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Abstract. Unsupervised discovery of sub-lexical units in speech is a
problem that currently interests speech researchers. In this paper, we
report experiments in which we use phone segmentation followed by clus-
tering the segments together using k-means and a Convolutional Neural
Network. We thus obtain an annotation of the corpus in pseudo-phones,
which then allows us to find pseudo-words. We compare the results for
two different segmentations: manual and automatic. To check the porta-
bility of our approach, we compare the results for three different lan-
guages (English, French and Xitsonga). The originality of our work lies
in the use of neural networks in an unsupervised way that differ from
the common method for unsupervised speech unit discovery based on
auto-encoders. With the Xitsonga corpus, for instance, with manual and
automatic segmentations, we were able to obtain 46% and 42% purity
scores, respectively, at phone-level with 30 pseudo-phones. Based on the
inferred pseudo-phones, we discovered about 200 pseudo-words.

Keywords: Neural representation of speech and language - Unsuper-
vised learning - Speech unit discovery - Neural network - Sub-lexical
units - Phone clustering

1 Introduction

Annotated speech data abound for the most widely spoken languages, but the
vast majority of languages or dialects is few endowed with manual annotations.
To overcome this problem, unsupervised discovery of linguistic pseudo-units in
continuous speech is gaining momentum in the recent years, encouraged for
example by initiatives such as the Zero Resource Speech Challenge [15].

We are interested in discovering pseudo-units in speech without supervision
at phone level (“pseudo-phones”) and at word level (“pseudo-word”). Pseudo-
words are defined by one or more speech segments representing the same phonetic
sequence. These are not necessarily words: they may not start/end at the begin-
ning/ending of a true word and may contain several words, such as “I think
that”. The same applies for pseudo-phones that may be shorter or longer than
true phones, and one pseudo-phone may represent several phones.

To find speech units, one can use dotplots [4], a graphical method for com-
paring sequences, and Segmental Dynamic Time Warping (S-DTW) with the
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use of the cosine similarity that gives distances between phonetic acoustic mod-
els [1,11]. In [17], DTW and Hidden Markov Models are also used on posterior-
grams (posterior distribution over categorical units (e.g. phonemes) as a function
of time) to find pseudo-words.

During our own experiments, we were able to see the usefulness of the poste-
riorgrams, which are data obtained by supervised learning. We therefore sought
to obtain these posteriorgrams phones in an unsupervised way.

To obtain phone posteriorgrams, clustering can be used. In [17], k-means are
used on parameters generated by an auto-encoder (AE), also called Bottleneck
Features (BnF'), after binarization. k-means are similarly used in [14], with AEs
and graph clustering. Increasingly used in speech research, neural networks come
in several unsupervised flavors. AEs learn to retrieve the input data after several
transformations performed by neuron layers. The interesting parameters lie in
the hidden layers. AEs can have several uses: denoising with the so-called denois-
ing AEs [16], or creating new feature representations, such as Bottleneck features
using a hidden layer with a number of neurons that is markedly lower than that
of the other layers. The information is reformulated in a condensed form and
the AE is expected to capture the most salient features of the training data.
Studies have shown that, in some cases, AE posteriorgrams results are better
than those of GMM [2,7]. In the context of unsupervised speech unit discovery,
AE variants have emerged, such as correspondence AEs (cAEs) [13]. cAEs no
longer seek to reconstruct the input data but other data, previously mapped in
a certain way. They therefore require a first step of grouping segments of speech
into similar pairs (pseudo-words, etc.) found by a DTW. There is another type
of AEs, which avoids the DTW step by forcing to reconstruct neighboring data
frames, using the speech stability properties: the so-called segmental AEs [2].

In our work, we first performed tests with different AEs. Their results mainly
helped to separate the voiced sounds from the unvoiced sounds but gave poor
results for our task of pseudo-phone discovery (less than 30% purity on the
BUCKEYE corpus, see Sect.3). We decided to design an alternative approach
coupling k-means and supervised neural networks.

This paper is organized as follows. Section2 presents the system architec-
ture, then the speech material used to validate our approach on three languages
is described. Finally, results both at phone- and word-levels are reported and
discussed in Sect. 4.

2 System Description

Figure 1 shows the schema of the system. First, pseudo-phones are discovered
by a k-means algorithm using log F-banks as input. Second, a CNN classifier is
trained to predict these pseudo-units taken as pseudo-groundtruth. The prob-
abilities outputted by the CNN are then used as features to run k-means once
again. These last two steps (supervised CNN and k-means) are iterated as long
as the CNN training cost decreases.
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Fig. 1. General architecture: the system is trained in an iterative manner

2.1 Features

As input, we use 40 log Filterbank coefficients extracted on 16-ms duration
windows, with a 3/4 hop size. 40 Mel-filters is a conventional number of filters
used for speech analysis tasks.

Currently, our model needs to know the boundaries of the phones in order to
standardize the input feature at segment level. We use and compare two different
segmentations: the manual segmentation provided with the corpus and a seg-
mentation derived automatically based on our previous work on cross-language
automatic phone-level segmentation [8].

2.2 Class Assignment for CNN Learning

For initialization, the k-means algorithm uses frames of log F-bank coefficients
as input and each input feature window is concatenated with its 6 neighborhood
windows. It assigns a single class per window and we propagate this result on
the segments delimited by the phone boundaries by a majority vote. Figure 2
illustrates the majority voting strategy used to choose the single pseudo-phone
number 7 on a given segment. In the following iterations, the k-means algorithm
takes as input the phone posteriorgrams generated by the CNN.
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Fig. 2. Majority voting strategy

As we require the CNN to output the same class for all the windows com-
prising a segment, the model learns to output rather stable probabilities on the



segments. We therefore accelerate the k-means step by using as input a single
window, which is the average of the windows comprising a given segment and we
obtain directly a class by segment. This simplification was shown in preliminary
experiments to have no impact on the results. As a result, we have a single class
assigned by segment.

2.3 CNN Architecture

Supervised neural networks require to know the classes of the training data. In
our case, the true manually annotated phones are not available, thus, we use
pseudo-phones clusters previously inferred by the k-means algorithm based on a
previous segmentation of the input data.

We use a CNN with two convolution layers followed by a fully connected
layer and a final output layer. The nonlinearity function used is the hyperbolic
tangent. The first convolution layer is comprised of thirty 4 x 3 filters followed
by a layer of 2 x 2 maxpooling and the second one of sixty 3 x 3 filters followed
by a layer of 1 x 2 maxpooling. The dense layer has 60 neurons and we use
dropout (0.5) before the last layer. A 0.007 learning rate was used with Nesterov
momentum parameter updates.

Our experiments showed that the iterative process using pseudo-phones
inferred by the k-means algorithm gives better results than those attributed
by the first k-means iteration. Moreover, the CNN can also give us for each
window the class probabilities. After experiments, these posteriorgrams outper-
formed the F-bank coeflicients. We have chosen to retain these probabilities, on
which we apply the consecutive k-means iterations. Our model is therefore an
iterative model.

3 Speech Material

For our experiments, we used three corpus of different languages, sizes and
conditions.

3.1 BUCKEYE

We used the American English corpus called BUCKEYE [12], composed of spon-
taneous speech (radio recordings) collected from 40 different speakers with about
30 min of time speech per speaker. This corpus is described in detail in [6].

The median duration of phonemes is about 70 ms, with 60 different phonemes
annotated. It is more than the 40 usually reported for English, because of peculiar
pronunciations that the authors of BUCKEYE chose to distinguish in different
classes, particularly for nasal sounds.

We used 13 h of recordings of 26 different speakers, corresponding to the part
of training according to the subsets defined in the Zero Resource Speech 2015
challenge [15].



3.2 BREFS80

BREF80 is a corpus of read speech in French. As we are interested in less-
resourced languages, we only took one hour of speech, recorded by eight different
speakers. The French phone set we considered is the standard one comprised of
35 different phones, with a median duration of 70 ms.

3.3 NCHLT

The Xitsonga corpus [5], called NCHLT, is composed of short read sentences
recorded on smart-phones, outdoors. We used nearly 500 phrases, with a total
of 10,000 examples of phonemes annotated manually, from the same challenge
database than the one used in the Zero Resource Speech challenge. The median
duration of the phones is about 90 ms and there are 49 different phones.

4 Experiments and Results

In this section, we first report results with manual phone segmentations in order
to evaluate our approach on the pseudo-phone discovery task only. Results at
phone and word levels are given. In the last Subsect. 4.3, we evaluate the system
under real conditions, namely with our automatic phone-level segmentations.
We evaluate our system on different languages and speaking styles.

4.1 Results at Phone Level

To evaluate our results, we compute the standard purity metric of the pseudo-
phones [9)].

Let N be the number of manual segments at phone level, K the number of
pseudo-phones, C' the number of phones and n; the number of segments labeled
with phone j and automatically assigned to pseudo-phone i. Then, the clustering
purity obtained is defined as:

First, we sought to optimize the results of the first k-means’ iteration, the
one used to initialize the process by assigning class numbers to segments for the
first time. The parameters that influence its results are the input features (log
F-bank coefficients), the context size in number of frames and the number of
means used.

We tested different context sizes and found that the influence of this para-
meter was at most one percent on the results. The best value is around six
windows.

The choice of the number of clusters is ideally in the vicinity of the number
of phones sought, that is to say generally about thirty. This is an average value



of course, and there are languages that comprise many more phones, such as the
Khoisan language with 141 different phones. We will look at the influence of the
mean number on the search for pseudo-words in Sect. 4.2.

It is interesting to compare the results with the ones obtained in a super-
vised learning setting. Table 1 shows the results in terms of purity. As expected,
results obtained with the supervised CNN are much better than with the clus-
tering approach. Figure 3 shows the improvement provided by the use of a neural
network. It is for a small number of pseudo-phones that the CNN improves the
results the most (almost + 10% for 15 clusters).
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Fig. 3. Improvement in percent purity thanks to the neural network

One of the possible applications of this work is to help manual corpus anno-
tation. In the case where a human would label each of the clusters attributed by
the model with the real phonetic labels, thus regrouping the duplicates, we can
consider using more averages than the number of phones present in the language
considered. We have therefore looked at the evolution of purity as a function of
the number of clusters in Fig. 4.

We see that, for few clusters, the results improve rapidly. But, starting from
a hundred clusters, purity begins to evolve more slowly: in order to gain about
4% in purity, the number of averages needs to be multiplied by a factor of 10.

Table 1 gives the following pieces of information to evaluate the quality of
the results:

— The percentage of purity obtained in supervised classification by the same
CNN model as the one we use in the unsupervised setting. We did not try to
build a complicated model to maximize the scores but rather a model adapted
to our unsupervised problem. In comparison, the state of the art is around
80% of phone accuracy on the corpus TIMIT [3].

— The percentage of purity obtained by our unsupervised model. Scores are cal-
culated for 30 pseudo-phones. We see that there are almost 20% of difference
between the small corpus of read Xitsonga and the large spontaneous English
corpus.
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Fig. 4. Influence of the number of clusters on purity

— To further evaluate these results, we assign to each group the phonetic class
most present among the grouped segments. Several groups can thus corre-
spond to the same phone. The last line in the table indicates the number
of different phones allocated for 30 groups found by our model. We see that
we have only about fifteen different phones allocated, which is less than the
number of phones present in these languages. So there are more than half
of the phones that are not represented. This value changes slightly when we
increase the number of clusters.

Table 1. Purity by segment (%) obtained for each corpus: English (En, BUCKEYE),
French (Fr, BREF80) and Xitsonga (Xi, NCHLT)

Language En | Fr | Xi
Purity (%) supervised learning | 60 | 62 | 66
Purity (%) for 30 clusters 29 43146
Number of # phonetic classes |16 | 18|11

With the French and Xitsonga corpora, we obtained the best results, whether
supervised or not. This can be easily explained: they are comprised of read
speech, are the smallest corpora and with the least numbers of different speakers.
These three criteria strongly influence the results. It is interesting to note that
we get almost equivalent results with English if we only take 30 min of training
data from a single speaker.

By studying in details the composition of the clusters, we found that having
30% (respectively 40%) purity scores does not mean that we have 70% (respec-
tively 60%) of errors due to phones that differ from the phonetic label attributed
during the clustering. The clusters are generally made up of two or three batches



of examples belonging to close phonetic classes. Thus, the three phones most fre-
quent in each cluster represent on average 70% of their group samples for French
or Xitsonga and 57% for English.

4.2 Results at Word Level

To find pseudo-words, we look for the sequences comprised of the same pseudo-
phones. A pseudo-word must at least appear twice. We only consider sequences
of more than 5 pseudo-phones. Using shorter pseudo-phone sequences leads to
too many incorrect pseudo-words.

To evaluate these results, we compare the phone transcripts constituting the
different realizations of a given pseudo-word. If these manual transcripts are
identical, then the pseudo-word is considered as correct. Otherwise, we count
the number of phone differences. For a pseudo-word with only two realizations,
we accept up to two differences in their phone sequences. For a pseudo-word
with more than two examples, we rely on a median pseudo-word as done in [10],
and again tolerate two differences maximum.

The results may depend on the number of groups selected. If we consider a
larger number of distinct clusters, we get less pseudo-phone sequences that are
the same, and thus we discover less pseudo-words. But by doing so, the groupings
are purer, as shown in the Fig. 5.
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Fig. 5. Influence of the number of pseudo-phones on quantity and purity of pseudo-
words found.

In Table 2, we look at three characteristics of the identified pseudo-words to
evaluate our results:

— Number of pseudo-words found,
— Number of pseudo-words whose manual phonetic transcription between group
examples has at most two differences,



Table 2. Pseudo-words statistics with manual and automatic segmentations

Language En |Fr [ Xi
# Hours 13 |1 1/2
# Phone examples 586k | 36k | 10k
Manual segmentation
# pseudo-words 3304 | 671 | 231
# Pseudo-words < 2 differences | 1171 | 415 | 172
# Identical pseudo-words 334 | 18876
Automatic segmentation
# Pseudo-words 3966 | 540 | 200
# Pseudo-words < 2 differences | 843 | 269 | 120
# Identical pseudo-words 40 32 |25

— Number of pseudo-words in which all lists representing them have exactly the
same phonetic transcription.

The French corpus allows to obtain 671 pseudo-words, out of which 188 are
correct and 227 with one or two differences in their phonetic transcriptions. We
thus find ourselves with 415 pseudo-words with at most two differences with
their manual phonetic transcriptions of the examples defining them. The results
obtained on the other two corpora are worse. Proportionally, we find about ten
times less pseudo-words than for with the French corpus.

In comparison, in a work performed on four hours of the corpus ESTER,
1560 pseudo-words were found, out of which 672 of them were sufficiently accu-
rate according to their criteria, with an optimized pseudo-word search algorithm
based on the DTW and self-similarities [10].

4.3 Towards a Fully Automatic Approach: With Automatic
Segmentations

Until now we have used manual phones segmentation. To deal with real con-
ditions when working on a few resourced language, we will now use our model
without input handwritten data. We therefore use automatic phones segmenta-
tion to train our model. This automatic segmentation can be learned in other
languages, with more resources.

In a previous work, we used a CNN to perform automatic segmentation
task [8]. It is a supervised model, but we have demonstrated its portability to
languages other than those learned.

The CNN takes as input F-bank coeflicients and outputs probabilities of
the presence/absence of a boundary at frame-level. The diagram of this model
is represented in the Fig. 6. The output is a probability curve evolving in time
whose summits are the locations of probable boundaries. To avoid duplicates due



to noisy peaks, the curve is smoothed and all summits above a certain threshold
are identified as phones boundaries.
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Fig. 6. Illustration of our automatic segmentation approach, based on a CNN

Previously, we showed that this network was portable to other languages than
the one used for training and this is very useful in the present work. Indeed, for
a language with few resources, we can use a corpus from other well-resourced
languages. In addition, it is an additional step towards a fully unsupervised
setting. Table3 shows that the network gets a good F-measure on languages
other than those used for training.

Table 3. F-measure (%) obtained with the automatic cross-language segmentation
with the results on the columns according to the test corpus and on the lines according
to the two training corpora, for 20 ms.

Languages | Test En | Fr | Xi
En 4+ Fr |73 |74 |53
Train Fr + Xi |64 |80 |64
En + Xi|73 |63 |58

Concerning the pseudo-word discovery, we get the results displayed in Table 2.
The number of pseudo-words found is similar to that found with the manual
segmentation but the purity score is lower with this automatic segmentation,
as expected. For French and Xitsonga, half of the pseudo-words found have less
than two errors, for English it is less than a quarter.

5 Conclusions

In this paper, we reported our experiments on speech unit discovery based first
on a simple approach using the k-means algorithm on acoustic features, second
on an improved version, in which a CNN is trained on the pseudo-phones clusters
inferred by k-means. This solution differs from the standard approach based on
AEs reported in the literature.



Our model is not yet fully unsupervised: it needs a pre-segmentation at phone
level and obviously the best results were obtained with a manual segmentation.
Fortunately, the loss due to the use of automatic segmentation is small and
we have shown in a previous work that this segmentation can be done using
a segmentation model trained on languages for which we have large manually
annotated corpora. This allows us to apply our approach to less-resourced lan-
guages without any manual annotation, with the audio signal as input only. In
the present work, the automatic segmentation system was trained for English,
language with a lot of resources.

We tested our approach on three languages: American English, French and
the less-represented language called Xitsonga. Concerning the results, there are
differences according to the target language, and especially according to their
characteristics. In all our experiments, the results on the BUCKEYE corpus,
which is comprised of conversational speech, are worse than for the other two
corpora, which are made up of read speech. The increase in the number of
speakers also can be a factor of performance decrease.

With the Xitsonga corpus, for instance, with manual and automatic seg-
mentations, we were able to obtain 46% and 42% purity scores, respectively,
at phone-level with 30 pseudo-phones. Based on the inferred pseudo-phones, we
discovered about 200 pseudo-words.

Our next work will focus on use DPGMM instead of k-means and on use
unsupervised segmentation to have a fully unsupervised model. Furthermore,
we presented first results on pseudo-word discovery based on mining similar
pseudo-phone sequences. The next step will be to apply pseudo-word discovery
algorithms to audio recordings, such as dotplots.
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