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Abstract— Change detection (CD) is one of the most challeng-
ing issues when analyzing remotely sensed images. Comparing
several multidate images acquired through the same kind of sen-
sor is the most common scenario. Conversely, designing robust,
flexible, and scalable algorithms for CD becomes even more
challenging when the images have been acquired by two different
kinds of sensors. This situation arises in the case of emergency
under critical constraints. This paper presents, to the best of
our knowledge, the first strategy to deal with optical images
characterized by dissimilar spatial and spectral resolutions.
Typical considered scenarios include CD between panchromatic,
multispectral, and hyperspectral images. The proposed strategy
consists of a three-step procedure: 1) inferring a high spatial
and spectral resolution image by fusion of the two observed
images characterized one by a low spatial resolution and the
other by a low spectral resolution; 2) predicting two images
with, respectively, the same spatial and spectral resolutions
as the observed images by the degradation of the fused one;
and 3) implementing a decision rule to each pair of observed
and predicted images characterized by the same spatial and
spectral resolutions to identify changes. To quantitatively assess
the performance of the method, an experimental protocol is
specifically designed, relying on synthetic yet physically plausible
change rules applied to real images. The accuracy of the proposed
framework is finally illustrated on real images.

Index Terms— Change detection (CD), different resolution,
hyperspectral (HS) imagery, image fusion, multispectral (MS)
imagery.

I. INTRODUCTION

CHANGE detection (CD) is one of the most investi-
gated issues in remote sensing [1]–[4]. As the name

suggests, it consists in analyzing two or more multidate
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(i.e., acquired at different time instants) images of the same
scene to detect potential changes. Applications are diverse,
from natural disaster monitoring to long-term tracking of urban
and forest growth. Optical images have been the most studied
remote sensing data for CD. They are generally well suited to
map land-cover types at large scales [5]. Multiband optical
sensors use a spectral window with a particular width, often
called spectral resolution, to sample part of the electromagnetic
spectrum of the incoming light [6], [7]. Panchromatic (PAN)
images are characterized by a low spectral resolution, sensing
part of the electromagnetic spectrum with a single and gen-
erally wide spectral window. Conversely, multispectral (MS)
and hyperspectral (HS) images have smaller spectral windows,
allowing part of the spectrum to be sensed with higher preci-
sion. Multiband optical imaging has become a very common
modality of remote sensing, boosted by the advent of new
finer spectral sensors [8]. One of the major advantages of
multiband images is the possibility of detecting changes by
exploiting not only the spatial but also the spectral information.
There is no specific convention regarding the numbers of
bands that characterize MS and HS images. Yet, MS images
generally consist of a dozen of spectral bands while HS
may have a lot more than a hundred. In complement to
spectral resolution taxonomy, one may describe multiband
images in terms of their spatial resolution measured by the
ground sampling interval (GSI), e.g., the distance, on the
ground, between the center of two adjacent pixels [5], [7], [9].
Informally, it represents the smallest object that can be
resolved up to a specific pixel size. Then, the higher the
resolution, the smaller the recognizable details on the ground:
a high-resolution (HR) image has smaller GSI and finer details
than a low-resolution (LR) one, where only coarse features are
observable.

Each image sensor is designed based on a particular signal-
to-noise ratio (SNR). The reflected incoming light must be of
sufficient energy to guarantee a sufficient SNR, and thus a
proper acquisition. To increase the energy level of the arriving
signal, either the instantaneous field of view or the spectral
window width must be increased. However, these solutions
are mutually exclusive. In other words, optical sensors suffer
from an intrinsic energy tradeoff that limits the possibility
of acquiring images of both high spatial and high spectral
resolutions [9], [10]. This tradeoff prevents any simultaneous
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decrease in both the GSI and the spectral window width.
HS, MS, and PAN images are, in this order, characterized
by an increasing spatial resolution and a decreasing spectral
resolution.

Because of the common assumption of an additive Gaussian
noise model for passive optical images, the most common
CD techniques designed for single-band optical images are
based on image differencing [1]–[4]. When dealing with multi-
band images, classical CD differencing methods have been
adapted for such data through spectral change vectors (SCVs)
[2], [11], [12] or transform analysis [13], [14]. Besides, most
CD techniques assume that the multidate images have been
acquired by sensors of the same type [4] with similar acqui-
sition characteristics in terms of, e.g., angle-of-view, resolu-
tions, or noise model [15], [16]. Nevertheless, in some specific
scenarios, for instance, consecutive to natural disasters, such
a constraint may not be ensured, e.g., images compatible with
previously acquired ones may not be available in an acceptable
timeframe. Such disadvantageous emergency situations yet
require fast, flexible, and accurate methods able to handle
images acquired by sensors of different kinds [17]–[22].
Facing the heterogeneity of data is a challenging task and must
be carefully handled. However, since CD techniques for optical
images generally rely on the assumption of data acquired by
similar sensors, suboptimal strategies have been considered
to make these techniques applicable when considering optical
images of different spatial and spectral resolutions [13], [18].
In particular, interpolation and resampling are classically used
to obtain a pair of images with the same spatial and spectral
resolutions [18], [23]. However, such a compromise solu-
tion may remain suboptimal, since it considers each image
individually without fully exploiting their joint characteristics
and their complementarity. Besides, the approach presented
in [24] also provides a suboptimal solution, since it pre-
processes each observed image independently with resampling
operations bringing both to the same (lower) spectral and
spatial resolutions. Thus, this worst case strategy leads to a
considerable waste of spatial and spectral information. In this
paper, we address the problem of unsupervised CD technique
of multiband optical images with different spatial and spectral
resolutions. To the best of our knowledge, this is the first
operational framework specifically designed to address this
issue where the whole spectral and spatial information brought
by the pairs of observed images is exploited jointly.

More precisely, this paper addresses the problem of CD
between two optical images acquired over the same scene
at different time instants, one with low spatial and high
spectral resolutions (referred to as the LR image) and one
with high spatial and low spectral resolutions (referred to
as the HR image). Specifically, typical applicative scenarios
considered in this paper differ by the HR and LR images to be
compared: PAN and MS, PAN and HS, or MS and HS. The
proposed approach consists in first fusing the two observed
HR and LR images. If no change between the two observed
images occurs, the fused product would be a high spatial and
high spectral resolution image of the observed scene, as in any
conventional fusion problem. Conversely, in the CD context
addressed in this paper, the majority of the fused image pixels

correspond to the truly observed scene while the few remaining
ones, corresponding to locations impacted by the changes,
are expected to suffer from spatial and spectral aberrations
due to the inconsistency of the information between the two
multidate images. The considered fusion process explicitly
relies on a physically based sensing model that exploits the
characteristics of the two sensors, following the frameworks
in [25] and [26]. Then, these characteristics are subsequently
resorted to obtain, by the degradation of the fusion result,
two so-called predicted images with the same resolutions as
the observed images, i.e., one with low spatial resolution and
high spectral resolution and one with high spatial resolution
and low spectral resolution. In the absence of changes, these
two pairs of predicted and observed images should coincide,
apart from residual fusion errors/inaccuracies. Conversely,
any change between the two observed images is expected
to produce spatial and/or spectral alterations in the fusion
result, which will be passed on the predicted images. Finally,
each predicted image can be compared with the corresponding
observed image of the same resolution to identify possible
changes. Since for each pair the images to be compared are
of the same resolution, classical CD techniques dedicated
to multiband images can be considered [3], [4]. The final
result is composed of two CD maps with two different spatial
resolutions.

It is worth noting that the fusion and prediction steps
will inevitably lead to smoother changes than the ones that
effectively occurred in the scene between the two obser-
vation times. Consequently, the changes between the fused
and predicted images are weaker than the ones that would
be observed between images acquired before and after the
changes at the same (high) spectral and spatial resolutions.
However, the applicative context considered in this paper
implies that the spatial and/or spectral resolutions of the
two images differ. In this case of interest, the comparison
between the two images becomes a problem in itself. The main
purpose of the proposed framework is to provide a solution
to this nontrivial problem. The experimental results reported
in Section VI demonstrate that the proposed fusion framework
offers substantial performance improvements with respect to
the existing naive methods. Moreover, visual inspection in the
case of real images and comparison with ground truth when
available show that the smoothing introduced by the fusion
step does not prevent from high CD performance.

This paper is organized as follows. Section II formulates
the problem of CD between two images with different spatial
and spectral resolutions. This formulation relies on a forward
model underlying the observed multiband optical images,
which is described in Section III. Section IV introduces
the main contribution of this paper, i.e., the proposed CD
framework, and describes its three main steps. To quanti-
tatively assess the performance of the proposed framework,
a new experimental protocol is introduced in Section V. This
protocol, inspired by the well-known Wald’s protocol [25],
allows to generate synthetic, yet realistic, pairs of images
affected by physically motivated changes. Moreover, it ensures
the availability of a ground truth essential to derive objec-
tive figures of merit for detection performance assessment.



In Section VI, the experimental results obtained thanks to this
protocol as well as on real multidate LANDSAT 8 images
demonstrate the efficiency of the proposed CD framework.
Section VII concludes this paper.

II. PROBLEM FORMULATION

Let us denote t1 and t2 the times of acquisition for two
single-band or multiband optical images over the same scene
of interest. Assume that the image acquired at time t1 is a
high spatial resolution (HR) image and the one acquired at
time t2 is a low spatial resolution (LR) image.1 These images
are denoted by Yt1

HR ∈ R
nλ×n and Yt2

LR ∈ R
mλ×m , respectively,

corresponding to matrices every line of which corresponds to
the measurements in a given spectral band and every column
corresponds to the measurements at a given pixel location,
where the following holds.

1) n = nr × nc is the number of pixels in each band of the
HR image.

2) m = mr × mc is the number of pixels in each band of
the LR image, with m < n.

3) nλ is the number of bands in the HR image.
4) mλ is the number of bands in the LR image, with

nλ < mλ.
Recall that three scenarios corresponding to three pairs of HR
and LR images can be considered: HR-PAN and LR-MS, HR-
PAN and LR-HS, or HR-MS and LR-HS. The main difficulty,
which prevents any naive implementation of classical CD
techniques, comes from the differences in spatial and spectral
resolutions of the two observed images, i.e., m �= n and
nλ �= mλ.

Besides, in digital image processing, it is common to
consider the image formation process as a sequence of trans-
formations of the original scene into an output image. The
output image of a given sensor is thus a particular limited rep-
resentation of the original scene with characteristics imposed
by the processing pipeline of that sensor, called an image
signal processor (ISP). The original scene cannot be exactly
represented because of its continuous nature. Nevertheless,
to represent the ISP pipeline as a sequence of transformations,
it is usual to consider a very fine digital approximation
of the scene representation as the input image. Following
this paradigm, the two observed images Yt1

HR and Yt2
LR are

assumed to be spectrally and spatially degraded versions of
two corresponding latent (i.e., unobserved) high spatial and
spectral resolution images Xt1 and Xt2 , respectively:

Yt1
HR = THR[Xt1]

Yt2
LR = TLR[Xt2] (1)

where THR[·] and TLR[·], respectively, stand for spec-
tral and spatial degradation operators and Xt j ∈ R

mλ×n

( j = 1, 2). Note that these two unobserved images Xt j ∈
R

mλ×n ( j = 1, 2) share the same spatial and spectral charac-
teristics and, if they were available, they could be resorted as
inputs of classical CD techniques operating on images of the
same resolutions.

1Note that the modality-time order is not fixed, and without loss of
generality, one may state either t1 ≤ t2 or t2 ≤ t1.

When the two images Yt1
HR and Yt2

LR have been acquired
at the same time, i.e., t1 = t2, no change is expected and
the latent images Xt1 and Xt2 should represent exactly the
same scene, i.e., Xt1 = Xt2 � X. In such a particular context,
recovering an estimate X̂ of the high spatial and spectral
resolution latent image X from the two degraded images
Yt1

HR and Yt2
LR can be cast as a fusion problem, for which

efficient methods have been recently proposed [26]–[29].
Thus, in the case of a perfect fusion process, the no-change
hypothesis H0 can be formulated as

H0 :
{

Yt1
HR = Ŷt1

HR

Yt2
LR = Ŷt2

LR
(2)

where

Ŷt1
HR � THR[X̂]

Ŷt2
LR � TLR[X̂] (3)

are the two predicted HR and LR images from the estimated
latent image X̂.

When there exists a time interval between acquisitions,
i.e., when t1 �= t2, a change may occur meanwhile. In this case,
no common latent image X can be defined since Xt1 �= Xt2 .
However, since Xt1 and Xt2 represent the same area of interest,
they are expected to keep a certain level of similarity. Thus,
the fusion process does not lead to a common latent image,
but to a pseudolatent image X̂ from the observed image pair
Yt1

HR and Yt2
LR, which consists of the best joint approximation

of latent images Xt1 and Xt2 . Moreover, since X̂ �= Xt1 and
X̂ �= Xt2 , the forward model (1) does not hold to relate the
pseudolatent image X̂ to the observations Yt1

HR and Yt2
LR. More

precisely, when changes have occurred between the two time
instants t1 and t2, the change hypothesis H1 can be stated as

H1 :
{

Yt1
HR �= Ŷt1

HR

Yt2
LR �= Ŷt2

LR.
(4)

More precisely, both the inequalities in (4) should be under-
stood in a pixelwise sense, since any change occurring between
t1 and t2 is expected to affect some spatial locations in the
images. As a consequence, both diagnosis in (2) and (4) natu-
rally induce pixelwise rules to decide between the no-change
and change hypotheses H0 and H1. This paper specifically
proposes to derive a CD framework able to operate on the
two observed images Yt1

HR and Yt2
LR. This framework implicitly

relies on the forward model (1) and the degradation operators
THR[·] and TLR[·] introduced to relate the latent and observed
images. The forward model adopted in this paper is described
in Section III.

III. FORWARD MODEL

When dealing with optical images, the sequences of trans-
formations THR[·] and TLR[·] intrinsic to the sensors over
the pseudolatent images X in (1) are generally classified
as spectral and spatial degradations. Spatial degradations are
related to the spatial characteristics of the sensor, such as the
sampling scheme and the optical transfer function. Spectral
degradations, on the other hand, are relative to the sensitivity to



wavelength and the spectral sampling. In this paper, following
widely admitted assumptions [25], [26], these transformations
are considered as linear degradations of the pseudolatent
image. Thus, benefiting from convenient matrix representa-
tions, the observed images can be expressed as

Yt1
HR ≈ LX

Yt2
LR ≈ XR. (5)

The degradation resulting from the left multiplication by
L ∈ R

nλ×mλ models the combination of some spectral bands
for each pixel. This degradation corresponds to a spectral
resolution reduction with respect to the pseudolatent image X
as in [28] and [30]. In practice, this degradation models an
intrinsic characteristic of the sensor called spectral response.
It can be either learned by cross calibration or known a priori.

Conversely, the right multiplication by R ∈ R
n×m degrades

the pseudolatent image by linear combinations of pixels within
a given spectral band, thus reducing the spatial resolution. The
right degradation matrix R may model the combination of
various transformations that are specific of sensor architectures
and take into account external factors such as warp, blurring,
translation, and decimation [28], [30], [31]. In this paper, only
space-invariant blurring and decimation will be considered.
Geometrical transformations, such as warp and translations,
can be neglected if both observed images represent the same
exact geographical region without strong perceptive distor-
tions. A space-invariant blur can be modeled by a symmet-
ric convolution kernel, yielding a sparse symmetric Toeplitz
matrix B ∈ R

n×n [27]. It operates a cyclic convolution on the
image bands individually. The decimation operation S ∈ R

n×m

corresponds to a d = dr ×dc uniform downsampling2 operator
with m = n/d ones on the block diagonal and zeros elsewhere,
such that ST S = Im [28]. Hence, the spatial degradation
operation corresponds to the composition R = BS ∈ R

n×m .
The approximating symbol ≈ in (5) stands for any mis-

modeling effects or acquisition noise, which is generally
considered as additive and Gaussian [4], [9], [26]–[29]. The
full degradation model can thus be written as

Yt1
HR = LX + NHR

Yt2
LR = XBS + NLR. (6)

The additive noise matrices are assumed to be distributed
according to matrix normal distributions3 [32] as follows:

NHR ∼ MNmλ,m(0mλ×m ,�HR, Im)

NLR ∼ MNnλ,n(0nλ×n,�LR, In).

Note that the row covariance matrices �HR and �LR carry
the information of the spectral variance in-between bands.

2Note that ST represents an upsampling transformation by zero interpolation
from m to n.

3The probability density function p(X|M, �r ,�c) of a matrix normal
distribution MNr,c(M,�r ,�c) is given by

p(X|M,�r ,�c) = exp
( − 1

2 tr[�−1
c (X − M)T �−1

r (X − M)])
(2π)rc/2|�c|r/2|�r |c/2

where M ∈ R
r×c is the mean matrix, �r ∈ R

r×r is the row covariance
matrix, and �c ∈ R

c×c is the column covariance matrix.

Fig. 1. CD framework.

Since the noise is spectrally colored, these matrices are not
necessarily diagonal. On the other hand, since the noise is
assumed spatially independent, the column covariance matri-
ces correspond to identity matrices, e.g., Im and In . In real
applications, since the row covariance matrices are an intrinsic
characteristic of the sensor, they are estimated by a prior cal-
ibration [30]. In this paper, to reduce the number of unknown
parameters, we assume that �HR and �LR are both diagonal.
This hypothesis implies that the noise is independent from one
band to another and is characterized by a specific variance in
each band [28].

Capitalizing on this forward model, the proposed three-step
CD framework is described in Section IV.

IV. PROPOSED THREE-STEP FRAMEWORK

This section describes the proposed CD framework that
mainly consists of the following three steps, as shown in Fig. 1.

1) Fusion: Estimating the pseudolatent image X̂ from
Yt1

HR and Yt2
LR.

2) Prediction: Reconstructing the two HR and LR images
Ŷt1

HR and Ŷt2
LR from X̂.

3) Decision: Deriving HR and LR change maps D̂HR and
D̂LR associated with the respective pairs of observed and
predicted HR and LR images, namely

ϒHR = {
Yt1

HR, Ŷ
t1
HR

}
and ϒLR = {

Yt2
LR, Ŷt2

LR

}
.



An alternate LR (aLR) change map, denoted by D̂aLR,
is also computed by spatially degrading the HR change
map D̂HR with respect to the spatial operator TLR[·].
A D̂aLR pixel then leads to a change decision if at least
one of its D̂HR parent pixels led to the same decision.

One should highlight the fact that this later decision step
only requires to implement CD techniques within two pairs
of optical images ϒHR and ϒLR of the same spatial and
spectral resolutions, thus overcoming the initial issue raised
by analyzing observed images Yt1

HR and Yt2
LR with dissimilar

resolutions.
To establish the rationale underlying this whole framework,

one may refer to the two main properties required by any
fusion procedure: consistency and synthesis [26]. The former
one requires the reversibility of the fusion process: the original
LR and HR images can be obtained by proper degradations
of the fused HR-HS image. The latter requires that the fused
HR-HS image must be as similar as possible to the image of
the same scene that would be obtained by the sensor of the
same resolution. Similarly, the generic framework proposed
in [25] for fusion image quality assessment can also be
properly stated by assigning the consistency and synthesis
properties a greater scope.

Moreover, it is also worth noting that the proposed three-
step CD framework has been explicitly motivated by the
specific scenario of detecting changes between LR and HR
optical images. However, it may be applicable for any other
applicative context, provided that the following two assump-
tions hold: 1) a latent image can be estimated from the two
observed images and 2) the latent and predicted images can
be related through known transformations.

Particular instances of the three steps composing the pro-
posed CD framework steps are proposed in the following
paragraphs. The first two ones, i.e., fusion and prediction,
explicitly rely on the forward model adopted in Section III.
Standard CD techniques able to operate on image pairs of
the same spatial and spectral resolutions are finally recalled.
However, the main contribution of this paper lies in the whole
framework. As a consequence, each step of this framework
can be easily tailored by the end-user, provided the two
assumptions stated above are ensured.

A. Fusion

The forward observation model (6) has been exploited in
many applications involving optical multiband images, espe-
cially those related to image restoration such as fusion and
super-resolution [28], [30]. Whether the objective is to fuse
multiband images from different spatial and spectral resolu-
tions or to increase the resolution of a single one, it consists in
compensating the energy tradeoff of optical multiband sensors
to get a higher spatial and spectral resolution image compared
with the observed image set. One popular approach to conduct
fusion consists in solving an inverse problem, formulated
through the observation model. In the specific context of
HS pansharpening (i.e., fusing PAN and HS images), such
an approach has proven to provide the most reliable fused
product, with a reasonable computational complexity [26].

For these reasons, this is the strategy followed in this paper
and it is briefly sketched in what follows. Nevertheless,
the same approach can be used as well for MS pansharpening
(i.e., fusing PAN and MS images). Note that the fusion
technique described in what follows is considered here for
its genericity, and thus can easily be replaced by any more
competitive technique by the end-user.

Because of the additive nature and the statistical prop-
erties of the noise NHR and NLR, both observed images
Yt1

HR and Yt2
LR are assumed to be distributed according to

matrix normal distributions

Yt1
HR|X ∼ MNmλ,m(LX,�HR, Im)

Yt2
LR|X ∼ MNnλ,n(XBS,�LR, In). (7)

Since the noise can be reasonably assumed sensor-dependent,
the observed images can be assumed statistically independent.
Consequently, the joint likelihood function of the statistically
independent observed data can be written

p
(
Yt1

HR, Yt2
LR

∣∣X) = p
(
Yt1

HR

∣∣X)
p
(
Yt2

LR

∣∣X)
(8)

and the negative log-likelihood, defined up to an additive
constant, is

− log p(�|X) = 1

2

∥∥�
− 1

2
HR

(
Yt1

HR − LX
)∥∥2

F

+ 1

2

∥∥�
− 1

2
LR

(
Yt2

LR − XBS
)∥∥2

F (9)

where � = {Yt1
HR, Yt2

LR} denotes the set of observed images
and ‖ · ‖2

F stands for the Frobenius norm.
Computing the maximum likelihood estimator X̂ML of X

from the observed image set � consists in minimizing (9).
The aforementioned derivation intends to solve a linear inverse
problem that can have a unique solution depending on the
properties of the matrices B, S, and L defining the forward
model (6). When the resulting of this inverse problem is
ill-posed or ill-conditioned, complementary regularization is
needed to promote a relevant and reliable solution. To over-
come this issue, additional prior information can be included,
setting the estimation problem into the Bayesian formal-
ism [33]. Following a maximum a posteriori (MAP) esti-
mation, recovering the estimated pseudolatent image X̂ from
the linear model (6) consists in minimizing the negative
log-posterior:

X̂ ∈ argmin
X∈Rmλ×n

{
1

2

∥∥∥∥�
− 1

2
HR

(
Yt1

HR − LX
)∥∥∥∥

2

F

+ 1

2

∥∥∥∥�
− 1

2
LR

(
Yt2

LR − XBS
)∥∥∥∥

2

F
+ λφ(X)

}
(10)

where φ(·) defines an appropriate regularizer derived from the
prior distribution assigned to X and λ is a parameter that tunes
the relative importance of the regularization and data terms.
Computing the MAP estimator (10) is expected to provide
the best approximation X̂ with the minimum distance to the
latent images Xt1 and Xt2 simultaneously. This optimization
problem is challenging because of the high dimensionality of
the data X. Nevertheless, Wei et al. [28] have proved that



its solution can be efficiently computed for various relevant
regularization terms φ(X). In this paper, a Gaussian prior is
considered, since it provides an interesting tradeoff between
accuracy and computational complexity, as reported in [26].

B. Prediction

The prediction step relies on the forward model (6) proposed
in Section III. As suggested by (3), it merely consists in
applying the respective spectral and spatial degradations to
the estimated pseudolatent image X̂, leading to

Ŷt2
HR = LX̂

Ŷt1
LR = X̂BS. (11)

C. Decision

This section presents the third and last steps of the proposed
CD framework, which consists in implementing decision rules
to identify possible changes between the images composing
the two pairs ϒHR = {Yt1

HR, Ŷt2
HR} and ϒLR = {Yt2

LR, Ŷt1
LR}.

As noted in Section II, these CD techniques operate on
observed Yti�R and predicted Ŷ

t j

�R images of the same spatial
and spectral resolutions, with (i,�) ∈ {(1, H ), (2, L)} and
( j,�) ∈ {(2, H ), (1, L)}, as in [2], [3], [34], and [35].
Unless specifically tailored by the end-user, these techniques
can be a priori employed whatever the number of spectral
bands. As a consequence, Yti�R and Ŷ

t j

�R could refer to either
PAN, MS, or HS images and the two resulting CD maps are
either of HR, either of LR, associated with the pairs ϒHR
and ϒLR, respectively. To lighten the notations, without loss
of generality, the pairs Yti�R and Ŷ

t j

�R will be denoted by
Yti ∈ R

�×η and Yt j ∈ R
�×η, which can be set as follows.

1) {Yti , Yt j } = ϒLR to derive the estimated CD binary map
D̂LR at LR.

2) {Yti , Yt j } = ϒHR to derive the estimated CD binary
map D̂HR at HR and its spatially degraded aLR
counterpart D̂aLR.

In this seek of generality, the numbers of bands and pixels
are denoted by � and η, respectively. The spectral dimen-
sion � depends on the considered image sets ϒHR or ϒLR,
i.e., � = nλ and � = mλ for HR and LR images, respectively.4

Similarly, the spatial resolution of the CD binary map gener-
ically denoted by D̂ ∈ R

η depends on the considered set
of images ϒHR or ϒLR, i.e., η = n and η = m for
HR and LR images, respectively.

As stated before, the main contribution of this paper lies
in the proposed three-step CD framework able to deal with
optical images of different spatial and spectral resolution.
Thus, it does not aim at selecting the most powerful technique
for each step of this framework. As a consequence, in what
follows, three particular yet well-admitted and efficient CD
techniques operating on images of the same spatial and spec-
tral resolutions are discussed. Obviously, any other concurrent
CD technique can be alternatively considered.

4Note, in particular, that � = nλ = 1 when the set of HR images are
PAN images.

1) Change Vector Analysis: When considering multiband
optical images that have been atmospherically precalibrated
and that represent exactly the same geographical region
without strong perceptive distortions, one may consider that,
for a pixel at spatial location p

Yti (p) ∼ N (μti ,�ti )

Yt j (p) ∼ N (μt j ,�t j ) (12)

where μti ∈ R
� and μt j ∈ R

� correspond to the pixel spectral
mean and �ti ∈ R

�×� and �t j ∈ R
�×� are the spectral covari-

ance matrices (here, they were obtained using the maximum
likelihood estimator) [11]. A comparison of the pixels Yti (p)
and Yt j (p) can be naturally conducted by deriving the SCV
magnitude VCVA(p). According to a generalized formulation,
it is defined by the squared Mahalanobis distance between the
two pixels [2], [36], which can be computed from the pixelwise
spectral difference operator �Y(p) = Yti (p)− Yt j (p), that is

VCVA(p) = ‖�Y(p)‖2
�−1 = �Y(p)T �−1�Y(p) (13)

where � = �ti + �t j . For a given threshold τ , the pixelwise
statistical test can be formulated as

VCVA(p)
H1
≷
H0

τ (14)

and the final CD map denoted by D̂CVA ∈ {0, 1}η can be
pixelwise derived as

D̂CVA(p) =
{

1 if VCVA(p) ≥ τ (H1)

0 otherwise (H0).
(15)

For a pixel that has not been affected by a change (hypothesis
H0), the spectral difference operator is expected to be statis-
tically described by �Y(p) ∼ N (0,�). As a consequence,
the threshold τ can be related to the probability of false
alarm (PFA) of the test

PFA = P[VCVA(p) > τ |H0] (16)

or equivalently

τ = F−1
χ2

�
(1 − PFA) (17)

where F−1
χ2

�
(·) is the inverse cumulative distribution function

of the χ2
� distribution. Note that jointly considering the mag-

nitude and angle of the SCV may provide additional relevant
information, and thus may allow changes to be better detected
and classified [11].

2) Spatially Regularized Change Vector Analysis: Since
change vector analysis (CVA) in its simplest form, as presented
in Section IV-C1, is a pixelwise procedure, it significantly
suffers from low robustness with respect to noise. To over-
come this limitation, spatial information can be exploited
by considering the neighborhood of a pixel to compute the
final distance criterion, which is expected to make the change
map spatially smoother. Indeed, changed pixels are generally
gathered together into regions or clusters, which means that
there is a high probability to observe changes in the neigh-
borhood of an identified changed pixel [3]. Let �L

p denote
the set of indexes of neighboring spatial locations of a given



pixel p defined by a surrounding regular window of size L
centered on p. The spatially smoothed energy map VsCVA
of the spectral difference operator can be derived from its
pixelwise counterpart VCVA defined by (13) as

VsCVA(p) = 1∣∣�L
p

∣∣ ∑
k∈�L

p

ω(k)VCVA(k) (18)

where the weights ω(k) ∈ R, k ∈ {1, . . . , |�L
p |}, implicitly

define a spatial smoothing filter. In this paper, they have been
chosen as ω(k) = 1, ∀k. Then, a decision rule similar to (15)
can be followed to derive the final CD map D̂sCVA. Note
that the choice of the window size L is based on the strong
hypothesis of the window homogeneity. This choice thus may
depend upon the kind of observed scenes.

3) Iteratively Reweighted Multivariate Alteration Detection:
The multivariate alteration detection (MAD) technique intro-
duced in [13] has been shown to be a robust CD tech-
nique due its suitability for analyzing the multiband image
pair {Y1, Y2} with possible different intensity levels. Similar to
the CVA and sCVA methods, it exploits an image differencing
operator while better concentrating information related to
changes into auxiliary variables. More precisely, the MAD
variate is defined as �Ỹ(p) = Ỹti (p) − Ỹt j (p) with

Ỹt1(p) = UYti (p)

Ỹt2(p) = WYt j (p) (19)

where U = [u�, u�−1, . . . , u1]T is an �×�-matrix composed of
the �×1-vectors uk identified by canonical correlation analysis
and W = [w�, w�−1, . . . , w1]T is defined similarly. As in (13),
the MAD-based change energy map can then be derived as

VMAD(p) = ‖�Ỹ(p)‖2
�−1

where � is the diagonal covariance matrix of the MAD
variates. Finally, the MAD CD map D̂MAD can be pixelwisely
computed using a decision rule similar to (15) with a threshold
τ related to the PFA by (17). In this paper, the iteratively
reweighted version of MAD (IR-MAD) has been considered
to better separate the change pixels from the no-change
pixels [14].

V. EXPERIMENTAL PROTOCOL FOR

PERFORMANCE ASSESSMENT

A. General Overview

Assessing the performance of CD algorithms requires
image pairs with particular characteristics, which makes them
rarely freely available. Indeed, CD algorithms require images
acquired at two different dates, presenting changes, repre-
senting exactly the same geographical region without strong
perceptive distortions, which have been radiometrically precor-
rected and, for the specific problem addressed in this paper,
coming from different optical sensors. Moreover, to properly
and statistically assess the performance of the proposed CD
framework, these image pairs need to be accompanied by a
ground-truth information in the form of a validated CD mask.

To overcome this issue, this section proposes a modified
version of the simulation protocol introduced in [25] that was

initially proposed to assess the performance of image fusion
algorithms. This protocol relies on a unique reference HS
image Xref , also considered as HR. It avoids the need of
coregistered and geometrically corrected images by generating
a pair of synthetic but realistic HR and LR images from this
reference image and by including changes within a semantic
description of this HR-HS image. In this paper, this description
is derived by spectral unmixing [37] and the full proposed
protocol can be summarized as follows.

1) Unmixing the Reference Image: Given a reference image
Xref ∈ R

mλ×n , conduct linear unmixing to extract K endmem-
ber signatures Mt1 ∈ R

mλ×K and the associated abundance
matrix At1 ∈ R

K×n such that Xref ≈ Mt1At1 .
2) Generating the Before-Change HR-HS Image: Define the

HR-HS image Xt1 before change as

Xt1 = Mt1At1 . (20)

3) Generating HR and LR Change Masks: Define a ref-
erence HR change mask DHR by selecting particular regions
(i.e., pixels) in the latent image Xt1 where changes occur. The
corresponding LR change mask DLR is computed according
to the spatial degradations relating the two modalities. Both
the change masks will be considered as the ground truth and
will be compared with the estimated CD HR map D̂HR and LR
maps D̂LR and D̂aLR, respectively, to evaluate the performance
of the CD.

4) Implementing Change Rules: According to this reference
HR change mask, realistic change rules are implemented on
the reference abundances At1 associated with pixels affected
by changes. The abundance matrix after the changes can
be written At2 = ϑA(At1, DHR), where ϑA(·, DHR) stands
for an abundance change-inducing function associated with
the HR change mask DHR. Several change rules applied
to the before-change abundance matrix will be discussed
in Section V-C. Note that these rules may also require the use
of additional endmembers that are not initially present in the
latent image Xt1 . Thus, with similar notations, the endmember
matrix after changes can be denoted by Mt2 = ϑM(Mt1, DHR).

5) Generating the After-Change HR-HS Image: Define the
HR-HS latent image Xt2 after changes by linear mixing such
that

Xt2 = Mt2At2 . (21)

6) Generating the Observed HR Image: Generate a sim-
ulated observed HR image YHR by applying the spectral
degradation THR[·] either to the before-change HR-HS latent
image Xt1 or to the after-change HR-HS latent image Xt2 . The
observed HR image can be subsequently corrupted by noise
according to (6).

7) Generating the Observed LR Image: Conversely,
generate a simulated observed LR image YLR by apply-
ing the spatial degradation TLR[·] either to the after-change
HR-HS latent image Xt2 or to the before-change HR-HS
latent image Xt1 . The observed LR image can be subsequently
corrupted by noise according to (6).

The full protocol is schematically illustrated in Fig. 2.
Complementary information on how these steps have been



Fig. 2. Simulation protocol: two HR-HS latent images Xt1 (before changes)
and Xt2 (after changes) are generated from the reference image. In temporal
configuration 1 (black box), the observed HR image YHR is a spectrally
degraded version of Xt1 , while the observed LR image Yt2

LR is a spa-
tially degraded version of Xt2 . In temporal configuration 2 (gray dashed lines),
the degraded images are generated from reciprocal HR-HS images.

implemented in this paper is provided in the following
paragraphs.

B. Reference Image

The HR-HS reference image used in the simulation protocol
is an HS image of the Pavia University in Italy acquired by
the reflective optics system imaging spectrometer sensor with
610 × 340 pixels. The number of spectral bands in this image
is 103 with a spectral coverage ranging from 0.43 to 0.86 μm
and a spatial resolution of 1.3 m/pixel. A precorrection has
been conducted to smooth the atmospheric effects due to vapor
water absorption by removing corresponding spectral bands.
Then the final HR-HS reference image is of size 610×330×93.

C. Generating the HR-HS Latent Images: Unmixing,
Change Mask, and Change Rules

To produce the HR-HS latent image Xt1 before change,
the reference image Xref has been linearly unmixed, which
provides the endmember matrix Mt1 ∈ R

mλ×K and the matrix
of abundances At1 ∈ R

K×n , where K is the number of end-
members. This number K can be obtained by investigating the
dimension of the signal subspace, for instance, by conducting
principal component analysis [37]. In this paper, the linear
unmixing has been conducted by coupling the vertex compo-
nent analysis [38] as an endmember extraction algorithm and

the fully constrained least squares algorithm [39] to obtain
Mt1 and At1 , respectively.

Given the HR-HS latent image Xt1 = Mt1At1 , the
HR change mask DHR has been produced by selecting spa-
tial regions in the HR-HS image affected by changes. This
selection can be made randomly or by using prior knowledge
on the scene. In this paper, manual selection is performed.

Then, the change rules applied to the abundance matrix At1

to obtain the changed abundance matrix At2 are chosen
such that they satisfy the standard positivity and sum-to-one
constraints

Nonnegativity at2
k (p) ≥ 0 ∀p ∈ {1, . . . , n}

∀k ∈ {1, . . . , K } (22)

Sum-to-one
K∑

k=1

at2
k (p) = 1 ∀p ∈ {1, . . . , n}. (23)

More precisely, three distinct change rules have been
considered.

1) Zero Abundance: Find the most present endmember in
the selected region, set all corresponding abundances to
zero, and rescale abundances associated with remaining
endmembers in order to fulfill (22). This change can be
interpreted as a total disappearance of the most present
endmember.

2) Same Abundance: Choose a pixel abundance vector at
random spatial location, and set all abundance vectors
inside the region affected by changes to the chosen one.
This change consists in filling the change region by the
same spectral signature.

3) Block Abundance: Randomly select a region with the
same spatial shape as the region affected by changes and
replace original region abundances by the abundances of
the second one. This produces a “copy-paste” pattern.

Note that other change rules on the abundance matrix At1

could have been investigated; in particular, some of them
could require to include additional endmembers in the initial
endmember matrix Mt1 . The updated abundance At2 and
endmember Mt2 matrices allow to define the after-change
HR-HS latent image Xt2 as

Xt2 = Mt2At2 .

Fig. 3 shows an example of Xt2 using the three different
change rules for one single selected region.

D. Generating the Observed Images: Spectral
and Spatial Degradations

To produce spectrally degraded versions YHR of the
HR-HS latent image Xt j ( j = 1 or j = 2), two particular
spectral responses have been used to assess the performance
of the proposed algorithm when analyzing an HR-PAN or a
four-band HR-MS image. The former has been obtained
by uniformly averaging the first 43 bands of the HR-HS
pixel spectra. The later has been obtained by filtering the
HR-HS latent image Xt j by a four-band LANDSAT-like
spectral response.

To generate a spatially degraded image, the HR-HS latent
image Xt j ( j = 2 or j = 1) has been blurred by



Fig. 3. Example of after-change HR-HS latent images Xt2 generated
by each proposed change rule. (a) Zero abundance. (b) Same abundance.
(c) Block abundance.

Fig. 4. Degraded versions of the before-change HR-HS latent image Xt1 .
(a) Spectrally degraded HR-PAN image. (b) Spectrally degraded HR-MS
image. (c) Spatially degraded LR-HS image.

a 5 × 5 Gaussian kernel filter and downsampled equally in
vertical and horizontal directions with a factor d = 5. This
spatial degradation operator implicitly relates the generated
HR change mask DHR to its LR counterpart DLR. Each
LR pixel contains d ×d HR pixels. As DHR is a binary mask,
after the spatial degradation, if at least one of its HR parent
pixels is considered as a change pixel, then a pixel in DLR is
also considered as a change pixel.

To illustrate the impact of these spectral and spatial degra-
dations, Fig. 4 shows the corresponding HR-PAN [Fig. 4(a)]
and HR-MS [Fig. 4(b)] images resulting from spectral
degradations and an LR-HS image resulting from spatial
degradation [Fig. 4(c)].

Note that, as mentioned in Section II, the modality-time
order can be arbitrary fixed, and without loss of generality,
one may state either t1 ≤ t2 or t2 ≤ t1. Thus, there are
two distinct temporal configurations to generate the pair of
observed HR and LR images.

1) Configuration 1: Generating the spectrally degraded
observed image Yt1

HR from the before-change
HR-HS latent image Xt1 and the spatially degraded
observed image Yt2

LR from the after-change HR-HS
latent image Xt2 .

2) Configuration 2: Generating the spatially degraded
observed image Yt1

LR from the before-change HR-HS
latent image Xt1 and the spectrally degraded observed
image Yt2

HR from the after-change HR-HS latent
image Xt2 .

VI. EXPERIMENTAL RESULTS

This section assesses the performance of the proposed
fusion-based CD framework. The considered figures
of merit and compared methods are discussed in
Sections VI-A and VI-B, respectively. Then, Section VI-C
reports qualitative and quantitative results for three distinct
scenarios associated with the experimental protocol introduced
in Section V. Scenario 1 considers the CD problem between
a pair of HR-MS and LR-HS images. Scenario 2 focuses
on the CD problem between a pair of HR-PAN and LR-HS
images. Scenario 3 considers a pair of HR-PAN and LR-MS
images. Finally, additional illustrative results obtained on a
pair of real HR-PAN and LR-MS images (akin to Scenario 3)
are presented in Section VI-D. Note that complementary
results are reported in [40].

A. Performance Criteria

The CD framework introduced in Section II has been
evaluated following the simulation protocol described in the
previous paragraph. As detailed in Section II, one HR CD
map D̂HR and two LR CD maps D̂LR and D̂aLR are produced
from the CD framework described in Fig. 1. These HR and
LR CD maps are, respectively, compared with the actual HR
DHR and LR DLR masks to derive the empirical probabilities
of false alarm PFA and detection PD that are represented
through empirical receiver operating characteristic (ROC)
curves, i.e., PD = f (PFA). These ROC curves have been
averaged over the 450 available pairs of observed images to
mitigate the influence of the change region, the influence of the
temporal configuration, and the influence of the change rule.

Moreover, as quantitative figures of merit, two metrics
derived from these ROC curves have been considered: 1) the
area under the curve (AUC), which is expected to be close
to one for a good testing rule and 2) a normalized distance
between the no-detection point (defined by PFA = 1 and
PD = 0) and the intersect of the ROC curve with the diagonal
line PFA = 1 − PD , which should be close to one for a good
testing rule.

B. Compared Methods

While implementing the proposed CD framework,
the fusion step in Section IV-A has been conducted
following the method proposed in [28] with the Gaussian
regularization because of its accuracy and computational
efficiency. The corresponding regularization parameter has
been chosen as λ = 0.0001 by cross validation. Regarding
the detection step, when considering a pair of multiband
images (i.e., MS or HS), the four CD techniques detailed
in Section IV-A (i.e., CVA, sCVA, MAD, and IR-MAD)
have been considered. Conversely, when one of the observed
images is PAN, only CVA and sCVA have been considered,
since MAD and IR-MAD require multiband images.



In the absence of state-of-the-art CD techniques able to
simultaneously handle images with distinct spatial and spectral
resolutions, the proposed CD framework has been compared
with the crude approach that first consists in spatially (respec-
tively, spectrally) degrading the observed HR (respectively,
LR) image. The classical CD techniques described in
Section IV-C can then be applied to the resulting pair of LR
images, since they share the same, unfortunately low, spatial
and spectral resolutions. The final result is a so-called worst
case LR CD mask denoted by D̂WC in the following.

C. Results

This paragraph provides the results associated with
Scenario 1 (i.e., HR-MS and LR-HS images), Scenario 2
(i.e., HR-PAN and LR-HS images), and Scenario 3
(i.e., HR-PAN and LR-HS images). For each scenario, accord-
ing to the protocol described in Section V, 75 regions have
been randomly selected in the before-change HR-HS latent
image Xt1 as those affected by changes. For each region, one
of the three proposed change rules (zero abundance, same
abundance, or block abundance) has been applied to build
the after-change HR-HS latent image Xt2 . The observed HR
and LR images are generated according to one of the two
temporal configurations discussed at the end of Section V-D.
This leads to a total of 450 simulated pairs of HR and LR
images corresponding to three sets of 150 pairs generated
following each of the three distinct change rules described
in Section V-C. To evaluate the robustness of proposed method
against noise, both observed images for each simulated pair
have been corrupted with a zero mean Gaussian noise leading
to an SNR = 30 dB.

1) Scenario 1: Change Detection Between HR-MS and
LR-HS Images: The first simulation scenario considers a
set of HR-MS and LR-HS images. The ROC curves are
plotted in Fig. 5 with the corresponding performance metrics
reported in Table I. These results show that, for the major-
ity of the implemented CD techniques (CVA, sCVA, MAD,
or IR-MAD), the proposed framework generally offers high
precision. In particular, the aLR change map D̂aLR subse-
quently computed from the estimated HR change map D̂HR
provides better results than those obtained in the worst case
and those obtained on the estimated LR change map D̂LR
directly. This can be explained by the intrinsic quality of
the estimated HR change map D̂HR, which roughly provides
similar detection performance to the aLR change map D̂aLR
with the great advantage to be available at a finer spatial
resolution. Besides, all methods have their own advantages and
disadvantages. The worst case method is based on systematic
spectral and spatial degradations of the two images. These
operations are performed through local weighted averaging,
thus leading to not only resolution reduction but also noise
reduction. Moreover, this method does not introduce estima-
tion errors. Finally, the images, at the input of the change
detector, are smoother than the original ones and the detection
rates obtained with sCVA are relatively high. Nevertheless,
the method detects changes with the minimum spatial and
spectral resolutions of the two observed images. On the con-
trary, the other considered methods may introduce estimation

Fig. 5. Scenario 1 (SNR = 30 dB). ROC curves computed from (a) CVA,
(b) sCVA(7), (c) MAD, and (d) IR-MAD.

TABLE I

SCENARIO 1 (SNR = 30 dB): DETECTION PERFORMANCE

IN TERMS OF AUC AND NORMALIZED DISTANCE

errors, since, in particular, the predicted image has been
smoothed by the fusion and the prediction steps. Thus, the final
comparison between the observed and predicted images is
slightly skewed due to the differences of noise levels between
them. On the other hand, these methods detect changes with
higher spectral and spatial resolutions than the worst case
scenario. The HR CD allows for a more accurate exploration of
the spatial domain. This results in higher detection rates when
the associated CD method does not take into account spatial
neighborhood. This is the case for (not spatially regularized)
CVA, MAD, and IR-MAD methods.

2) Scenario 2: Change Detection Between HR-PAN and
LR-HS Images: In the second scenario, the same procedure as
Scenario 1 has been considered while replacing the observed
HR-MS image by an HR-PAN image. The ROC curves are
depicted in Fig. 6 with the corresponding metrics in Table II.
As for Scenario 1, the comparison of these curves shows that
the HR CD map also leads to a high spatial accuracy, since it
is sharper than the LR maps. In particular, when considering
CVA, it provides a significantly more powerful test than



Fig. 6. Scenario 2 (SNR = 30 dB). ROC curves computed from (a) CVA,
(b) sCVA(3), (c) sCVA(5), and (d) sCVA(7).

TABLE II

SCENARIO 2 (SNR = 30 dB): DETECTION PERFORMANCE

IN TERMS OF AUC AND NORMALIZED DISTANCE

the crude approach that consists in degrading both observed
HR-PAN and LR-HS images to reach the same spatial and
spectral resolutions.

3) Scenario 3: Change Detection Between HR-PAN and
LR-MS Images: In the third scenario, the same procedure as
Scenario 2 has been considered while replacing the observed
LR-HS image by an LR-MS image. This scenario is the most
common for optical multiband change detection, since MS
optical images are more readily available than HS optical
images. The ROC curves are depicted in Fig. 7 with the
corresponding metrics in Table III. As for Scenario 1, the com-
parison of these curves shows that the HR CD map also leads
to a high spatial accuracy when resorting to CVA, since it
is sharper than the LR maps. When resorting to the spatially
regularized counterpart of CVA, the worst case method and
the proposed aLR-based detection provide similar results, at a
price of being both at a low spatial resolution.

D. Application to Real Multidate LANDSAT 8 Images

Finally, to illustrate the reliability of the proposed
CD framework, a pair of real LR-MS and HR-PAN
images acquired at different dates (thus complying with
Scenario 3 considered above) has been analyzed. These

Fig. 7. Scenario 3 (SNR = 30 dB). ROC curves computed from (a) CVA,
(b) sCVA(3), (c) sCVA(5), and (d) sCVA(7).

TABLE III

SCENARIO 3 (SNR = 30 dB): DETECTION PERFORMANCE

IN TERMS OF AUC AND NORMALIZED DISTANCE

images Yt2
LR and Yt1

HR have been acquired by LANDSAT 8
over the Lake Tahoe region (CA, USA) on April 15 and
September 22, 2015, respectively. The LR-MS image Yt2

LR is
of size 175×180 characterized by a spatial resolution of 30 m.
According to the spectral response of the LANDSAT 8
sensor [41], the HR-PAN image Yt1

HR is of size 350 × 360
with a spatial resolution of 15m and has a spectral range from
0.5 to 0.68 μm covering three bands of the LR-MS image.
Fig. 8(a) and (b) shows the two multidate LR-MS and HR-PAN
images that have been manually geographically aligned.
The resulting CD binary masks recovered by the proposed
fusion-based approach and the worst case approach both per-
forming CVA CD are depicted in Fig. 8(c)–(e). For this pair of
images, the ground-truth information (i.e., in terms of a binary
map of actual changes) is not available. However, a visual
inspection reveals that all methods succeed in recovering the
most significant changes between the two images, namely,
the pixels corresponding to the lake drought. Nevertheless,
the proposed fusion approach at HR has the huge advantage
of providing CD binary masks at HR, which helps to detect
finer details than the worst case method, as illustrated by the
zoomed-in-view regions in Fig. 8(f)–(j).



Fig. 8. Real scenario (LR-MS and HR-PAN). (a) LR-MS observed image Yt2
LR. (b) HR-PAN observed image Yt1

HR. (c) Change mask D̂HR. (d) Change
mask D̂aLR. (e) Change mask D̂WC estimated by the worst case approach. (f)–(j) Zoomed-in-view versions of the regions delineated in red in (a)–(e).

VII. CONCLUSION

This paper introduced an unsupervised CD framework for
handling multiband optical images of different modalities,
i.e., with different spatial and spectral resolutions. The frame-
work was based on a three-step procedure. The first step
performed the fusion of the two different spatial/spectral
resolution multiband optical images to recover a pseudolatent
image of high spatial and spectral resolutions. From this
fused image, the second step generated a pair of predicted
images with the same resolutions as the observed multiband
images. Finally, standard CD techniques were applied to
each pair of observed and predicted images with the same
spatial and spectral resolutions. The relevance of the pro-
posed framework was assessed thanks to an experimental
protocol. These experiments demonstrated the accuracy of the
recovered HR CD map.

Future work will include the generalization of the proposed
framework to deal with images of other modalities. Indeed,
the newly proposed three-step procedure (fusion, prediction,
and detection) is expected to be applicable, provided that
a physically based direct model can be derived to relate
the observed images with a pseudolatent image. A particular
instance of the proposed general framework has been derived
in [42] to specifically handle multiband optical images when
an explicit image formation model is available.
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