c),
meaning that the weight decrease would be ensured by
minimization of Ψ̂ . However, in practice the weight de-
crease has shown to be lower compared to the weight
decrease obtained by Algorithm 2.

Algorithm 2 A proposed weight decrease strategy
1: function decrease strategy(w(k), c(k+1),W (k))
2: c(0) ← c(k+1), F0 ← {∅} and set t = 0
3: while Ft 6= J1, nK× J1, pK do
4: i, j ← argmin

(i,j)∈J1,nK×J1,pK\Ft

W (k)

5: c(t+1) ← [c(t)
1 , . . . , c(t)

i−1, j, c(t)
i+1, . . . , c(t)

n ]
6: a(t+1) ← argmin w(a, c(t+1)) s.t. a ∈ Ω(c(t+1))
7: w(t+1) ← w(a(t+1), c(t+1))
8: Ft+1 ← Ft ∪ {(i, j)}
9: if w(t+1) < w(k) then

10: break
11: end if
12: increment t
13: end while
14: c(k+1) ← c(t)

15: a(k+1) ← a(t)

16: w(k+1) ← w(t)

17: return w(k+1),a(k+1), c(k+1)

18: end function

4 Numerical results

In the present section, our proposed methodology will
be applied to three different test cases: (i) the well-
known 10-bar truss structure (Haftka and Gürdal, 1992)
adapted in (Merval, 2008), (ii) a 2D cantilever structure
(Shahabsafa et al., 2018), and (iii) a 120-bar dome truss
structure (Saka and Ulker, 1992). In order to evaluate
the scalability of the methodology with respect to large
number of structural elements, the 2D cantilever struc-
ture is made scalable by varying the number of blocks.
The third test case is included to evaluate the capability
of handling more complex structures.

We note that for all the test cases, we will consider
four different structural constraints per element, i.e.,
m = 4 in the generic structural constraints expressions
given in (2.2). For that, first, one has two constraints
in tension and compression, respectively, given by

si1(a, c) := Φi(a, c)
ai

− σt(ci)

si2(a, c) := Φi(a, c)
ai

− σc(ci)

with σt(ci) ∈ R the stress limit in tension and σc(ci) ∈
R the stress limit in compression. The two other con-
straints are the Euler and local buckling constraints,
respectively, given by

si3(a, c) := Φ(a, c)
ai

− π2E(ci)I(ai, ci)
aiL2

i

si4(a, c) := Φ(a, c)
ai

− 4π2E(ci)K(ci)
12(1− ν2(ci))

with E(ci), I(ai, ci), Li, ν(ci) respectively the Young
modulus, the area moment of inertia, the length and



A bi-level scalable methodology for mixed categorical-continuous structural optimization problems 9

the poisson coefficient of element i. The ratio between
cross-section internal sizes, depending on the stiffener
profile, is given by K(ci).

Finally, the objective function (i.e., the global weight
of the structure) is defined as follows :

w(a, c) =
n∑

i=1
aiρi(ci)Li,

where ρ(ci) corresponds to the material density of ele-
ment i driven by the choice ci.

4.1 Implementation details and comparison solvers

Algorithm 1 was implemented using the Generic Engine
for MDO Scenarios (GEMS) (Gallard et al., 2018) in
Python. The tool offers an efficient way to test multi-
level formulations, with built-in classes that facilitate
optimization problems manipulations (Gallard et al.,
2019). The continuous optimization problems (i.e., eval-
uations of Ψ) are solved with the Method of Moving
Asymptotes (MMA) (Svanberg, 2002) as implemented
in the nonlinear-optimization (NLOPT) package (John-
son, 2008). All the default parameters are kept un-
changed except the tolerance on the objective function
which is set to 10−6 kg. In what comes next, the re-
sulting implementation of Algorithm 1 will be called
Bi-level.

Three solvers will be compared to Bi-level. First,
a baseline solver where we proceed with an exhaus-
tive enumeration of continuous optimizations w.r.t. a
(Problem sP) taken at every available choice in Γn,
the solution resulting with this solver will be denoted
as Baseline. Second, a hybrid branch and bound (Bar-
jhoux et al., 2017) (noted h-B&B) where the proposed
methodology is also based on a categorical-continuous
problem decomposition where, instead of approximat-
ing the master problem, one uses a relaxation procedure
combined with a branch and bound algorithm. Simi-
larly to Bi-level, h-B&B uses the MMA method from
NLOPT to solve the slave problem. Under the assump-
tion that these problems are convex with respect to
the sizing variables a, Baseline and h-B&B return the
global optimum of the overall problem. The third solver
used in the comparison is a Genetic algorithm (Deb and
Goyal, 1998) using the implementation given by Dis-
tributed Evolutionary Algorithms in Python (DEAP)
(Fortin et al., 2012). The latter solver will be referred by
Genetic in our comparison tests. Due to the stochastic
nature of Genetic, the obtained results (for this solver)
will be displayed as the average of ten runs.

In all what comes next, the computation effort of a
given solver will be measured by counting the number

F = 200 kN

1 2 3

Fig. 4: A 3-bar truss structure where a downward load
F = 200 kN is applied on the free node.

of structural analyses (noted #FEM) including those
required by the computation of the gradients (when
needed). The obtained optimal weights (by each solver)
will be noted w∗, the latter will allow us to evaluate the
quality of the optima found by each solver. We note
also that in our setting, the Baseline solution can be
seen as the best known categorical choices for the cor-
responding problem instance. Thus, in this context, it
is important to evaluate how far the categorical choices
(obtained by the tested solvers) are from the Baseline
optimal choices. This information will be given using
the Hamming distance (noted dh) where we will count
the number of structural elements that have an optimal
choice different to the Baseline categorical choices.

4.2 A worked example: a 3-bar truss structure

To illustrate how the Bi-level method works, we will
now describe in detail its application to a simple 3-
bar truss structure. For this problem, each element can
take a value among three possible choices that respec-
tively point to materials AL2139, AL2024, TA6V and
the same “I”-profile (see Fig. 2). The materials proper-
ties are listed in Appendix A. For this simple case, one
has n = 3, p = 3, and Γ = {1, 2, 3}. For all elements,
the lower and upper bounds on areas are respectively
fixed to 100 mm2 and 2000 mm2. A maximum down-
ward displacement equal to 1 mm is allowed on the only
free node of the structure.

During application of the Bi-level method, the ini-
tialization of c is such that :

c(0) = [1, 2, 3] , w(0) = 13.82 kg.

The first iteration (i.e. k = 1) of the Bi-level method can
be described as follows: first, the optimization problems
(given by (amP2)) are solved by enumeration of the
evaluation of Ψ for all values in Γ . Both categorical
choices and corresponding optimal weights are given in
Table 1.
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j = 1 j = 2 j = 3

i = 1
c(0) [ 2 , 2, 3] [ 3 , 2, 3]

W
(0)
11 = w(0) W

(0)
12 = 13.62 W

(0)
13 = 13.92

i = 2
[1, 1 , 3] c(0) [1, 3 , 3]

W
(0)
21 = 14.85 W

(0)
22 = w(0) W

(0)
23 = 8.83

i = 3
[1, 2, 1 ] [1, 2, 2 ] c(0)

W
(0)
31 = 13.74 W

(0)
32 = 13.53 W

(0)
33 = w(0)

Table 1: Enumeration of the n× (p− 1) = 6 perturbed
categorical variables (circled components) at first iter-
ation, with the corresponding optimal weight in (kg).

F = 100 kN

l l

l

1 2

6

43

5

7

8

9

10

Nδ

Fig. 5: 10-bar truss, seen as a scalable 2D cantilever
problem with 2 blocks.

As described in problems (amP2), the vector of cat-
egorical variables at the first iteration is composed of
the values in Γ corresponding to the best weights given
in Table 1, element per element. For example, c(1)

1 =
argmin
j∈Γ

W
(0)
1j = 2. The new optimal vector of categori-

cal variables c at iteration k = 1 is thus c(1) = [2, 3, 2],
leading to an optimal weight w(1) = 8.63 kg. After this
first iteration, the optimal weight drops from 13.82 kg
to 8.63 kg.

According to Algorithm 1, the same steps (that are
not detailed) are executed in the next iteration k = 2.
The same categorical vector solution is found, leading
to the same optimal weight. Since a stationarity of the
optimal weight is reached, the method stops. Using the
Baseline method (by enumerating evaluations of (sP)
over the space Γ 3), we find that the best solution is
indeed equal to c(1).

4.3 A 10-bar truss structure

This well-known low-dimensional 10-bar truss problem
(Haftka and Gürdal, 1992) is used to solve the mixed
categorical-continuous optimization problem by enumer-
ation or hybrid branch and bound (h-B&B) (Barjhoux

F = 30 kN

l l l

l

1 2 3

654

7 8 9

10

11

12

13

14

15

Nδ

Fig. 6: An example of 2D cantilever problem with 3
blocks.

et al., 2017). As explained in subsection 4.1, these ap-
proaches provide global solutions, that are taken as ref-
erence solutions to evaluate quality solutions of the Bi-
level algorithm.

The 10-bar truss problem is illustrated Fig. 5. A
downward load F = 100 kN is applied vertically on
node Nδ. A constraint on displacements is applied on
the same node. Five cases with different bounds values
ū on displacements are considered. For each of these
cases, the displacements constraint is applied on node
Nδ. Catalogs 1 and 2 point to materials AL2139 and
TA6V, respectively. Materials properties are listed in
Appendix A. In this case, n = 10 and p = 2, Γ = {1, 2}.

The results of the proposed methodology (Bi-level)
are thus compared to the global optima, as shown in
Table 2. In all these cases, the optima obtained with
Baseline (obtained by enumeration), h-B&B the Bi-
level approaches are identical. This means that the Bi-
level, in these cases, provides the global solution. On
the other hand, the weights returned by the Genetic al-
gorithm are greater than the optimal weight found by
the Bi-level approach. Finally, it is shown that when
the displacement constraint becomes more stringent,
the material choice goes to the stiffest one despite of
its high density. The optimal solutions of cases with
displacements lower than 18mm and 17mm contain in-
deed only TA6V.

4.4 A scalable 2D cantilever problem

The objective of this test case is to describe the evolu-
tion of the computational cost with respect to the num-
ber of structural elements. This case can be seen as a
generalization of the well-known 10-bar truss structure
(Haftka and Gürdal, 1992). It has been used in the lit-
erature to demonstrate the scalability of algorithms, for
example in (Shahabsafa et al., 2018). The structure is
made scalable by varying the number of blocks. Each
block is composed of 4 nodes that are linked by 5 bars.
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Table 2: Results of 10-bar truss mixed optimization with 5 different values of constraint on displacements. Com-
parison between the Bi-level, the Baseline solutions obtained by enumeration of the 210 continuous optimizations,
h-B&B, and the Genetic algorithm. The catalog 1 corresponds to material AL2139 and catalog 2 to TA6V.

ū (mm)
Baseline h-B&B Genetic Bi-level

c∗ w∗(kg) dh w∗(kg) dh w∗(kg) dh w∗(kg)

-22 [2,2,1,1,1,2,2,1,2,1] 12.988 0 12.988 0 13.283 0 12.988
-20 [2,1,1,1,1,1,2,1,1,1] 13.996 0 13.996 0 14.423 0 13.996
-19 [2,1,1,1,1,1,2,1,1,1] 14.570 0 14.570 0 14.802 0 14.570
-18 [1,1,1,1,1,1,1,1,1,1] 15.175 0 15.175 2 15.642 0 15.174
-17 [1,1,1,1,1,1,1,1,1,1] 15.912 0 15.912 3 16.258 0 15.912

0 5 10 15 20 25 30 35 40 45 50
#bars

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#
FE

M

1e5

Bi-level

h-B&B

Genetic

Fig. 7: Scalability of the Bi-level w.r.t. the number of elements. The computational cost’s
scaling of Bi-level with respect to the number of bars is quasi-linear, compared to the
exponential computational cost of the h-B&B and Genetic solvers. The computational cost’s
scaling of the h-B&B prevents from obtaining a solution for cases greater than 25 elements.

An example of a scalable 2D cantilever structure with
3 blocks is given in Fig. 6. In Table 3 are presented
the results obtained with structures composed of 1 to
10 blocks. In all cases, a downward load F = 30 kN is
applied on the node Nδ.

For each of the 10 cases, the results obtained by the
Bi-level are compared to those obtained with reference
solutions (Baseline & h-B&B) when available. First, for
cases with 5 to 30 elements where a reference solution is

available, it can be observed the global solution is found
by the Bi-level. For cases with more than 30 elements,
the optima found by the Bi-level are slightly better than
those obtained by the Genetic algorithm. The h-B&B
solutions are noted with (*) since they are intermediate
solutions : the solver was stopped after 24 hours. The
Bilevel solutions are very close (difference of 10−2 kg) to
those obtained by the h-B&B. Furthermore, the number
of analyses required by Bi-level is always lower than
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#bars
Baseline h-B&B Genetic Bi-level

w∗(kg) dh w∗(kg) #iter #FEM dh w∗(kg) #iter #FEM dh w∗(kg) #iter #FEM

5 2.56 0 2.56 10 1004 0 2.57 32 32300 0 2.56 2 400
10 6.06 0 6.06 26 3097 1 6.14 54 54500 0 6.06 2 792
15 10.23 0 10.23 95 10907 2 10.27 65 65200 0 10.23 4 1955
20 * * 15.33 135 10315 * 15.59 73 73100 * 15.33 2 1659
25 * * 21.36 1199 610347 * 22.06 98 97700 * 21.36 3 3142
30 * * 28,30 4432 723388 * 28.84 129 128800 * 28.30 8 10522
35 * * 36, 17(∗) 5793(∗) 1096968(∗) * 37.00 189 189400 * 36.19 3 5830
40 * * 44, 97(∗) 5570(∗) 939726(∗) * 45.64 270 269800 * 44.97 7 13577
45 * * 54, 70(∗) 4181(∗) 818455(∗) * 55.98 347 346800 * 54.71 4 8531
50 * * 65, 35(∗) 4316(∗) 717627(∗) * 67.48 561 561200 * 65.34 6 14487

Table 3: A comparison of the obtained solutions for 10 instances of the scalable 2D cantilever problem are compared,
with a varying number of bars (from 5 to 50 bars). We note that when optimizations last more than 24 hours, the
solver (Baseline, h-B&B) is stopped and the current solution (if exists) is marked by (∗).

the number needed by the compared approaches. The
trends in terms of computational cost with respect to
the number of elements are graphically represented in
Fig. 7. The cost of the Genetic algorithm dominates the
cost of h-B&B and Bi-level. The scaling of the Bi-level
approach is nearly linear when compared to the h-B&B
and Genetic approach. The observed efficiency makes
the proposed approach relevant for higher dimensional
problems.

4.5 120-bar truss

In this example, the structure of a 120-bar dome truss
(Saka and Ulker, 1992) is considered and described in
Fig. 8. In this case, n = 120 and p = 4, Γ = {1, 2, 3, 4}
There is no grouping of elements, meaning that the de-
sign space counts 120 categorical design variables and
120 continuous design variables. For each element, the
categorical variable can take a value among 4 catalogs,
that point to combinations of I and C-profiles with ma-
terials AL2139 and AL2024. Materials properties are
listed in Appendix A. The structure is subjected to an
active constraint on displacements : a maximum down-
ward displacement of 10 mm is allowed. A downward
load of 60 kN is applied on node 1, while a downward
load of 30 kN is applied on nodes 2 to 13 and 10 kN
on nodes 14 to 37.

The graphical solution obtained by the Bi-level algo-
rithm is displayed on Fig. 9. To each categorical choice
is associated a color on the structure. The continu-
ous variables are qualitatively illustrated by the size
of each truss element. The solution found by the algo-

1

60kN

30kN

10kN

60kN

30kN

10kN

7000
m

m

5850
m

m

3000
m

m

Fig. 8: Top and side view a 120-bar truss structure.
Downward loads with three different magnitudes are
applied.
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rithm shows that a number of two catalogs in Γ have
been selected. A list of optimal choices and areas for
each element is given in Appendix B. On elements 1
to 12 and 25 to 48, the catalog 4 is the optimal one :
AL2024 with C-profile. For the other elements, the op-
timal choice is catalog 3 : AL2024 with I-profile. Thus
for the entire truss, the stiffest and lightest material has
been selected. Euler buckling constraints applied to ele-
ments 49 to 96 are active. The optimal choice for these
elements is thus confirmed by the fact that the area
moment of inertia of the I-profile is higher than the C-
profile. The material with the highest Young modulus
has been selected for the entire truss. This is in ac-
cordance with the fact that the other active constraint
is the global constraint on displacements. The Genetic
algorithm has been applied on this case with settings
adapted to the problem scale. However, it was not able
to find a feasible region.

The obtained results on the 120-bar truss example
showed the ability of the proposed method in handling
large scale instances of the problem (P). Through this
120-bar truss example and also the scalable test-cases
from Section 4.4, we present a methodology that of-
fers an interesting compromise between the computa-
tion cost and the quality of the targeted results. How-
ever, the impact of neglecting the information on the
coupling of the categorical choices while using the first
order-like approximation has not been formally proven
yet. The consequences of such approximation need fur-
ther investigation. The decrease strategy (see Section
3.4) is included to ensure a weight decrease when the
first order like approximation is not capable of that. We
note that, for instance, during the optimization process
of the 120-bar truss, the decrease strategy was not acti-
vated which suggest the efficiency of the proposed first
order-like approximation for the master problem.

5 Conclusions

This paper proposed an efficient heuristic algorithm
to handle large scale categorical-continuous structural
weight minimization problems subject to displacements
constraints. The proposed methodology consisted of us-
ing a bi-level decomposition involving two problems:
master and slave. The master problem was driven by
a first order like-approximation, this made it possible
to reduce drastically the combinatorial exploration cost
raised by the categorical design space. Once the cate-
gorical decisions are driven by the master problem, the
continuous variables are handled by the slave problem
using a gradient-based approach. Using the proposed
implementation, one was able to find the exact solu-
tions on low-dimensional cases. Furthermore, on larger
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Fig. 9: Top view of the 120-bar truss mixed categorical-
continuous optimization result.

test cases, the scaling of our method revealed to be
quasi-linear with respect to the number of structural
elements. Particularly, our approach allowed us to solve
problems that are very hard to solve with standard
algorithms. It enables to perform an optimal catalog
selection with optimal internal load distribution and
subject to stiffness constraints (here illustrated by dis-
placements constraints). This was not the case for the
simplified approach mentioned in the introduction (Gri-
hon, 2018). The scaling with respect to the number of
catalogs still needs to be investigated. The proposed
methodology offers thus an interesting compromise be-
tween the quality of the results, the computational ef-
fort and the ease of implementation. It is worth to
note that, unlike methods using continuous formulation
(Stegmann and Lund, 2005; Krogh et al., 2017), the
proposed methodology guarantees to retrieve specific
catalog selections. Further work will consist of formu-
lating the problem as a multi-objective one minimizing
both weight and cost of composite structures.

6 Replication of results

This section is intended to help readers to replicate the
results provided in this paper. A supplementary ma-
terial allows to replicate the 3-bar truss example de-
tailed in section 4.2. In order to replicate the scalable
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2D cantilever (section 4.4) and 120-bar truss (section
4.5), the reader needs to adapt the 3-bar truss physi-
cal model consequently. The geometries are depicted on
Fig. 6 and Fig. 8, material data is provided in Table 4,
and the solution of the 120-bar truss is given in Table
5.

A Materials definition

AL2139 AL2024 TA6V
Density (kg/mm3) 2.8 10−6 2.77 10−6 4.43 10−6

Young modulus (MPa) 7.1 104 7.4 104 11.0 104

Poisson coefficient (−) 0.3 0.33 0.33
Tension allow. (MPa) 1.5 102 1.6 102 11.0 102

Compression allow. (MPa) 2.0 102 2.1 102 8.6 102

Table 4: Numerical details on materials attributes.

B 120-bar solution

bars a [mm2] c [−]

1-12 4553,6 4
13-24 1800,1 3
25-48 2313,0 4
49-72 745,6 3
73-96 589,9 3
97-108 1609,0 3
109-120 1109,2 3

Table 5: Solution of 120-bar truss mixed categorical-
continuous optimization.
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