

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22292

To cite this version:

Boudou, Joseph Exponential-Size Model Property for PDL with
Separating Parallel Composition. (2015) In: Mathematical
Foundations of Computer Science (MFCS 2015), 24 August 2015 -
28 August 2015 (Milan, Italy).

Open Archive Toulouse Archive Ouverte

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/322380637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22292

Exponential-Size Model Property for PDL
with Separating Parallel Composition

Joseph Boudou(B)

IRIT, Toulouse University, Toulouse, France
joseph.boudou@irit.fr

Abstract. Propositional dynamic logic is extended with a parallel pro-
gram having a separating semantic: the program (α ‖ β) executes α and
β on two substates of the current state. We prove that when the compo-
sition of two substates is deterministic, the logic has the exponential-size
model property. The proof is by a piecewise filtration using an adapta-
tion of the Fischer-Ladner closure. We conclude that the satisfiability of
the logic is decidable in NEXPTIME.

1 Introduction

Propositional dynamic logic (PDL) is a multi-modal logic designed to reason
about behaviors of programs [10]. With each program α we associate a modal
operator [α], formulas [α]ϕ being read “all executions of α from the current
state lead to a state where ϕ holds”. The set of programs is structured by
some operators: sequential composition (α ; β) of programs α and β executes β
after α; nondeterministic choice (α ∪ β) of program α and β executes α or β,
nondeterministically; test ϕ? on formula ϕ does nothing but can be executed
only if the current state satisfies ϕ; iteration α∗ of program α executes α a
nondeterministic number of times. A limitation of PDL is the lack of a construct
to reason about concurrency.

Different extensions of PDL have been devised to overcome this limitation,
for instance interleaving PDL [1], PDL with intersection [11] and the concur-
rent dynamic logic [16]. PDL with storing, recovering and parallel composi-
tion (PRSPDL) [4] is another extension of PDL for concurrency. The key differ-
ence is that in PRSPDL, the program (α ‖ β) executes α and β in parallel on
two substates of the current state. Hence, (α ‖ β) being executable at some state
does not imply that α or β is executable at that state. Moreover, since states
can be separated in substates (and merged back), PRSPDL is related to the
Boolean logic of bunched implication (BBI) [17]. Indeed, a multiplicative con-
junction semantically similar to the one found in BBI can be defined in PRSPDL.
Thus PRSPDL can be compared to the classical version of the multi-modal logic
of bunched implication (MBIc) [7], a difference being that MBIc has only the
parallel composition as program constructs, limiting its expressive power [2].

This work was supported by the “French National Research Agency” (DynRes con-
tract ANR-11-BS02-011).

DOI: 10.1007/978-3-662-48057-1 10

The combination of separation and concurrency provided by the paral-
lel construct of PRSPDL suggests some interesting applications. For instance,
a dynamic and concurrent logic on heaps of memory akin to separation log-
ics [8,18], may be envisioned. Moreover, as PDL has been adapted to differ-
ent contexts, a separating parallel composition may be of interest in some of
them. For instance, in dynamic epistemic logics [9], the parallel epistemic action
(!ϕ ‖!ψ) could mean that ϕ is announced to a group of agents and ψ is announced
to the agents not in that group. Despite this potential, there has been almost no
complexity analysis of dynamic logic with separating parallel composition. The
complexity of PRSPDL is not studied in [4]. In [3], PRSPDL interpreted over
frames where there is at most one decomposition of any state into substates is
proved to be highly undecidable.

In this paper, we study the complexity of PDL with separating parallel com-
position (PPDL). The language of this logic is the fragment of PRSPDL with-
out the store and recover programs which allow to access substates directly. We
focus on the class of �-deterministic frames where the composition of substates
is deterministic: there is at most one way to merge two states. This restriction
is quite natural and has been studied in many logics with separation like sep-
aration logics, ambient logics [6], BBI [13] and arrow logics [14]. We show that
for PPDL, �-determinism conveys some interesting properties, notably a strong
finite model property leading to a complexity upper bound of NEXPTIME for
the satisfiability problem. This result contrasts with the 2EXPTIME complex-
ity of other dynamic logics with concurrency like PDL with intersection [12] or
interleaving PDL [15]. To prove this result, we provide nontrivial adaptations of
existing methods (Fischer-Ladner closure and model unraveling) along with some
new concepts (placeholders, marking functions and the neat model property).

The paper is structured as follows. In the next section, the language and
semantic of PPDL is formally defined. In Sect. 3, the problem of decomposing
formulas of the forms [α ‖ β] ϕ is resolved by extending the language and by
adapting the Fischer-Ladner closure. In Sect. 4, the new concepts of threads,
twines and neat models are introduced. And in Sect. 5, it is proved that the
class of neat �-deterministic frames satisfies the same formulas as the class of
�-deterministic frames. In Sect. 6, the strong finite model property is proved by
piecewise filtration.

2 Propositional Dynamic Logic with Separating
Parallel Composition (PPDL)

Let Π0 be a countable set of atomic programs (denoted by a, b . . .) and Φ0 a
countable set of propositional variables (denoted by p, q . . .). The sets Π and Φ
of programs and formulas are defined by:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | (α ‖ β)
ϕ := p | ⊥ | ¬ϕ | [α] ϕ

The negation construct is an involution: by definition, ¬¬ϕ = ϕ. Parentheses
may be omitted for clarity, but they are taken into account when counting occur-
rences of symbols. We write |α| and |ϕ| for the number of occurrences of symbols
in the program α and the formula ϕ, respectively. We define the abbreviations
� .= ¬⊥ and 〈α〉ϕ .= ¬ [α] ¬ϕ. The missing usual (additive) Boolean operators
can be defined too, starting with ϕ → ψ

.= [ϕ?] ψ. Additionally, a multiplicative
conjunction related to BBI [17] may be defined as

A frame is a tuple (W,R,�) where W is a non-empty set of states (denoted
by w, x, y . . .), R is a function associating a binary relation over W to each atomic
program and � is a ternary relation over W . Intuitively, x R(a) y means that
the program a can be executed in state x, reaching state y. Similarly, x � (y, z)
means that x can be split into the substates y and z or equivalently that y
and z can be merged to obtain x. When the merging of states is functional, the
frame is said to be �-deterministic. This is a common restriction, for instance
in separation logics, expressing the fact that the parts determine the whole.
Formally, a frame is �-deterministic iff for all x, y, w1, w2 ∈ W , if x � (w1, w2)
and y � (w1, w2) then x = y. The class of �-deterministic frames is denoted by
C�-det.

A model is a tuple (W,R,�, V) where (W,R,�) is a frame and V is a function
associating a subset of W to each propositional variable. A model is �-determin-
istic iff its frame is �-deterministic. The forcing relation � is defined by parallel
induction along with the extension of R to all programs:

M, x � p iff x ∈ V (p)
M, x � ⊥ never
M, x � ¬ϕ iff M, x � ϕ

M, x � [α] ϕ iff ∀y ∈ W, if x R(α) y then M, y � ϕ

x R(α ; β) y iff ∃z ∈ W, x R(α) z and z R(β) y

x R(α ∪ β) y iff x R(α) y or x R(β) y

x R(ϕ?) y iff x = y and M, x � ϕ

x R(α∗) y iff x R(α)∗
y

where R(α)∗ is the reflexive and transitive closure of R(α)
x R(α ‖ β) y iff ∃w1, w2, w3, w4 ∈ W,

x � (w1, w2) , w1 R(α) w3, w2 R(β) w4 and y � (w3, w4)

Given a class C of frames, a formula ϕ is satisfiable in C iff there exists a
model M = (W,R,�, V) and a state w ∈ W such that (W,R,�) ∈ C and
M, w � ϕ. The satisfiability problem of PPDL over a class C of frames is the
decision problem determining whether a PPDL formula is satisfiable in C.

3 Fischer-Ladner Closure

In [10], Ficher and Ladner proved the strong finite model property of PDL by
means of the filtration by a set of formulas called the Fischer-Ladner closure.

To cope with nondeterministic choice and iteration, the original Fischer-Ladner
closure extends PDL’s language with new propositional variables. In the case of
PPDL, a more involved extension of the language is needed to cope with parallel
composition of programs. We first introduce this extension before defining the
Fischer-Ladner closure adapted to PPDL.

3.1 Placeholders and Marking Functions

In order to decompose formulas of the form [α ‖ β] ϕ into subformulas, the lan-
guage is extended with new atomic formulas called placeholders and parallel
composition symbols are distinguished by added indices. Using the same sets Φ0

and Π0 of propositional variables and atomic programs, the sets ΠPH , Φpure and
ΦPH of annotated programs, pure formulas and annotated formulas respectively,
are defined by parallel induction as follows:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | (α ‖i β)
ϕ := p | ⊥ | ¬ϕ | [α]ϕ
ψ := ϕ | (i, j) | ¬ψ | [α]ψ

where i ranges over N and j over {1, 2}. Moreover, for all i ∈ N, there must be
at most one occurrence of ‖i in any annotated program, any pure formula and
any annotated formula. The integers below the parallel composition symbols are
called indices. Formulas of the form (i, j) are called placeholders.

To interpret the annotated formulas, if placeholders were simply considered
as new propositional variables, it would be impossible to ensure that whenever
w � (x, y) and M, w � [α ‖i β] ϕ then M, x � [α] (i, 1) and M, y � [β] (i, 2).
Therefore we add flexibility in the interpretation of placeholders by adding mark-
ing functions which are functions from placeholders to subset of W . The set of
all such functions is denoted by BW . The empty marking function m∅

W ∈ BW

binds the empty set to all placeholders. The 4-ary forcing relation �F is defined
on all models M = (W,R,�, V), all w ∈ W , all m ∈ BW and all ϕ ∈ ΦPH by
parallel induction along with the extension of R to all annotated programs, in a
similar way than for PPDL except:

M, x,m �F (i, j) iff x ∈ m(i, j)

x R(ϕ?) y iff x = y and M, x,m∅

W �F ϕ

x R(α ‖i β) y iff ∃w1, w2, w3, w4,

x � (w1, w2) , w1 R(α) w3, w2 R(β) w4 and y � (w3, w4)

There exists a forgetful surjection · : Φpure −→ Φ associating to each pure
formula ϕ the formula ϕ obtained by removing all indices in ϕ. Thanks to the
following lemma, we will consider satisfiability of pure formulas instead of satis-
fiability of PPDL formulas.

Lemma 1. For all model M = (W,R,�, V), all ϕ ∈ Φpure and all w ∈ W ,
M, w,m∅

W �F ϕ iff M, w � ϕ.

(μ, ϕ)

(μ, ¬ϕ)

(μ, [a]ϕ)

(μ, ϕ)

(μ, [α ; β]ϕ)

(μ, [α] [β]ϕ)

(μ, [α ∪ β]ϕ)

(μ, [α]ϕ) (μ, [β]ϕ)

(μ, [ϕ?]ψ)

(μ, ϕ) (μ, ψ)

(μ, [α∗]ϕ)

(μ, [α] [α∗]ϕ) (μ, ϕ)

(μ, [α ‖i β]ϕ)

(μ.L, [α] (i, 1)) (μ.R, [β] (i, 2)) (μ, ϕ)

Fig. 1. Fischer-Ladner closure calculus

3.2 Fischer-Ladner Closure

The Fischer-Ladner closure is a decomposition of any PDL formula into a set
containing sufficiently many subformulas for the filtration. In the case of PPDL,
we need to keep track of the level of separation (called depth) of each subfor-
mula. Hence we consider localized formulas. A location is a word on the alphabet
{L,R}, the empty word being denoted by ε. A localized formula is a pair (μ, ϕ)
composed of a location μ and a formula ϕ.

Then, given a localized formula (μ, ϕ) over Φ0 and Π0, we construct the
closure Cl(μ, ϕ) of (μ, ϕ) by applying the rules in Fig. 1. In the remain-
der of this paper we will be mainly interested in closure of localized formu-
las of the form (ε, ϕ0) where ϕ0 is a pure formula. For all pure formula
ϕ0 ∈ Φpure, we define the abbreviations FL(ϕ0) = Cl(ε, ϕ0) and SP(ϕ0) =
{α | ∃μ,∃ϕ, (μ, 〈α〉ϕ) ∈ FL(ϕ0)}. The cardinality of FL(ϕ0) is denoted by Nϕ0 .
The proof from [10] can be easily adapted to prove the following lemma:

Lemma 2. Nϕ0 is linear in |ϕ0|.

4 Threads, Twines and Neat Models

In this section, new concepts about PPDL’s models are introduced. These con-
cepts allow us to restrict the class of models to consider for satisfiability. In the
next section, we prove that any formula satisfiable in the class of �-deterministic
models is satisfied in a model with these additional properties. Firstly, to bound
the depth of separation of states, we introduce the notion of hierarchical models.
This directly corresponds to locations of formulas from the previous section.

Definition 1. Given a model M = (W,R,�, V), a function λ : W −→ {L,R}∗

is a hierarchy function for M iff

∀x, y, z ∈ W, x � (y, z) ⇒ λ(y) = λ(x).L and λ(z) = λ(x).R (1)
∀x, y ∈ W, ∀α ∈ ΠPH , x R(α) y ⇒ λ(x) = λ(y) (2)

λ(x) is called the depth of x. A model for which there exists a hierarchy function
is a hierarchical model.

Secondly, in order to restrict the number of states at each level of separa-
tion, the notion of reachability is extended. Given a �-deterministic model
M = (W,R,�, V), consider the reachability relation R∃ = ∪α∈ΠPH

R(α).
This relation is obviously reflexive. Hence its symmetric and transitive closure,
denoted by ∼, is an equivalence relation. The equivalence classes of W by ∼ are
called threads and ∼ the thread relation. Notice that if M is hierarchical, all
states in any thread T have the same depth, noted λ(T). To strengthen the link
between threads and depth, threads are grouped into pairs, each thread of a pair
corresponding to one side of the separations. These pairs of threads are called
twines and are formally defined as follows:

Definition 2. A twine is a pair (TL, TR) of threads such that for all x, y, z ∈ W
if x � (y, z) then y /∈ TR, z /∈ TL and y ∈ TL ⇔ z ∈ TR.

In the remainder of this paper, a twine (T1, T2) is identified with the set T1 ∪T2.
Obviously, if a thread T is such that for all (x, y, z) ∈�, y /∈ T and z /∈ T , then
for any thread T ′ having the same property, (T, T ′) is a twine. Such a thread is
called an isolated thread. It can be easily proved that if (T1, T2) and (T1, T3) are
twines, then either T1, T2 and T3 are isolated or T2 = T3. We can now define the
notion of neat models.

Definition 3. A model M = (W,R,�, V) is neat if it satisfies all the following
conditions:

1. For any thread T1 there exists a thread T2 such that (T1, T2) or (T2, T1) is a
twine;

2. There is exactly one isolated thread T0;
3. There exists a hierarchy function λ for M such that λ(T0) = ε.

5 Neat Model Property

In this section we will prove that whenever a pure formula is satisfiable in C�-det,
it is satisfiable in a �-deterministic neat model. Supposing the pure formula ϕ0

is satisfiable, the proof proceeds as follows:

– by Lemma 3 below, there exists a countable model MB satisfying ϕ0;
– in Sect. 5.1, MB is unraveled into MU.
– in Sect. 5.2, unreachable states from MU are pruned to obtain MN and MN

is proved to be a �-deterministic neat model satisfying ϕ0.

Lemma 3. For any satisfiable pure formula ϕ0, there exists a countable model
satisfying ϕ0.

Proof. By a proof similar to Corollary 6.3 in [3]. ��

5.1 Unraveling

Let MB = (WB, RB,�B, VB) be a countable �-deterministic model satisfying
a formula ϕ0 at x′

0. We will construct the unraveling of MB at x′
0. The follow-

ing method is an adaptation of the well-known unraveling method (see [5] for
instance). The key difference is that the resulting model is not a tree-like model.

Let W∞ be a countably infinite set. For all k ∈ N we will construct the tuple
Uk = (Mk, hk) such that Mk = (Wk, Rk,�k, Vk) is a model with Wk ⊆ W∞
and hk is a homomorphism from Wk to WB, thus preserving valuation. The
initial tuple U0 is such that W0 = {x0} for some x0 ∈ W∞, R0(a) = ∅ for all
a ∈ Π0, �0= ∅ and h0(x0) = x′

0. Then for all k ∈ N, Uk+1 is constructed from
Uk by fixing one of the following defects for some v, w1, w2 ∈ Wk, a ∈ Π0 and
w′, w′

1, w
′
2 ∈ WB:

Successor Defect (v, a, w′). If hk(v) RB(a) w′ but there is no w ∈ Wk such
that hk(w) = w′ and v Rk(a) w, then Uk+1 is obtained from Uk by adding a
new state w ∈ W∞ \ Wk such that hk+1(w) = w′ and v Rk+1(a) w,

Split Defect (v, w′
1, w

′
2). If hk(v) �B (w′

1, w
′
2) but there are no w1, w2 ∈ Wk

such that hk(w1) = w′
1, hk(w2) = w′

2 and v �k (w1, w2), then Uk+1 is
obtained from Uk by adding two new states w1, w2 ∈ W∞ \ Wk such that
hk+1(w1) = w′

1, hk+1(w2) = w′
2 and v �k+1 (w1, w2).

Merge Defect (w′, w1, w2). If w′ �B (hk(w1), hk(w2)) but there is no w ∈ Wk

such that hk(w) = w′ and w �k (w1, w2), then Uk+1 is obtained from Uk

by adding a new state w ∈ W∞ \ Wk such that hk+1(w) = w′ and w �k+1

(w1, w2).

Since W∞, Π0 and WB are countable sets, there is a sequence δ0, δ1, . . . of
possible defects such that each possible defect appears infinitely often. We enforce
that for all k ∈ N, either δk is a defect for Uk fixed in Uk+1 or δk is not a defect
for Uk and Uk+1 = Uk. The unraveling MU = (WU, RU,�U, VU) of MB at x′

0 is
the union of Mk for all k ∈ N.

Proposition 1. MU is a �-deterministic model satisfying ϕ0.

To prove Proposition 1, we adapt the bounded morphism definition to PPDL
and prove Lemma 4.

Definition 4. Given two �-deterministic models M = (W,R,�, V) and M′ =
(W ′, R′,�′, V ′), a mapping h : M −→ M′ is a bounded morphism iff it satisfies
the following conditions for all v, w,w1, w2 ∈ W , w′, w′

1, w
′
2 ∈ W ′ and a ∈ Π0:

w and h(w) satisfy the same propositional variables (3)
v R(a) w ⇒ h(v) R′(a) h(w) (4)

h(v) R′(a) w′ ⇒ ∃w, h(w) = w′ and v R(a) w (5)
w � (w1, w2) ⇒ h(w) �′ (h(w1), h(w2)) (6)

h(w) �′ (w′
1, w

′
2) ⇒ ∃w1, w2,

{
h(w1) = w′

1, h(w2) = w′
2

and w � (w1, w2)
(7)

w′ �′ (h(w1), h(w2)) ⇒ ∃w, h(w) = w′ and w � (w1, w2) (8)

Lemma 4. If h is a bounded morphism from M to M′, then for all w ∈ W and
ϕ ∈ Φ, M, w � ϕ iff M′, h(w) � ϕ.

Considering the functions (hk)k∈N
as subsets of WU × WB, we define h as their

union. We prove that h is a bounded morphism, the successor, split and merge
defects ensuring conditions (5), (7) and (8) respectively. Finally, since bounded
morphisms preserve �-determinism, Proposition 1 is proved. Despite MU not
being tree-like, it has the following form of acyclicity:

Proposition 2. For all x, y ∈ WU and all α, β ∈ ΠPH , if x R(α) y and y R(β)
x then x = y.

5.2 Pruning

In this section, we remove unreachable states from MU and prove that the
resulting model is neat. The method consists in identifying reachable threads
and relies on the fact that new reachable threads are added only by split defects.
We use a function r associating to each state x ∈ WU either the first state of x’s
thread if this thread is reachable or the special value Out otherwise. The function
r : WU −→ WU ∪ {Out} is formally defined by induction on the construction of
MU as follows:

0. Initially, r(x0) = x0 ;
1. When fixing a successor defect (w, a, v) by adding w′, r(w′) = r(w) ;
2. When fixing a split defect (w, v1, v2) by adding w1 and w2, if r(w) �= Out

then r(w1) = w1 and r(w2) = w2, otherwise r(w1) = r(w2) = Out ;
3. When fixing a merge defect δk = (v, w1, w2) by adding w, if there exists w′ ∈

Wk such that w′ �k (r(w1), r(w2)) then r(w) = r(w′), otherwise r(w) = Out.

The function r is well-defined because MU is �-deterministic. Then, the model
MN = (WN, RN,�N, VN) is defined as the reduction of MU to the worlds x for
which r(x) �= Out. The following proposition can easily be proved:

Proposition 3. MN is a �-deterministic model satisfying ϕ0 at x0.

It remains to prove that MN is neat. Let ∼N be the thread relation of MN.
The proof of Proposition 4 relies on the following two lemmas:

Lemma 5. For all x, y ∈ WN, r(x) = r(y) iff x ∼N y.

Lemma 6. If z �N (x, y) then there exists z′ ∈ WN such that z′ �N (r(x), r(y))
and (z′, r(x), r(y)) has been added to �U by a split defect.

Proposition 4. MN is neat.

Proof sketch. For the first two conditions of Definition 3, we prove the corre-
sponding two properties using Lemma 6:

1. For all x1, x2, y1, y2, z1, z2 ∈ WN, if z1 �N (x1, y1) and z2 �N (x2, y2) then
r(x1) = r(x2) ⇔ r(y1) = r(y2).

2. x0 is the only x ∈ WN such that r(x) = x and for all (w, y, z) ∈�N, r(y) �= x
and r(z) �= x.

For the last condition of Definition 3, the hierarchy function λ is constructed
such that:

– λ(x0) = ε;
– for any split defect (w, v1, v2) adding w1 and w2 to WU, if r(w) �= Out then

λ(w1) = λ(w).L and λ(w2) = λ(w).R;
– for all x, λ(x) = λ(r(x)). ��

6 Piecewise Filtration

In this section, we prove the following proposition:

Proposition 5. Whenever a formula ϕ ∈ Φ is satisfiable in a �-deterministic
neat model, it is satisfiable in a �-deterministic finite model M = (W,R,�, V)
in which the cardinality of W is bounded by an exponential in the number of
symbols in ϕ.

Suppose MN = (WN, RN,�N, VN) is neat and MN, x0,m
∅

W �F ϕ0 for some
x0 ∈ WN and ϕ0 ∈ Φpure. Furthermore, we suppose λ is a hierarchical function
for MN such that λ(x0) = ε. The model MF satisfying Proposition 5 is induc-
tively constructed from MN. At the initial step, the filtration of the thread
containing x0 is added to MF. At the inductive steps, for each pair of states in
MF which must be connected by a parallel program, the filtration of a twine of
MN corresponding to this parallel program is added to MF.

In order to preserve the �-determinism of MN during the filtration, we
need to distinguish for any filtered twine, the forward (split) decomposition
from the backward (merge) one. For that matter, placeholders are duplicated
and the special pair {(0, 1), (0, 2)} of placeholders is used to mark the forward
decomposition. Formally, for any formula ϕ ∈ ΦPH and any k ∈ N, let fdup(k, ϕ)
be the formula obtained from ϕ by replacing each occurrence of (i, j) in ϕ by
(2i + k, j), for all i ∈ N and j ∈ {1, 2}. We define the sets

FL+(ϕ0) = {(μ, fdup(k, ϕ)) | k ∈ {1, 2}, (μ, ϕ) ∈ FL(ϕ0)} ∪
{((μ, (0, j)), (μ, ¬(0, j)) | j ∈ {1, 2} and ∃ϕ, (μ, ϕ) ∈ FL(ϕ0)}

SF+(ϕ0) =
{
ϕ

∣∣ ∃μ, (μ, ϕ) ∈ FL+(ϕ0)
}

The filtrations are done using the ≡m equivalence relations over WN, defined
for any marking function m ∈ BWN

such that x ≡m y iff λ(x) = λ(y) and for
all (μ, ϕ) ∈ FL+(ϕ0) if μ = λ(x) then MN, x,m �F ϕ ⇔ MN, y,m �F ϕ. The
functions Ω and Ψ are defined for all X ⊆ WN and m ∈ BWN

by:

Ω(X,m) =
{
Y ∩ X

∣∣ Y ∈ WN/≡m

}
Ψ(X,m) =

{
ϕ

∣∣ ∃x ∈ WN, (λ(x), ϕ) ∈ FL+(ϕ0) and MN, x,m �F ϕ
}

Finally, the set PF references all the parallel program links for which we
may have to add the filtration of a twine. Formally, PF is the greatest subset of
N × P (

SF+(ϕ0)
) × SP(ϕ0) × P (

SF+(ϕ0)
)

such that for all (k, F, α,G) ∈ PF,
α is of the form (α1 ‖i α2) and there exists μ ∈ {L,R}∗ and ϕ ∈ ΦPH such
that (μ, 〈α〉ϕ) ∈ FL+(ϕ0) and for all ψ ∈ F ∪ G, (μ, ψ) ∈ FL+(ϕ0). Since
P (

SF+(ϕ0)
)

and SP(ϕ0) are finite, there exists a total order over PF with a
least element and such that (k, F, α,G) < (k′, F ′, α′, G′) implies k ≤ k′. This
order determines a bijective function from N to PF. Moreover, if (k, F, α,G) is
the nth tuple in PF then k ≤ n.

Now we inductively construct the models Mn = (Wn, Rn,�n, Vn) for n ∈ N,
where Wn ⊆ N × P (WN) × BWN

. The following invariants hold for all n ∈ N:

– for all (k,X,m) ∈ Wn, all ϕ ∈ Ψ(X,m) and all x ∈ X, MN, x,m �F ϕ;
– for all (k,X,m), (k′, Y,m′) ∈ Wn, if k = k′ then m = m′ and for all x ∈ X

and all y ∈ Y , x and y belong to the same twine and if x ≡m y then X = Y .

Initial step. Let T0 be the thread in MN containing x0. We set:

W0 =
{
(0,X,m∅

WN
)

∣∣ X ∈ Ω(T0,m
∅

WN
)
}

R0(a) = {((k,X,m), (k′,X ′,m′)) ∈ W0 × W0|
k = k′ and ∃x ∈ X,∃x′ ∈ X ′, x RN(a) x′}

�0 = ∅
V0(p) = {(k,X,m) ∈ W0 | p ∈ Ψ(X,m)}

If PF = ∅ then Mn = M0 for all n ∈ N. Otherwise the following inductive
step is applied.

Inductive step. Suppose Mn has already been defined and let (k, F, α1 ‖i α2, G)
be the nth tuple in PF. If for all X,Y ⊆ WN and all m ∈ BWN

, one of the
following conditions is not satisfied

Ψ(X,m) = F and Ψ(Y,m) = G (9)
(k,X,m) ∈ Wn and (k, Y,m) ∈ Wn (10)
∃x ∈ X,∃y ∈ Y, x RN(α1 ‖i α2) y (11)

then Mn+1 = Mn. Otherwise, by the invariants, there is exactly one tuple
(X,Y,m) satisfying (9) and (10). By condition (11), there exists x ∈ X, y ∈ Y
and w1, w2, w3, w4 ∈ WN such that x �N (w1, w2), w1 RN(α1) w3, w2 RN(α2)
w4 and y �N (w3, w4). The marking function mn+1 is defined such that

– mn+1(0, j) = {wj};

– mn+1(i, j) = w
∣∣∣ ∃β1, β2.(β1 ‖ i−1

2
β2) ∈ SP(ϕ0) and wj RN(βj) w if i is

odd;
– mn+1(i, j) = w

∣∣∣ ∃β1, β2, (β1 ‖ i−2
2

β2) ∈ SP(ϕ0) and wj+2 RN(βj) w if i is
even and positive.

Since MN is neat, w1, w2, w3 and w4 belong to the same twine θ. For all t ∈ 1 . . 4,
there exists Xt ∈ Ω(θ,mn+1) such that xt ∈ Xt. Mn+1 is defined by:

Wn+1 = Wn ∪ {(n + 1,X,mn+1) | X ∈ Ω(θ,mn+1)}
Rn+1(a) = {((k,X,m), (k′,X ′,m′)) ∈ Wn+1 × Wn+1|

k = k′ and ∃x ∈ X, ∃x′ ∈ X ′, x RN(a) x′}
�n+1 =�n ∪{((k,X,m), (n + 1,X1,mn+1), (n + 1,X2,mn+1)),

((k, Y,m), (n + 1,X3,mn+1), (n + 1,X4,mn+1))}
Vn+1(p) = {(k,X,m) ∈ Wn+1 | p ∈ Ψ(X,m)}

Finally, MF = (WF, RF,�F, VF) is defined as the union of Mn for all n ∈ N

and we prove that MF satisfies Proposition 5.

Proof sketch of Proposition 5. To prove that the cardinality of WF is bounded
by an exponential in |ϕ0|, we consider the graph whose vertices are sets of WF’s
states having the same first component and such that there is an edge from G to
G′ iff states in G′ have been added to MF to connect two states in G. We prove
that each vertex contains a exponential number of states and that the graph is a
tree with branching factor exponential in |ϕ0| and depth linear in |ϕ0|. �-deter-
minism of MF is ensured by the interpretation of the placeholders (0, 1) and
(0, 2). Finally, to prove the truth lemma, we prove the following properties by
simultaneous induction on |ϕ| for 1 and on |α| for 2 and 3:

1. For all (k,X,m) ∈ WF and all formula ϕ such that (λ(X), ϕ) ∈ FL+(ϕ0),
ϕ ∈ Ψ(X,m) ⇔ MF, (k,X,m),mF �F ϕ.

2. If (k,X,m) ∈ WF, x ∈ X, θx is the twine of x, Y ∈ Ω(θx,m), y ∈ Y ,
(λ(x), 〈α〉ϕ) ∈ FL(ϕ0) and x RN(α) y, then (k,X,m) RF(α) (k, Y,m).

3. If (k,X,m) RF(α) (k, Y,m) and [α]ϕ ∈ Ψ(X,m), then ϕ ∈ Ψ(Y,m). ��
Finally, since the model checking problem for PPDL is obviously polynomial

in the number of states of the model, we deduce a complexity upper bound:

Proposition 6. The satisfiability problem of PPDL interpreted over �-deter-
ministic frames is in NEXPTIME.

7 Conclusion

In this paper, we prove that PPDL interpreted over the class C�-det of �-deter-
ministic frames has a strong finite model property and that the satisfiability
problem of this logic is in NEXPTIME. This results rely on the neat model
property introduced in the paper and are obtained by a piecewise filtration
using an adaptation of the Fischer-Ladner closure. Because formulas with parallel
compositions cannot be properly decomposed into subformulas, the language is
extended with indices and placeholders. We hope these new concepts will be
useful in future works. We briefly list some possibilities. First, a tight complexity

result for PPDL over C�-det remains to be found. Secondly, the complexity of
PPDL interpreted over the class of neat frames could be studied. Finally, since
no semantic equivalents of the multiplicative implication of BBI can be defined
in PPDL over C�-det, it could explicitly be added to the language.

References

1. Abrahamson, K.R.: Modal logic of concurrent nondeterministic programs. In:
Kahn, G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70, pp. 21–33.
Springer, Heidelberg (1979)

2. Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel
composition: a complete axiomatization. J. Logic Comput. (2015, to appear)

3. Balbiani, P., Tinchev, T.: Definability and computability for PRSPDL. In:
Advances in Modal Logic, pp. 16–33. College Publications (2014)

4. Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with
storing, recovering and parallel composition. ENTCS 269, 95–107 (2011)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

6. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: POPL, pp. 365–377. ACM (2000)

7. Collinson, M., Pym, D.J.: Algebra and logic for resource-based systems modelling.
Math. Struct. Comput. Sci. 19(5), 959–1027 (2009)

8. Demri, S., Deters, M.: Separation logics and modalities: a survey. J. Appl. Non
Class. Logics 25(1), 50–99 (2015)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.P.: Dynamic Epistemic Logic, vol.
337. Springer Science and Business Media, Heidelberg (2007)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

11. Harel, D.: Recurring dominoes: making the highly undecidable highly understand-
able (preliminary report). In: Budach, L. (ed.) Fundamentals of Computation The-
ory. LNCS, vol. 158, pp. 177–194. Springer, Heidelberg (1983)

12. Lange, M., Lutz, C.: 2-exptime lower bounds for propositional dynamic logics with
intersection. J. Symb. Log. 70(4), 1072–1086 (2005)

13. Larchey-Wendling, D., Galmiche, D.: The undecidability of boolean BI through
phase semantics. In: LICS, pp. 140–149. IEEE Computer Society (2010)

14. Marx, M., Pólos, L., Masuch, M.: Arrow Logic and Multi-modal Logic. CSLI Pub-
lications, Stanford (1996)

15. Mayer, A.J., Stockmeyer, L.J.: The complexity of PDL with interleaving. Theor.
Comput. Sci. 161(1–2), 109–122 (1996)

16. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)
17. Pym, D.J.: The semantics and proof theory of the logic of bunched implications,

Applied Logic Series, vol. 26. Kluwer Academic Publishers (2002)
18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures.

In: LICS. pp. 55–74. IEEE Computer Society (2002)

	Exponential-Size Model Property for PDL with Separating Parallel Composition
	1 Introduction
	2 Propositional Dynamic Logic with Separating Parallel Composition (PPDL)
	3 Fischer-Ladner Closure
	3.1 Placeholders and Marking Functions
	3.2 Fischer-Ladner Closure

	4 Threads, Twines and Neat Models
	5 Neat Model Property
	5.1 Unraveling
	5.2 Pruning

	6 Piecewise Filtration

	7 Conclusion

	References

