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Output Error Methods for Robot
Identification

Industrial robot identification is usually based on the inverse dynamic identification
model (IDIM) that comes from Newton's laws and has the advantage of being linear with
respect to the parameters. Building the IDIM from the measurement signals allows the
use of linear regression techniques like the least-squares (LS) or the instrumental vari-
able (1V) for instance. Nonetheless, this involves a careful preprocessing to deal with sen-
sor noise. An alternative in system identification is to consider an output error approach
where the model’s parameters are iteratively tuned in order to match the simulated mod-
el’s output and the measured system’s output. This paper proposes an extensive compari-
son of three different output error approaches in the context of robot identification. One
of the main outcomes of this work is to show that choosing the input torque as target iden-
tification signal instead of the output position may lead to a gain in robustness versus
modeling errors and noise and in computational time. Theoretical developments are illus-
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1 Introduction

During decades, least-squares (LS) optimization and estimation
of the inverse dynamic identification model (IDIM) have been the
two key elements of the most common method used for industrial
robot identification; see, e.g., Ref. [1]. With the IDIM, the input
torque is expressed as a linear function of the physical parameters;
see, e.g., Ref. [2]. Nevertheless, it is not always robust to the
measurement noise correlation that arises from the closed-loop
structure required for robot operation. To overcome this issue, in
Ref. [3], the authors suggested an instrumental variable (IV) opti-
mization adapted to robot systems that was recently improved [4].

Both the IDIM-LS and the IDIM-IV methods require the con-
struction of the IDIM from the measured signals. According to the
authors of Ref. [5], they belong to the equation error class, also
denoted as “using explicit mathematical relations” [6]. The idea
of this class is to obtain an overdetermined set of equations linear
with respect to the parameters that can be solved with a linear
regression technique. An alternative class is the output error one,
also denoted as “using a model-adjustment technique” [6]. With
this class, the parameters are tuned in such a way that the model’s
output fits the measured signal. The tuning of the parameters is
usually performed thanks to nonlinear optimization algorithms,
whereas the prediction of the model’s output can be simulated by
solving the differential equations modeling the system.

The drawback of the equation error methods is that, if all the
signals are not available to the user, they must be estimated prior
to the identification with a specific preprocessing [7]. For rigid
industrial robots, only the joint position is sensed and must there-
fore be differentiated to obtain the joint velocity and acceleration;
see, e.g., Refs. [8—11]. This preprocessing can be complex and/or
a potential source of error. This is why, in Ref. [1], the authors
introduced an output error method called direct and inverse

trated on a six degrees-of-freedom rigid robot. |

dynamic identification models (DIDIM), based on the torque
linearity with respect to the parameters and optimized with a
Gauss—Newton (GN) algorithm.

Because the output error class can deal with outputs nonlinear
with respect to the parameters, one may wonder if it would be
interesting to consider the measured position as the identification
signal as usually done in the automatic control community; see,
e.g., Refs. [12—14]. The resultant question is: would it be possible
to consider another identification signal like the output position to
improve the robustness of the estimation? Furthermore, since
those methods rely on the simulation of the closed-loop system,
an underlying issue is the robustness of those simulations. In other
words, the question is to what extent those methods can reject
modeling errors or a too large noise.

The aim of this paper is therefore to evaluate the robustness of
output error methods for robot identification which has attracted
some renewed interest over the past few years [15-20] among
others. In pursuing this goal, this work shows that it is more inter-
esting to consider the input signal rather than the output one due
to the larger sensitivity. Furthermore, if the torque linearity with
respect to the parameters is insured, the designer should favor the
DIDIM method to save computation time. This paper also illus-
trates the limit of the underlying white noise assumption of the
equation error methods in the case of rigid robots.

This paper is organized as follows: Section 2 is dedicated to the
modeling of rigid industrial robots. Section 3 reviews the identifi-
cation methodologies. The comparison between those methodolo-
gies is undertaken in Sec. 4 and validated with experimental
results in Sec. 5. Finally, Sec. 6 provides concluding remarks.

2 Robot Modeling

2.1 Dynamic Models. If a robot with n moving links is con-
sidered, the vector t(¢) contains the inputs of those links, which
are the applied forces or torques. The signals ¢(¢), ¢(), and §(r)
are, respectively, the (n x 1) vectors of generalized joint positions,
velocities, and accelerations, [2]. With respect to Newton’s sec-
ond law, it comes out as



M(q(1))g(t) = =(t) — N(q(1), 4(1)) (1

where M(q(z)) is the (nx n) inertia matrix of the robot, and
N(q(r),q(r)) is the (n x 1) vector modeling the disturbances or
perturbations. Those perturbations contain the friction forces,
gravity, and centrifugal and Coriolis effects. The mathematical
expressions show that those disturbances are linear in the parame-
ters, but not in the states; see Ref. [2]. Therefore, it appears to be
very convenient for the identification to consider the inverse
dynamic model (IDM). The IDM is described by Tiam (1) = ¢(q(2),
q(1),4(r))0, where the input torque is the dependent (or observa-
tion) variable, ¢ is the (n X b) matrix of regressors (or independ-
ent variables), and 6 is the (b x 1) vector of base parameters to be
estimated. Because of perturbations coming from measurement
noise and modeling errors, the actual torque 7 differs from g, by
an error v. The IDIM is given by

(1) = Tiam (1) +v(1) = $(4(1),4(1),4(1))0 + (1)~ (2)

The last alternative is the direct dynamic model (DDM) that
expresses the joint accelerations as a function of the torques, the
joint positions, and velocities

(1) = M(q(1))”" (viam (1) — N(q(0),4(1))) ©)

The DDM is not used directly for the identification because the
joint accelerations are nonlinear with respect to the parameters and
so they are more difficult to estimate. Nonetheless, it is more con-
venient for simulation purposes and is used as such in Sec. 3.2.

2.2 Control Law. Due to their double integrator behavior,
robots must be operated in closed-loop. In most cases, the control
laws are simple proportional derivative (PD), proportional integral
derivative, or computed torque and passive control [2, see Chapter
14]. In this paper, the controller is assumed to be linear; that each
link is controlled separately from the others; and that there is one
position sensor (i.e., an encoder or a resolver) for each link.
According to Ref. [2], this is a typical configuration for an indus-
trial robot and the integral action is usually weak, or even deacti-
vated when the position error is too small, in order to avoid
oscillations due to the Coulomb friction.

Because there is one position sensor and one motor per link,
there is usually one controller C; for link j defined by

VT/ (t) = Cj (p)(q"j (t) - ilm,-(t)) (4)

where p=d/dt is the differential operator; Vi Grys and g, are,
respectively, the control signal, the reference trajectory, and the
measured position of link j. The robot controller is given by the
transfer matrix C = diag(Cy, ..C,). For convenience, the control-
ler is modeled as a continuous-time system although, in practice,
it is implemented in discrete time on the microcontrollers that are
used to perform the control actions. The control signals, v., serve
as references to the inner current loops of the amplifiers that sup-
ply the motors. For link j, assuming that the current closed-loop
has a bandwidth greater than 500 Hz, its transfer function is mod-
eled as a static gain, g, that applies in the frequency range of the
rigid robot dynamics mayy, (usually less than 10Hz), [1]. In this
article, this gain is assumed known. With G, = diag(g,,..g:,),
the actual torque is then calculated by

(1) = G,v,(1) (5)

3 Identification Methodologies

3.1 Inverse Dynamic Identification Model-Least-Squares
Method

3.1.1 Prefiltering Process. To build the matrix of regressors,
¢, the velocity and the acceleration must be estimated from the

measured position. In most applications, the only available infor-
mation is indeed the joint positions, ¢,,. As described in Ref. [9]
for instance, the differentiation is performed with a centralized
finite difference. The drawback of this technique is the amplifica-
tion of the noise. In practice, that phenomenon is limited by an
adequate filtering of ¢,,, prior to the differentiation, to obtain an
estimate ¢. The filter, which is usually a Butterworth one, is
applied in both forward and reverse directions to eliminate the
phase lag that is inherent in the forward-pass filtering operation.
Its cut-off frequency, y,, is influenced by the sampling frequency,
wy, usually chosen 100 times larger than the natural frequency of
the highest mode to be modeled, wgyy,, in order to satisfy the
Nyquist rule. According to Ref. [9], the rule of thumb for the cut-
off frequency is wy, > 5wayn. The combination of the two-pass
Butterworth filter and central differencing is referred to as the
bandpass filtering process. By selecting the cut-off frequency, the
user must ensure that (¢, ¢, ¢) ~ (q,4¢,§) in the range [0, oy, ].

In practice, unmodeled friction and flexibility effects disturb
the torque. Although they are rejected by the controller during the
operation of the robot, those perturbations must be removed prior
to the identification with a parallel low-pass filtering at the cut-off
frequency WF, > 2wayn [9]. To be consistent, this filter is also
applied to the independent variables. Thereafter, there is no more
useful information beyond the cut-off frequency. A “decimation”
procedure is thus undertaken, i.e., resampling to keep one sample
over ng = Wyy,/wr, [9]. After data acquisition and decimation,
we obtain

e, (1) = Fy= e(0) = by, (20,400 )0 +ve, () ©)

with F, being the parallel filter applied to each element of the
observation matrix ¢, (§(1),4(1),4(r)) = Fp(z"") (4 (1), (1),
(1)), as well as the error vector v, (1) = Fp(z"")v(1), and z " is
the backward shift (delay) operator.

3.1.2 Least-Squares Estimation. The model described by
Eq. (2) can be straightforwardly extended to a regrouped matrix
formulation, which we may also be called en bloc formulation.
The IDIM is rewritten as

y(1) =X(4.4,4)0 +¢ %)

where y(t) is the (r x 1) measurements vector built from the fil-
tered torques tr,; X (4,4,4) is the (r x b) regrouped observation
matrix; & is the (r x 1) vector of errors terms; and r = n - N is the
number of rows in Eq. (7), where N = n,,,/n, is the number of sam-
pling points after decimation and 7, is the number of measure-
ment points.

In y and X, the equations of each joint j are regrouped together.
Thus, y and X are partitioned so that

yl Xl
o =1:|, X(.4.4) =] : (®8)
yl’l X)l
w5, (1) B, (@(1),4(0),4(1))
where y = : ;X = : ; and
o, (i) B (@ (tn), 4 (iv), G(1n))

¢an (§(1), q (1), (1)) is the jth row of the (n x b) filtered obser-

vation matrix at time #; (k between 1 and N).
With the en bloc matrix formulation (7), the ordinary LS esti-
mates are computed with

Ous(N) = (X"X) 'XTy(z) 9)

The solution exists if (X7X) is invertible. That is to say that X is
full column rank. The covariance matrix of the LS estimates is



2(0is) = (Xsz;lX)_1 (10)

Q, is the estimate of Q, defined such as

Qf:diag(a?lN.,...,q?IN,...,J§IN> (11)

where Iy is the (N x N) identity matrix and :7]2 is the noise var-
iance of link j. This matrix is constructed from the covariance
matrix of the vr, defined by

A = diag(a%7 ey 02 ...,02>

I ,, (12)
For each link j, the noise vy, is assumed to have zero mean, to be
serially uncorrelated and to be homoskedastic, i.e., a white noise.

From a theoretical point of view, the LS estimates (9) are
unbiased if the error has a zero mean, and if the regressors are
uncorrelated with the error, see the following relation [7,21]:

E[e] =0, EX"e/=0 (13)

It is assumed that those two assumptions hold. However, systems
considered in this article operate in closed-loop, since they are unsta-
ble in open-loop. In that case, the assumption given by Eq. (13) does
not hold; see, e.g., [22]. This partly explains why a tailor-made
prefiltering of the data is done in practice.

3.2 Output Error Methods

3.2.1 Output Error Methods Principles. The purpose of the
output error methods (OEM) is to find the best parametric model
with respect to a specific criterion. The criterion is a function of
the error between the noisy measured output and the simulated
model output. As explained in Ref. [23], many criteria may be
used. In this article, we focus on the quadratic criterion given by

Vi (0) = (v(t:) = 3,(:,0)))°

1

1 &
N2 (14)
where y is the (nx 1) vector of measured output and y, is the
(nx 1) vector simulated output. As explained in chapter 7 of
Ref. [24] for instance, with such a criterion, output error models
assume that the additive noise on the output is white. According
to the same reference, the estimator can be consistent although the
noise model is not adequate. To minimize that quadratic error, the
unknown system parameters are tuned iteratively so that the simu-

At
lated model output fits the measured system output, with 0

= 9” + Aé”, where A@” is the innovation vector at iteration if.
The innovation is calculated differently depending on the applied
nonlinear optimization algorithm. The criterion minimization is
usually solved thanks to nonlinear optimization algorithms based
on a first- or second-order Taylor series expansion like the gradi-
ent, the GN, and the Levenberg—Marquardt methods. For the GN
method, the parameter innovation is given by

ao' = [vi(a)] i ()

where V]’v(@”) and V;}(én) are the gradient vector and the Hessian
matrix of the criterion Vy, respectively. That innovation vector
requires the computation of the criterion derivatives with respect
to the parameters. In some cases, those derivatives can be exactly
known. For example, in Ref. [14], the authors developed an exact
formulation of the first derivative for continuous-time linear time
invariant systems. In Ref. [25], the authors derived the same for
nonlinear systems. Those derivatives of the criterion are functions

(15)

of the derivatives of the system’s outputs with respect to the
parameters, which are called sensitivities.

To simulate the continuous-time system and obtain a simulated
output, the differential equations must be solved. Many numerical
solvers exist in the literature like the well-known Runge—Kutta
method; for further examples, see Ref. [26]. In this article, they
will be referred as “integration solvers” to avoid confusion with
“optimization solvers” introduced in the previous paragraph. In
practice, the integration solver needs the same input as the real
system and a set of values for the parameters to identify. The
choice of the integration solver is decisive. For each model,
the practitioner must find the integration solver which suits to the
system properties. For instance, if the system presents two dynam-
ics with characteristic times that greatly differ, a stiff solver
should be employed. If the integration solver is not appropriate, it
may lead to a biased identification.

The initial values are a crucial point for OEM. With a bad initi-
alization, the optimization solver may lead to local minimum (if it
is a local optimizer) or even diverge [23]. The integration solver
may also diverge if the parameters are not suitable. Depending
on the application, different techniques may be used to initialize
correctly the method. If the problem is linear with respect to the
parameters and if all the states are available, a LS estimation can
be employed. As shown in Ref. [1], in the field of robotics, the
computer-aided design values of the inertia are accurate enough to
initialize.

3.2.2 Closed-Loop Output Error. By applying directly the
OEM to a robot model, it seems natural to take the joint position
vector as the identification signal. The output error vector is
defined by

8CLOE(Z‘7 0) = qm(t) — 4 (t7 0) (16)
where ¢, is the (n x 1) vector of simulated joint positions. Since the
robots are unstable in open-loop, they are identified in closed-loop
and the dedicated identification method is called the closed-loop
output error (CLOE) method. The simulated output ¢, is generated
with the reference signal ¢, that is perfectly known and conse-
quently noise-free. Therefore, there is not bias induced by a noise
correlation and the estimation is consistent, assuming that there is
no modeling error and that the optimization solver has converged to
the global minimum.

As explained in Sec. 3.2.1, OEM problem is usually solved
thanks to nonlinear optimization algorithms. In this part, we focus
on the GN method, which is based on a second-order Taylor series
expansion of ¢,, at current estimates OcrLog; see Eq. (15). After
data sampling, the following overdetermined system is obtained at
iteration it:

Ay(q) = WL opA0 op + €cLok (17)

where Ay(q) is the (#’x 1) vector built from the sampling of
gcLog(t, 0), similar to Eq. (8); ‘I"C'LOE is the (//x b) matrix built

A |
from the n matrices W o/ = i » where A} (+) is the jth
A{L (tn)
row of the (n x b) Jacobian matrix A, = % | 9—" 3 €CLOE is the
CLOE

(' x 1) vector built from the sampling of €crog and the residuals
of the Taylor series expansion and /' =n - n,, is the number of

equation considered, without any decimation; and A(AJZLOE is the
(b x 1) vector of estimated parameters increments and is the LS
solution of Eq. (17). Each element of the Jacobian A, is an output
sensitivity function which defines the variation of the output posi-
tion with respect to the parameters. Usually, those sensitivity
functions are not exactly known and approximated with finite
differences.



The construction of the en bloc formulation is really similar to
the one of the IDIM-LS method (7). The difference is the use of 7’
instead of r. This is due to the fact that we are in an output error
framework. Hence, the additive noise is assumed white and does
not need any prefiltering such as the decimate filter. It thus begins
to emerge here as a limitation of OEM for robot identification. In
addition, as we shall see later, the decimation process presents
also an advantage for the conditioning number because the num-
ber of sampling points to treat is indeed reduced for the optimiza-
tion solver.

3.2.3  Closed-Loop Input Error. As we have seen in Sec. 2.1,
it is common to use the input torque/force for robot identification.
Therefore, a variant of the CLOE method based on the input sig-
nal can be considered. This technique, termed as closed-loop input
error (CLIE) method in Ref. [27], relies on the input error vector

cLe(t,0) = (1) — 7,(¢,0) (18)
If the problem is solved with the GN algorithm, AOiC’LlE is the LS
solution of

Ay(t) = WA g + ecLie (19)

where Ay(t) is the (#/x 1) vector built from the sampling of
gcui(t,0), similar to Eq. (8); W¢y g is the (' x b) matrix built
A% (1)

from the n matrices ‘l’iC’L[E-f = , where AQ() is the jth

Az (tn,)

_ Ot

row of the (n x b) Jacobian matrix A; = W‘ ; and ecp g 1S

St
—YcLE

the (+/x 1) vector built from the sampling of £c g and the resid-
uals of the Taylor series expansion.

The CLOE and CLIE methods are iterative and can share the
initialization and the convergence criterion. In Sec. 4, we investi-
gate their properties.

3.3 Direct and Indirect Dynamic Identification Method.
Recently in Ref. [1], the authors have introduced a pseudo OEM
dedicated to robots based on the DDM, called DIDIM for Direct
and Inverse Identification Model. Similar to the CLIE method, the
observation variable is the torque. This method may be regarded
as pseudo OEM because it includes the parallel filter. Hence, the
additive noise, v, is not necessarily considered as white. The sec-
ond specificity of the DIDIM method is that the dependence of ¢
in 0 is neglected. In the field of system identification, such
an assumption is called pseudo-linear regression (PLR), see
Eq. (7.112) in Ref. [28]. According to the same reference, PLR is
derived from Ref. [29]. Thanks to the PLR, the GN algorithm
becomes equivalent to the linear LS, as shown in Sec. 4.3.3.3 of
Ref. [23]. The input sensitivity is written as

A = 250

it
0=0pip1m

=¢ (‘Is <t7 énglM) 45 <t7 é;lDlM) +ds <t7 é;lDlM)) (20)

Thanks to this relation, the input sensitivity can be calculated with
only one simulation of the closed-loop system. In the opposite,
with finite differences, b+ 1 simulations are needed to evaluate
the sensitivity considering a forward or a backward first-order and
one-sided difference scheme. As we shall see later, the gain in
computing time is therefore not negligible.

4 Comparison of Output Error Methods

4.1 Sensitivity Relation. For the CLIE method, at iteration iz,
the input sensitivity is defined such as

(1)
A, (1) = — 21
=50 e
By using the controller definition (5), it becomes
G.C (,t - Y(z,@“ ))
Au () = (r)\a.(1) — g, CLIE 22)

00

St
0=0c1

and assuming that the controller is known, or at least not identified

at the same time
it
0(a,(1061))

Ar\-(t) = 7Grc(p) 80

Al
0=01

= —G.C(p)A, (1) (23)
Equation (23) is the key relation to compare the CLOE and CLIE
methods. Loosely speaking, the CLIE method is a frequency
weighting of the CLOE method by the controller. In practice, the
input sensitivity functions can be obtained from the filtering of the
output ones, if they are available.

Because the robots are controlled in position and assuming that
the optimization solver is adequately initialized, the following
relations are expected:

q,,(1) = q,(7) (24)

(25)

at each iteration it of the algorithm. Because of Egs. (24) and (25),
the controller may be assumed to operate in low frequencies range
and, then, to be a (n X n) constant matrix Cy. If the controller is a
PD control law, then this result is straightforward. If the controller
contains an integral term, this result can be still considered as
valid. In fact, as explained in Sec. 2.2, to avoid oscillations due to
the Coulomb friction, the integral action is deactivated when the
position error is too small and this implies that proportional inte-
gral derivative controller reduces to PD controller. Thus, Eq. (23)
may be rewritten as

Arx(t) = _GrCOAqi\ (t) (26)

4.2 Equivalence of the Closed-Loop Output Error and
Closed-Loop Input Error Estimations. Considering relation
(26), the CLIE method can be seen as a weighted CLOE method.
That can be seen with the LS solution of Eq. (19)

At

. . 71 .
Abcy s = [(\ygLIE)T\ygLIE] (‘l‘éLIE)TAy(T)
i TAT A wi i TAT A
%[(‘PCILOE) CgCO\FCILOE] (TéLOE) CgCOA.V(‘I)

i T i i T
= [(‘IICrLOE) W‘yéLOE] (Weros) WAY(q) (27)

where Cj is (//x /) matrix built from the constant controller
matrix G.Cp and the relation between both errors is Ay(t)
~ —CoAy(q), because it is built from
(1) = (1) = GLC(p) (4,(1) — 4, 1))
- G.C(p)(q,(1) — ¢,(1))
~ = G‘rCO (qm(t) — 4y (t))
Relation (27) is clearly a weighted least-squares solution. If n,, is

sufficiently large and assuming that the trajectories are exciting
enough, according to the theory of statistics [21], one has



E [ééu}z] —E [éiCILOE]

It comes out that the CLIE and CLOE methods asymptotically
provide the same estimates. The resulting question is: is there a
dominant estimator?

Because we are in an output error framework, the output posi-
tion can be written as

qm(t) = q(t) + nt[(t) (28)

where n, is a (n x 1) vector of independent white noises with a
(n x n) covariance matrix A,. With the closed-loop, the input is
given by

(1) = G.C(p)(q,(1) — q,,(1))
=G.C(p)(g,(1) — (1)) — G:C(p)ny(1)

The reference trajectory being noise-free, the noise seen by the
input torque is ¥(t) = —G.C(p)n,(1); see Eq. (2). With no further
assumption, it appears that if the output error assumption is made
on the output position, it is not validated for the input torque.
Nonetheless, we assume that the closed-loop system operates in
its bandwidth and consequently C(p) =~ Co. The noises relation is
given by

(29)

v(t) = —G.Cony(1) (30)
Consequently, E[v]

= —G.CoE[ny) = 0 and the covariances are
linked such as

A =E[0—Ep)(r—EW)'| =E [G-Con,nichG

= G.CyA,,CiG! 31
In practice, the matrices G, and Cy can be assumed diagonal,
which is justified by the technology: one controller by link as pre-
sented in Sec. 2.2. Attention is drawn to the fact that the covari-
ance A, is the one of v(¢), whereas A, is the one of vFP(t); see Eq.
(12). Assuming no modeling error and that the optimization solver
has converged to true parameters values, the estimated parameters
covariances are then given by

-1
At i T_ i
2<0CLIE> = [(‘l’cruﬁ) Q, l‘yctuﬁ}
-1
it \T&T (A o ¢
= |:(WCLOE) Cy (COQqCO> CO‘PCLOE:|
. T . ~1 At
= [(‘PZLOE) qu‘PgLOE] = Z<0CLOE>

where Q, and €, are the (+'x 1) covariance matrices, respec-
tively, built from A, and A, like in Eq. (11). It comes out that the
CLIE and the CLOE methods provide the same estimates with the
same variances.

To summarize, the users have the choice between ¢,, and 7, but
the CLIE and the CLOE methods asymptotically provide the same
results. The question is: what is the best choice to identify
continuous-time systems operating in closed-loop? Section 4.3
presents the main difference between the CLOE and CLIE
methods.

(32)

4.3 Robustness of the Closed-Loop Input Error Method to
Errors. With the good tracking assumption (25), ¢, has a little
dependence on parameters’ variations and the output sensitivity
matrix A, contains little information. This implies that the singu-
lar values of A, are small, whereas its conditioning number
denoted as condgLOE may be very good, i.e., condgLOE ~ 1; see,
e.g., Ref. [30]. To show that, from Eq. (17), the ordinary LS solu-
tion can be written as

it i Ty -l T
Abciop = [(\PéLOE) ‘PgLOE] (Weror) Av(g)  (33)

. L . Ait
Then, the relative variation of the solution ABICLOE denoted as

dA(}iC[LOE is expressed by two upper bounds given by

HdAOCLOEH ondSLOE |ldAy(q)ll, (34)
HA@ZLOEH 1Ay(9)ll>
HdAé”

CLOE ondSLOE |ld¥ Lozl (35)

HABCLOE + dAGCLOE‘ ‘2 1¥¢Loell

where dA@iClLOE, dAy(q), and d‘l’iC'LOE are small variations of

it : . .
AOICLOE, Ay(q), and W o, respectively. || - ||, is the two-norm
of a vector or a matrix.

Let uSEOF and uSLOF be the smallest and the greatest singular

min
values of Wi o, respectively. With cond$™CF = yCLOE /;CLOE
and ||W¢ ogll, = 1SEOE, one obtains

loaPcior < o ldy(a)ll 6

i 1Ay (q)ll

AoCLOE :umm 2

dAD.
[stevcnl |, _pawtgel,
CLOE :

|40 0r +dABG o[~ Hain

Assuming that puSEOE and pCLOE are very small with pSEOE

~ 1SEOF one has condS™OF = 1 and 1/uSLOE very large.

With Eq. (36), it appears the interest of having a conditioning
number as close as possible to one in order to minimize the rela-
tive norm error on the solution vector. That property was pointed
out in Ref. [31] where a new criterion of exciting trajectory was
developed based on this relation. Equation (37) pinpoints the role
of uSHOE as we shall see below. In practice, two cases must be

considered for the CLOE method.

e The first case is when Eqgs. (24) and (25) are fulfilled. That is
to say that the controller was designed to provide an excel-
lent tracking, while rejecting perturbations and model mis-
matches. In this case, there is &c og(t, 0) ~ 0, for each ¢, or
equivalently Ay(q) ~ 0. Then, from Eq. (33), the innovation
is approximately zero. It comes out that the CLOE method
may be totally insensitive to modeling errors and/or to mea-
surement noise, if the control law is effective enough. In
practice, the optimization solver would not move from the
initialization point.

e The second case to be considered is when Eqgs. (24) and (25)
are not totally fulfilled. In other words, the controller
presents relatively poor tracking performances. Regarding

the upper bound (37), AézLOE may not be robust against a
small variation d¥%, .. iC’LOE|\2 is amplified by
1/uSEOE. Tt can be thought that d¥}, o is mainly due to
modeling errors and a poor initialization, since the simulated
output is not affected by the measurement noise. This leads
to unpredictable results because those errors can be inter-
preted as an information by the optimization solver. It comes
out that the CLOE method may be sensitive to small model-
ing errors, if the control law is not effective enough.

As a result, the objective is to obtain a conditioning number as
close as possible to one while having the smallest singular value
as large as possible. Contrary to the CLOE method, the CLIE one



will not suffer from small singular values because it is the CLOE
method weighted by the control; see Eq. (26). As regards the
industrial robots, the gains of the controller are usually high and
this implies Cy > I,,. Then, it follows that uStE and uSLE the
smallest and the greatest singular values of Wi, - are far greater
than pCHOF and pCLOE. Tt comes out that the CLIE method is more
robust against a small modeling error and is more sensitive to
parameters’ variations than the CLOE method.

5 Experimentations

5.1 Experimental Setup. In this part, we illustrate the per-
formances of the CLIE, CLOE, and DIDIM methods with the
Staubli TX40 [32], which is a serial manipulator composed of six
rotational joints. There is a coupling between the joints 5 and 6
that add two parameters: fv,,q and fc,,s, which are, respectively,
the viscous and dry friction coefficients of motor 6. The symoro+
software is used to automatically calculate the customized sym-
bolic expressions of models; see Ref. [2]. The robot has 60 base
dynamic parameters, and from these 60 base parameters, only 28
are well identified with good relative standard deviations. These
28 parameters define a set of essential parameters that are suffi-
cient to describe the dynamic behavior of the robot. This set was
validated with a F-statistic, as shown in Ref. [3] and only the esti-
mation of these parameters is considered here.

The reference trajectories are trapezoidal velocities (also called

bang-bang accelerations). With cond

smoothed ¢ L) = 200, these
tixfarofichettagee tparesnetord de cuffficigito Keftddh fdretheinsposi-
tions and control signals are stored with a measurement frequency
ws = 5 kHz. For the IDIM-LS method, the filter cut-off frequen-
cies are tuned according to Ref. [1], i.e., Wy = Swgyn = 50 Hz
and WF, = 2wgyn = 20 Hz for the Butterworth and the decimation
filters, respectively. The maximum bandwidth for joint 6 is
Wdyn = 10 Hz.

The DDM is simulated thanks to a siMULINK model integrated
with the ode3 integration solver: Bogacki—Shampine. The gains of
the simulated controller are not updated to keep the bandwidth
constant as it could be done with the DIDIM method; see, e.g.,
Ref. [1]. For the CLIE and CLOE methods, the optimization is
done with the Levenberg—Marquardt algorithm implemented in
the Isqnonlin function of the MATLAB optimization toolbox. The
three methods are initialized with acceptable computer-aided
design values: all base parameters equal to 0 except ia;=1 for
Jj # 5 and ias =2 because of the coupling effect.

5.2 Experimental Results. This section provides the results
of the comparison between the IDIM-LS, CLIE, CLOE, and
DIDIM methods. In a first time, the CLIE and CLOE methods are
studied in a strict output error framework. In a second time, the
three methods are compared in more general framework by taking
into account the decimate filter. In addition to the estimated
parameters, the relative standard deviations, the prediction errors,
the singular values, the conditioning numbers, and the computing
times are used as metrics.

5.2.1 Strict Output Error Framework. Table 1 summarizes
the essential estimated parameters and relative standard devia-
tions. The first method illustrates the results obtained with an
appropriate setting of the prefilters. The LS estimate can therefore
be considered as reference values. The CLIE and DIDIM esti-
mated parameters are close to those of the IDIM-LS method and
lie in the 3¢ confidence intervals of the LS estimates. The CLOE
estimates are not so far except for the Coulomb parameters fc; and
other parameters like mux,, which are highlighted in bold in the
table. This can be explained by the lack of sensitivity of this
method. As explained in Sec. 4.3, the CLIE method is in fact a
CLOE method weighted by the controller. Due to large controller
gains, the sensitivity with respect to the parameters is more

Table1 CLIE, CLOE, and DIDIM estimates—no decimate filter

~7 ~7 ~7
OLs 0CLIE OCLOE aDIDIM

1.24 (1.45%) 1.25 (0.32%) 1.22 (0.24%) 1.25 (0.32%)

zz1,

2 8.00 (0.91%) 7.96 (0.28%) 8.18 (0.12%)  7.99 (0.28%)
feu 7.34 (2.66%) 7.21 (0.87%) 6.34 (0.37%)  7.11 (0.89%)
xxp.  —0.48 (3.28%) —0.47(0.97%) —0.42(0.55%) —0.48 (0.98%)
Xz —0.16 (5.40%) —0.16 (1.85%) —0.17(0.72%) —0.15 (1.89%)
225, 1.09 (1.29%) 1.09 (0.29%) 1.08 (0.18%) 1.09 (0.30%)
mxy.  2.21(3.01%) 2.24 (0.94%) 2.43(0.73%)  2.22(0.95%)
2 5.50 (1.45%) 5.47 (0.35%) 5.68 (0.22%)  5.45(0.35%)
fes 8.24 (2.26%) 8.35 (0.53%) 7.40 (0.28%) 8.35 (0.53%)

XX3, 0.13 (10.6%) 0.13 (2.07%) 0.18 (1.31%)  0.13 (2.10%)
223, 0.11 (9.57%) 0.12 (1.81%) 0.11 (1.59%)  0.11 (1.89%)
mys,  —0.60 (2.52%) —0.59 (0.44%) —0.53 (0.60%) —0.59 (0.44%)

ias 0.09 (9.39%)
fos 1.93 (2.05%)
fes 6.48 (2.06%)
mys —0.02 (35.1%)
ia,  0.03(9.10%)
fra 1.09 (1.62%)
fea 2.57 (2.46%)
~0.03 (15.2%)
ias 0.04 (10.6%)

s 1.79 (2.33%)

0.09 (1.94%)
1.94 (0.31%)
6.47 (0.31%)

—0.03 (3.40%)
0.03 (1.08%)
1.11 (0.19%)
2.44 (0.31%)

—0.04 (1.81%)
0.04 (1.35%)
1.82 (0.24%)

0.09 (1.62%)
1.93 (0.46%)
5.80 (0.31%)
0.01 (12.4%)
0.03 (1.38%)
1.15 (0.28%)
2.17 (0.54%)
—0.06 (1.31%)
0.05 (1.29%)
1.92 (0.34%)

0.09 (1.94%)
1.94 (0.31%)
6.47 (0.32%)
—0.03 (3.50%)
0.03 (1.09%)
1.11 (0.19%)
2.42 (0.31%)
—0.03 (1.85%)
0.04 (1.38%)
1.82 (0.25%)

fes 3.07 (3.59%) 3.01 (0.39%) 2.26 (0.48%)  2.99 (0.39%)
iag 0.01 (13.3%) 0.01 (2.06%) 0.01 (1.78%)  0.01 (2.08%)
e 0.65 (1.85%) 0.66 (0.20%) 0.67 (0.23%)  0.65(0.21%)
fee 0.30 (32.9%) 0.18 (5.92%) 0.04 (24.4%)  0.25 (4.18%)
fome 0.61 (1.97%) 0.60 (0.22%) 0.57 (0.46%)  0.60 (0.22%)
Jeme 1.90 (4.40%) 1.94 (0.46%) 1.95 (0.78%) 1.92 (0.46%)

important at the input than at the output. That is confirmed by the
singular values of the Jacobian matrices in Table 2. The interest
of considering the input torque for the identification is also visible
in Table 3 that gives the relative errors averaged over the axes.
The CLOE method indeed provides larger simulation errors on
the torques than the CLIE method, whereas both have equivalent
errors on the positions. The relative standard deviations of the
estimated parameters may seem promising; however, there is an
issue with the computation of the variances. The additive noises
are indeed assumed to be serially uncorrelated which is not veri-
fied with the residuals autocorrelations; see Figs. 1 and 2 for the
CLOE and CLIE methods, respectively. Consequently, the CLOE,
CLIE, and DIDIM methods cannot be applied in a strict output
error framework to industrial robots, although the CLIE and

Table 2 CLIE, CLOE, and DIDIM optimization parameters—no
decimate filter

CLIE CLOE DIDIM
Himax 2.26 x 10* 9.85 223 x 10*
Henin 19.3 26x107° 19.1
Conditioning number 1172 3845 1166
Computing time 23 min 23 min 1 min

Table 3 Direct comparison—mean relative errors over axes—
CLIE, CLOE, and DIDIM—no decimate filter

(19, — 4,11/ 114,11 Il = = [1/11%]]
CLIE 0.017% 6.97%
CLOE 0.017% 10.7%
DIDIM 0.013% 6.95%
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DIDIM methods provide consistent estimates. Since the CLIE and
DIDIM results are really close, only the correlation of the CLIE
residuals is presented. In fact, the CLIE and DIDIM estimators
appear to be consistent but inefficient. The interest of the DIDIM
method compared with the CLIE one appears with the computing
time in Table 2. The DIDIM method has the advantage of calling
only one time the simulator at each optimization step thanks to the
PLR assumption. In the opposite, the CLIE method must call the
simulator b+ 1 times the simulator to estimate the Jacobian
matrix with finite differences. This explains the lower computing
time of the DIDIM method in Table 2.

5.2.2  Output Error with the Decimation. In this part, we con-
sider the CLIE and CLOE methods with the decimate filter as
well as the DIDIM method. The estimated parameters provided in

Table 4 are close to the previous estimations. There is still a lack
of sensitivity for the CLOE method. Concerning the relative
standard deviations of the CLIE, CLOE, and DIDIM methods,
they proved to be equivalent. The CLIE and DIDIM results are
still really close and, regarding the correlation, the CLOE resid-
uals present the same behavior as the DIDIM ones. Thus, Fig. 3
depicts the autocorrelations of the DIDIM residuals, representa-
tive of the three methods. The effect of the parallel filter is clear
since the estimated autocorrelation coefficients are included in the
confidence intervals indicated by the blue lines. These estimated
autocorrelations prove that the DIDIM residuals can be considered
as almost serially uncorrelated, and so are the CLIE and CLOE
ones. The differences between the intervals sizes compared with
Figs. 1 and 2 are due to the number of samples considered for
each method. If the methods without decimate filter take into



Table 4 CLIE, CLOE, and DIDIM estimates—decimate filter Table 5 CLIE, CLOE, and DIDIM optimization parameters
0’ 0’ 0’ CLIE CLOE DIDIM
CLIE CLOE DIDIM
zzy, 1.25 (1.52%) 1.22 (2.69%) 1.25(1.23%)  tmax 1589 1.34 1571
Iz 7.96 (0.91%) 8.18 (1.39%) 7.99 (0.75%)  Hmin 1.3 1.74 x 107 1.3
fer 721 (2.84%) 6.34 (4.22%) 7.11 236%)  Conditioning number 1178 7622 1165
Computing time 23 min 23 min 1 min
XXo, —0.47 (3.72%) —0.42 (5.95%) —0.48 (3.06%)
XZo, —0.16 (6.82%) —0.17 (7.92%) —0.15 (6.01%)
= 1.09.(1.37%) 1.08 (2.05%) 1.09(1.12%) differential equations and not the matrix inversion for the optimi-
M 2.24 (4.05%) 2.43 (8.57%) 2.223.32%)  ation. In practice, for a precision purpose, the ordinary differen-
fr2 547 (1.55%) 5.68 (2.66%) 545 (1.24%)  (jq) equations integration is performed at the sampling frequency
fes 8.35 (2.36%) 7.40 (3.38%) 8.35(1.85%) and not at the decimate one. Furthermore, at each call of the
XX3, 0.13 (11.1%) 0.18 (14.5%) 0.13(8.97%)  Simulink with a new set of parameters, a new compilation is
223, 0.12 (10.3%) 0.11 (17.8%) 0.11 (8.47%) required. This method is certainly not the optimal one from a
mys, —0.59 (2.70%) —0.53 (6.38%) —0.59 (2.11%) computational perspective but is a practical way and the overall
ias 0.09 (11.1%) 0.09 (17.7%) 0.09 (8.61%) computing time is still acceptable, especially for the DIDIM
5 1.94 (2.14%) 1.93 (4.51%) 1.94 (158%) method. o

fes 6.47 (2.19%) 5.79 (3.22%) 6.47 (1.59%) The exp{:rlmental resu}ts show the a:ldvan'tages. of considering
s —0.03 (26.9%) 0.01 (124%) 003 (18.8%) the input (1..e., tor.qug) signal for the identification. If the PLR
. assumption is admissible, the DIDIM method should be preferred
iay 0.03 (9.33%) 0.03 (12.8%) 0.03 (7.78%) to save computation time.
Foa 1.11 (1.81%) 1.15 (2.52%) 1.11 (1.48%)
fey 2.44 (2.97%) 2.17 (5.00%) 2.42 (2.43%)
mys,; —0.04 (14.5%) —0.06 (13.7%) —0.03 (11.0%) 6 Conclusion
ias 0.04 (12.1%) 0.05 (15.4%) 0.04 (9.78%) . . .
fos 1.82 (2.33%) 1.92 (4.20%) 1.82 (1.84%) To overcome some dlfﬁcultl_es of the equation error methods
fes 3.01 (3.72%) 2.26 (6.00%) 2,99 (2.92%) for robot 1dent1ﬁcat19n, we con51.dered the alternative of the output
. error methods. The idea is to simulate the closed-loop model of
196 0.01 (20.2%) 0.01 (20.9%) 0.01 (18.7%) the robot and compare its identification signal with the one meas-
e 0.66 (2.07%) 0.67 (2.85%) 0.65(1.59%)  red on the system. Two variants for identification signal have
fes 0.18 (19.5%) 0.042 (315%) 0.25(11.6%)  peen studied and compared: the CLOE and CLIE methods that
Soms 0.60 (2.19%) 0.57 (5.66%) 0.60 (1.67%)  are, respectively, based on the output position and the input tor-
Jeme 1.94 (4.50%) 1.96 (9.84%) 1.92(3.44%) que. In addition, a modification of the CLIE method named

account 7,, = 34,500 sampling points for the estimation, the others
consider N=n,,/n;=276 sampling points due to the down-
sampling. Finally, the careful reader can wonder why there is no
significant time reduction between Tables 2 and 5 since the
amount of data is reduced. That comes from the fact that the most
time consuming operation is the integration of the ordinary

DIDIM has been considered in the case where the input torque is
linear with respect to the parameters.

Experimental validation of the theoretical comparison has been
carried out on a six degrees-of-freedom industrial robot and it is
concluded as follows:

e For industrial robot with an effective control law, it is more
interesting to consider the input torque as identification sig-
nal than the output position.

Link 4
L ]
>
L ]
o

2

Link 5
°
°

e ®© ¥V & 0

Link 6
e
o
°

Lag

0 5 10 15 20

0 5 10 15 20
Lag

Fig. 3 DIDIM residuals autocorrelations (dots) and 26 confidence intervals (solid lines)—decimate filter



e If the pseudo-linear regression assumption is admissible, the
practitioner should consider DIDIM method to save compu-
tation time.

e A strict output error framework does not suit to robot identi-
fication. A careful filtering strategy must be employed to
insure white residuals, and thus, a correct estimation of the
error covariance.

Research and development are ongoing to compare the IDIM-
IV and DIDIM methodologies, concentrating on their robustness
and statistical properties. The work could also be extended to par-
allel robots that represent an important topical issue [34]. In this
regard, Refs. [35] and [11] have applied the standard IDIM-LS
method to parallel robots; while in Ref. [36], the authors have
applied a standard LS procedure that is equivalent to the IDIM-LS
approach.

Nomenclature
a, b, c = scalars
a, b, c = vectors
A, B, C = matrices

Conventions
AT = transpose of matrix A
A~! = inverse of matrix A
[|A||, = Euclidean norm of matrix A
X = estimated vector
Xy; = ith component of vector x;

(8g(x) /0x) = Jacobian matrix of function g

References

[1] Gautier, M., Janot, A., and Vandanjon, P.-O., 2013, “A New Closed-Loop Out-
put Error Method for Parameter Identification of Robot Dynamics,” IEEE
Trans. Control Syst. Technol., 21(2), pp. 428-444.

[2] Khalil, W., and Dombre, E., 2004, Modeling, Identification and Control of
Robots, Butterworth-Heinemann, Oxford, UK.

[3] Janot, A., Vandanjon, P.-O., and Gautier, M., 2014, “A Generic Instrumental
Variable Approach for Industrial Robot Identification,” IEEE Trans. Control
Syst. Technol., 22(1), pp. 132—-145.

[4] Brunot, M., Janot, A., Young, P., and Carrillo, F., 2018, “An Improved Instru-
mental Variable Method for Industrial Robot Model Identification,” Control
Eng. Pract., 74, pp. 107-117.

[5] Tomita, Y., Damen, A., and Van den Hof, P., 1992, “Equation Error Versus
Output Error Methods,” Ergonomics, 35(5-6), pp. 551-564.

[6] Eykhoff, P., 1974, System Identification: Parameter and State Estimation,
Wiley-Interscience, London, UK.

[7]1 Young, P., 2011, Recursive Estimation and Time-Series Analysis: An Introduc-
tion for the Student and Practitioner, Springer Verlag, Berlin, Germany.

[8] Bélanger, P., Dobrovolny, P., Helmy, A., and Zhang, X., 1998, “Estimation of
Angular Velocity and Acceleration from Shaft-Encoder Measurements,” Int. J.
Rob. Res., 17(11), pp. 1225-1233.

[9] Gautier, M., 1997, “Dynamic Identification of Robots With Power Model,” Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
Vol. 3, Albuquerque, NM, Apr. 25, pp. 1922-1927.

[10] Swevers, J., Verdonck, W., and De Schutter, J., 2007, “Dynamic Model Identifi-
cation for Industrial Robots,” IEEE Control Syst., 27(5), pp. 58-71.

[11] Wu, J., Wang, J., and You, Z., 2010, “An Overview of Dynamic Parameter
Identification of Robots,” Rob. Comput. Integr. Manuf., 26(5), pp. 414—419.

[12] Landau, I. D., and Karimi, A., 1997, “An Output Error Recursive Algorithm
for Unbiased Identification in Closed Loop,” Automatica, 33(5), pp.
933-938.

[13] Landau, I., Anderson, B., and De Bruyne, F., 1999, “Closed-Loop Output
Error Identification Algorithms for Nonlinear Plants,” Proceedings of
the 38th IEEE Conference on Decision and Control, Vol. 1, Phoenix, AZ,
Dec. 7-10, pp. 606-611.

[14] Carrillo, F., Baysse, A., and Habbadi, A., 2009, “Output Error Identification
Algorithms for Continuous-Time Systems Operating in Closed-Loop,” IFAC
Proc. Vol., 42(10), pp. 408—413.

[15] Urrea, C., and Pascal, J., 2016, “Design, Simulation, Comparison and Evalua-
tion of Parameter Identification Methods for an Industrial Robot,” Comput
Elect. Eng., 67, pp. 791-806.

[16] Dolinsky, K., and Celikovsk)'/, S., 2017, “Application of the Method of Maxi-
mum Likelihood to Identification of Bipedal Walking Robots,” IEEE Trans.
Control Syst. Technol., 26(4), pp. 1500-1507.

[17] Montazeri, A., West, C., Monk, S. D., and Taylor, C. J., 2017, “Dynamic
Modelling and Parameter Estimation of a Hydraulic Robot Manipulator
Using a Multi-Objective Genetic Algorithm,” Int. J. Control, 90(4), pp.
661-683.

[18] Wensing, P. M., Kim, S., and Slotine, J. J. E., 2018, “Linear Matrix Inequal-
ities for Physically Consistent Inertial Parameter Identification: A Statistical
Perspective on the Mass Distribution,” IEEE Rob. Autom. Lett., 3(1),
pp. 60-67.

[19] Miranda-Colorado, R., and Moreno-Valenzuela, J., 2018, “Experimental
Parameter Identification of Flexible Joint Robot Manipulators,” Robotica,
36(3), pp. 313-332.

[20] Jung, D., Cheong, J., Park, D., and Park, C., 2018, “Backward Sequential
Approach for Dynamic Parameter Identification of Robot Manipulators,” Int. J.
Adv. Rob. Syst., 15(1), pp. 1-10.

[21] Davidson, R., and MacKinnon, J., 1993, Estimation and Inference in Econome-
trics, Oxford University Press, Oxford, UK.

[22] Van den Hof, P., 1998, “Closed-Loop Issues in System Identification,” Ann.
Rev. Control, 22, pp. 173-186.

[23] Walter, E., and Pronzato, L., 1994, Identification de Modéles Paramétriques a
Partir de Données Expérimentales, Masson, Paris, France.

[24] Soderstrom, T., and Stoica, P., 1988, System Identification, Prentice-Hall,
Upper Saddle River, NJ.

[25] Landau, I., Anderson, B. D., and De Bruyne, F., 2001, “Recursive Identification
Algorithms for Continuous-Time Nonlinear Plants Operating in Closed Loop,”
Automatica, 37(3), pp. 469-475.

[26] Hairer, E., Ngrsett, S. P., and Wanner, G., 1993, Solving Ordinary Differential
Equations I, 2nd ed., Vol. 8, Springer-Verlag, Berlin, Germany.

[27] Garrido, R., and Miranda, R., 2012, “DC Servomechanism Parameter Identification:
A Closed Loop Input Error Approach,” ISA Trans., 51(1), pp. 42-49.

[28] Ljung, L., 1999, System Identification: Theory for the User, PTR Prentice Hall,
Upper Saddle River, NJ.

[29] Solo, V., 1979, “Time Series Recursions and Stochastic Approximation,” Bull.
Aust. Math. Soc., 20(1), pp. 159-160.

[30] Lawson, C., and Hanson, R., 1974, Solving Least Squares Problems, Prentice-
Hall, Englewood Cliffs, NJ.

[31] Pressé, C., and Gautier, M., 1993, “New Ceriteria of Exciting Trajectories for
Robot Identification,” Proceedings of the IEEE International Conference on
Robotics and Automation, Atlanta, GA, May 2—6, pp. 907-912.

[32] Staubli Favergues, 2015, Arm—TX Series 40 Family, Staubli, 2, Horgen,
Switzerland.

[33] Gautier, M., and Khalil, W., 1991, “Exciting Trajectories for the Identification
of Base Inertial Parameters of Robots,” Proceedings of the 30th IEEE Confer-
ence on Decision and Control, Brighton, UK, pp. 494-499.

[34] Wu, J., Zhang, B., and Wang, L., 2016, “Optimum Design and Performance
Comparison of a Redundantly Actuated Solar Tracker and Its Nonredundant
Counterpart,” Solar Energy, 127, pp. 36-47.

[35] Briot, S., and Gautier, M., 2015, “Global Identification of Joint Drive Gains and
Dynamic Parameters of Parallel Robots,” Multibody Syst. Dyn., 33(1), pp.
3-26.

[36] Wu, J., Wang, J., and Wang, L., 2008, “Identification of Dynamic Parameter of
a 3DOF Parallel Manipulator With Actuation Redundancy,” ASME J. Manuf.
Sci. Eng., 130(4), p. 041012.





