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A polynomial relational class of binary CSP

Wafa Jguirim · Wady Naanaa ·
Martin C. Cooper

Abstract Finding a solution to a constraint satisfaction problem (CSP) is known
to be an NP-hard task. Considerable effort has been spent on identifying tractable
classes of CSP, in other words, classes of constraint satisfaction problems for which
there are polynomial time recognition and resolution algorithms. In this article, we
present a relational tractable class of binary CSP. Our key contribution is a new
ternary operation that we name mjx. We first characterize mjx-closed relations
which leads to an optimal algorithm to recognize such relations. To reduce space
and time complexity, we define a new storage technique for these relations which
reduces the complexity of establishing a form of strong directional path consis-
tency, the consistency level that solves all instances of the proposed class (and,
indeed, of all relational classes closed under a majority polymorphism).

1 Introduction

Many real-world problems may be formulated by means of constraints on time, on
space or more generally on resources. Planning, scheduling and resource allocation
are just a few among many problems that involve reasoning about constraints.
Such problems are designated by the general term constraint satisfaction problem
(CSP) and are highly combinatorial, because their solutions are to be found among
a huge set of combinations. In terms of complexity theory, solving a CSP is, in
general, an NP-complete task. Nonetheless, many real word CSPs have specific
properties that make them recognizable and solvable in polynomial time. Thus,
despite the NP-completeness of the CSP, many of its instances fall into tractable
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classes that can be recognized and solved in polynomial time. Tractable CSP
classes fall into three categories: structural classes, relational classes and hybrid
classes [CC16]. Structural classes are based on the topology of constraint networks,
which often have specific properties, especially when they originate from real-world
problems. Acyclic networks [Fre85] and bounded tree-width networks [GLS00] are
two tractable structural classes. Indeed, in the case of bounded-arity constraints,
it is known that all tractable structural classes have bounded treewidth [Gro07].

On the other hand, the idea behind relational CSP classes is to limit the con-
straint semantics, giving rise to the notion of constraint language. Relational CSP
classes are identified by pointwise closure operations, known as polymorphisms,
since the existence of a polymorphism is known to be a necessary condition for
tractability [Jea98]. Max-closed CSPs [JC95] and median-closed CSPs [JCC98,
DBH99] are two well known tractable relational classes of CSPs which generalize,
respectively, HornSAT and 2-SAT. On the more abstract level of universal alge-
bra, it is the identities satisfied by a polymorphism f that guarantees tractability
[BJK05], such as f(x, x, y) = f(x, y, x) = f(y, x, x) = x for majority polymor-
phisms f [JCC98].

More recently, diverse tractable classes have been discovered which simultane-
ously rely on structural and relational properties, giving rise to so-called hybrid
tractable CSP classes. The Broken-Triangle Property class [CJS10,CMTZ14] and
the bounded rank CSP class [Naa13] are just two examples of hybrid classes.

In this context, we propose a new relational class of binary CSPs based on
a novel majority operator, which we call mjx. The proposed operator makes the
natural choice of returning the maximum of its three arguments in case they are
all different. From a theoretical point of view, recent work [BKW12,BK14] has
made important steps towards a proof of the Feder-and-Vardi conjecture, which
states that every finite relational class is either polynomial or NP-complete [FV98].
Nonetheless, from a practical point of view, there is much to be done in order to
identify tractable CSP classes that are useful in real-world applications. The aim
of this paper is to contribute to the identification of constraint languages that
possess a natural semantics which makes them useful in practice.

If Γ is a tractable constraint language, then instances which fall into the cor-
responding relational class may be relatively rare in practice. Nevertheless, given
any instance I, the sub-instance consisting of those constraints which belong to
Γ provides a potentially useful polynomial-time relaxation of I. Such relaxations
can provide useful information during search: we can draw a parallel, for exam-
ple, with the linear programming relaxation of integer programming instances or
global constraints (such as the All-Different constraint) in CSP instances [vHK06].
To provide a useful relaxation, a language Γ must be have an efficient recognition
algorithm as well as en efficient consistency-checking algorithm [CC16].

The rest of the paper is organized as follows: Section 2 introduces the notions,
definitions and notation necessary for the description of our new tractable class.
We also give, by way of examples, some relations which are closed under mjx.
Section 3 presents an alternative characterization of mjx-closed binary relations
that enables an optimal identification of these relations for a given domain order-
ing. In Section 4, we show that mjx-closed binary CSP instances can be solved,
in polynomial time, by establishing directional path consistency and a weak form
of arc consistency. We present an algorithm which efficiently enforces this level



A polynomial relational class of binary CSP 3

of consistency. This algorithm optimizes directional path consistency owing to
new computations of intersection and composition operations, which are tailored
for mjx-closed binary relations. Indeed, contrary to existing general-purpose al-
gorithms [BRYZ05], the proposed algorithms for computing the intersection and
composition of mjx-closed binary relations have a linear complexity O(d), where d
is the size of the largest domain. Finally, a conclusion and some pointers to future
work are given in Section 5.

2 Definitions and notation

We first introduce some definitions and notation related to the CSP framework
and tractable CSP classes.

Definition 1 A constraint satisfaction problem (CSP) is defined by a triple (X,D,C)
where:

– X = {x1, ..., xn} is a finite set of n variables.
– D is a finite value domain.
– C = {c1, ..., cm} is a set of constraints. Each constraint ci is a pair (S(ci), R(ci))

where
– S(ci) ⊆ X is the scope of ci
– R(ci) ⊆ D|S(ci)| is the relation specifying the tuples allowed by ci.

The arity of a constraint ci refers to the cardinality, or size of its scope, that
is |S(ci)|. A binary constraint is defined on two variables. A binary constraint
network has only binary and unary constraints. A partial instantiation is a set
of elementary instantiations to distinct variables, where an elementary instan-
tiation is an ordered pair (xi, vi), which assigns value vi ∈ Di to variable xi,
where Di ⊆ D is a unary relation that defines the unique unary constraint whose
scope is {xi}. An instantiation that assigns a value to every variable is said to
be complete. A partial instantiation I satisfies a constraint ci if S(ci) ⊆ S(I) and
(I ↓ S(ci)) ∈ R(ci), where S(I) designates the variables to which I assigns values
and I ↓ S(ci) designates the tuple of values assigned, by I, to the variables of S(ci).
A partial instantiation that satisfies all the constraints is said to be consistent. A
solution is a consistent and complete instantiation. Solving the decision version of
CSP consists in determining whether a solution exists.

A CSP instance may possess a limited form of consistency, called local consis-
tency, which offers the advantage of an easy calculation of limited-size consistent
instantiations. There are many local consistency levels, that can be distinguished
by means of a single parameter as follows [Fre85]:

Let P = (X,D,C) be a CSP instance and let k be an integer between 1 and
|X|.

– A consistent instantiation I of any k−1 variables of P is said to be k-consistent
relative to an additional variable xk if there exists vk ∈ Dk such that I ∪
{(xk, vk)} is consistent.

– P is said to be k-consistent if every consistent instantiation of any k − 1 vari-
ables is k-consistent relative to every additional variable.
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If P is i-consistent, for all i : 1, . . . , k then it is said to be strongly k-consistent,
and if it is strongly |X|-consistent then it is called globally consistent. The most
used levels of local consistency are node, arc and path consistencies, which stand
respectively for 1-, 2- and 3-consistency.

Enforcing k-consistency, for some k, is achieved by removing some value com-
binations from the relations defining the constraints. The worst-case time com-
plexity of enforcing k-consistency is O(|X|k|D|k) [Coo89]. However, this process
can be lightened by considering a weak form of k-consistency called directional k-
consistency [DP87]. Assume that the variables of P are totally ordered by ≺. Then
P is directional k-consistent with respect to ≺ if every consistent instantiation I
of any k − 1 variables is k-consistent relative to every variable that comes, in the
ordering, after all variables instantiated by I. P is strongly directional k-consistent
if it is directional i-consistent with respect to ≺, for all i : 1, . . . , k. As mentioned
above, directional k-consistency is a weak form of k-consistency in the sense that
k-consistency entails directional k-consistency but the converse is not true.

Example 1 Some of the above-defined local consistency levels can be illustrated
by considering a small CSP instance on three variables, x1, x2, x3, each with value
domain D = {0, 1, 2}. The instance also involves three binary constraints defined
by x1 < x2, x1 ≤ x3 and x2 ≤ x3. Since the three value domains are not empty,
any empty instantiation is node consistent relative to any variable of the instance.
Thus, the whole instance is node consistent. Nonetheless, the instance is not arc
consistent, since the consistent instantiation {(x1, 2)} is not arc consistent relative
to variable x2. The instance is not path consistent either, since the consistent
instantiation {(x1, 1), (x3, 1)} is not path consistent relative to x2. Now, if we
refer to the variable ordering x1 ≺ x2 ≺ x3, we can verify that every consistent
instantiation involving x1 and x2 simultaneously is path consistent relative to x3
(such an instantiation can be consistently extended using (x3, 2)). This means that
the instance is directional path consistent with respect to x1 ≺ x2 ≺ x3. However,
the instance is not directional arc consistent, whatever the variable ordering is.
This is due to the constraint x1 < x2, which means that there exists a consistent
instantiation of x1, resp. x2, which is not arc consistent relative to x2, resp. x1.

We also need to recall some definitions and concepts used in relational (i.e.
language) tractability.

Definition 2 A constraint language Γ is a set of relations over some given domain
D(Γ ). We denote by CSP(Γ ) the set of all instances (X,D(Γ ), C), such that for
all (S,R) ∈ C, R ∈ Γ .

A finite constraint language Γ is tractable if there is a polynomial algorithm that
solves all the instances of CSP(Γ ). An infinite constraint language Γ is tractable
if every finite subset of the language is tractable.

Definition 3 Consider an operator φ : Dk → D. A binary relation R over D is
φ-closed if, for all (a1, a

′
1),. . . ,(ak, a

′
k) ∈ D2, we have (a1, a

′
1),. . . , (ak, a

′
k) ∈ R ⇒

(φ(a1, . . . , ak), φ(a′1, . . . , a
′
k)) ∈ R. A constraint language Γ is closed under φ if all

relation of Γ are φ-closed.
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In the following, we introduce our new operator, called mjx. It is a ternary
operator that belongs to the class of majority operators. Such a class contains
all the ternary operators that belong to the family of near-unanimity operators
[JCC98]. Let φ : D3 → D be a ternary operation defined on a domain D. φ is a
majority operator if, for all a, b ∈ D, we have

φ(b, a, a) = φ(a, b, a) = φ(a, a, b) = a

Definition 4 Consider a domain D that is totally ordered, The majority operator
mjx is defined on D as follows:

mjx(a, b, c)
def
=


a if a = b ∨ a = c
b if a 6= b ∧ b = c
max(a, b, c) otherwise

A relation R is mjx-closed if we have

(a, a′), (b, b′), (c, c′) ∈ R ⇒ (mjx(a, b, c),mjx(a′, b′, c′)) ∈ R

Let us recall a theorem stating that the set of CSP instances defined over a
language which is closed under a majority operator is a tractable CSP class.

Theorem 1 [JCC98,BKW12] Let Γ be any set of relations over a finite domain,
D. If Γ is closed under a majority operation then CSP(Γ ) is solvable in polynomial
time.

Firstly, if an r-ary relation R, with r ≥ 2, is closed under a majority operation
φ, then any r-ary constraint (S,R) is equivalent to the conjunction of a set of

(
r
2

)
binary constraints, each defined via a binary relation obtained by projecting R on
two of its components. Moreover, all these binary relations are also closed under φ.
Secondly, all binary instances consisting of only φ-closed constraints can be solved
by establishing strong path consistency. It follows that closure of all relations by
a majority operator φ is a sufficient condition that allows CSP instances to be
solved in polynomial time [JCC98,BKW12].

Corollary 1 Let I ∈ CSP (Γ ). If Γ is closed under mjx then P can be solved in
polynomial time.

Proof mjx is a majority operator since it verifies the property of majority opera-
tors:

∀a, b mjx(a, a, b) = mjx(a, b, a) = mjx(b, a, a) = a

Tractability then follows from Theorem 1.

The proposed operator, mjx, is a natural choice among all majority operators
as it returns the maximum of its arguments whenever they are all different. It
is important to know whether there are mjx-closed relations that might occur in
practice. In the following, we give some examples of such relations. The fact that
these relations are closed under mjx follows from the characterization of mjx-closed
relations that will be given in Section 3.
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Example 2 Every unary relation (x ∈ A) ⊂ D is mjx-closed. Every binary rela-
tion over Boolean domains is mjx-closed. Therefore, the class of CSP instances
whose relations are mjx-closed can be considered as a generalization of 2-SAT.
The CRC (“connected row convex”) CSP is another generalization of 2-SAT that
is incomparable with mjx-closed CSP.

Example 3 Let D be a totally-ordered domain. Let f : D → D be a monotonically
decreasing function, that is, a function that verifies u < v ⇒ f(u) ≥ f(v). The
following binary relations are mjx-closed, where x, y are variables and a, b, c are
constants:

x ≥ f(y)

x+ y ≥ a
(x ≥ a) ∨ (y ≥ b)

x = y + c

(x = y + c) ∨ (x ≥ f(y))

(x = a) ∨ (y = b)

(x = a) ∨ (x ≥ f(y))

(x = a) ∨ (y = b) ∨ (x ≥ f(y))

((x = a) ∧ (y = b)) ∨ (x ≥ f(y))

In the last four examples, the values a and b could represent default values. For
example, let x be the time at which an action starts in a planning problem, x = a
could represent the fact that we do not execute the action.

3 Identifying mjx-closed relations

The most intuitive way to check whether a relation R over a finite domain D is
mjx-closed consists in testing all possible combinations of three elements of R.
More precisely, we need to check the mjx-closure of each set of three pairs in
R. This simple method requires d6 tests, where d = |D|, which could be a huge
number if d is large.

The following section describes a more efficient method for identifying mjx-
closed relations.

3.1 Characterizing mjx-closed relations

In this section, we give necessary and sufficient conditions for closure under mjx.
Let R be a binary relation over a finite D. A possible representation of R consists
in using a d × d Boolean matrix, where d = |D|, whose rows and columns are
indexed by the elements of D. For instance, Figure 1-left depicts a Boolean matrix
which represents the binary relation (|x−y| = 2)∨(x+y > 4) over D = {0, 1, 2, 3}.
Accordingly, we also use R to denote the Boolean matrix associated with R. The
matrix R∗ is derived from R by removing rows and columns containing only zeros.
A simple space-efficient way to deduce R∗ from R is to resort to two length-d arrays
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that contain, respectively, the indices of the non-zero rows and the indices of the
non-zero columns of R. In addition, such arrays are also necessary for establishing
arc consistency.

Proposition 1 Let R be a binary relation such that R=R∗ (R does not contain
rows or columns of zeros). If R is mjx-closed then ∀a, a′, b, b′,

(a′ < b′) ∧ (a, a′), (a, b′) ∈ R ⇒ ∀c′ > b′, (a, c′) ∈ R (1)

and

(a < b) ∧ (a, a′), (b, a′) ∈ R ⇒ ∀c > b, (c, a′) ∈ R (2)

Proof Since R = R∗, for all c′, there exists c such that (c, c′) ∈ R. Using (a, a′),
(a, b′), (c, c′) ∈ R and Definition 4, we deduce that (a, c′) ∈ R, for all c′ > b′ >
a′, which proves (1). In the same way, to prove (2), we can show that (c, a′) ∈
R, for all c > b > a using (a, a′), (b, a′), (c, c′) ∈ R for some c′.

The conditions (1) and (2) ensure that, when the relation is mjx-closed, there
is no zero preceded by two ones in a same row or a same column.

Proposition 2 Let R be a binary relation. If R is mjx-closed then

((a, a′), (b, b′), (c, c′) ∈ R ∧ a > b, c ∧
b′ > a′, c′ ∧ c 6= b ∧ c′ 6= a′) ⇒ (a, b′) ∈ R (3)

Proof If a > b, c, b′ > a′, c′, c 6= b and c′ 6= a′ then (mjx(a, b, c),mjx(a′, b′, c′)) =
(a, b′).

Proposition 3 Let R be a binary relation such that R=R∗. Then R is mjx-closed
if and only if it satisfies (1), (2) and (3).

Proof (⇒) This is exactly Propositions 1 and 2.
(⇐) Let R be a binary relation. If R verifies (1), (2) and (3) then, for every
(a, b′) 6∈ R, we show that there is no (a, a′), (b, b′), (c, c′) ∈ R that generate
(a, b′) by applying mjx pointwise. For the sake of contradiction, suppose that the
converse is true, that is, there exist (a, a′), (b, b′), (c, c′) ∈ R such that mjx(a, b, c) =
a, mjx(a′, b′, c′) = b′ and (a, b′) 6∈ R. Since (a, a′), (b, b′) ∈ R and (a, b′) /∈ R,
we must have a 6= b and a′ 6= b′. Moreover, mjx(a, b, c) = a 6= b implies that
c 6= b and therefore two possible cases: either a > b, c or a = c. Similarly, since
mjx(a′, b′, c′) = b′ 6= a′, we must have c′ 6= a′ and one of the following two options:
either b′ > a′, c′ or b′ = c′. If (a > b, c) ∧ (b′ > a′, c′), then (3) implies that (a, b′) ∈
R, which contradicts our hypothesis. In the case where (a > b, c) ∧ (b′ = c′), (2)
implies that (a, b′) ∈ R, and this contradicts the hypothesis. If (a = c)∧(b′ > a′, c′)
then (1) implies that (a, b′) ∈ R, which also results in a contradiction. Finally, the
case where (a = c) ∧ (b′ = c′) is not possible because (c, c′) ∈ R and (a, b′) 6∈ R.
We conclude that R is mjx-closed.

Proposition 4 An mjx-closed binary relation can be stored in O(d) space.

Proof This is a consequence of Proposition 1: instead of storing R in the form of
a Boolean matrix, it suffices to store the positions of the first two 1’s in each row
of this matrix.
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Example 4 Consider the binary relation defined on {0, 1, . . . , d− 1} by (|x− y| =
a ∨ x+ y > b), where a and b are two constants such that b ≤ 2a. This relation is
mjx-closed. The Boolean matrix corresponding to this relation, for d = 4, a = 2 and
b = 4, as well as the two vectors which allow its storage according to Proposition 4,
are shown in Figure 1. For each row, the vectors give, respectively, the column in
which the first and second 1 occurs (or ∞ if the second 1 does not exist).

0 1 2 3
0 0 0 1 0
1 0 0 0 1
2 1 0 0 1
3 0 1 1 1

2
3
0
1

∞
∞
3
2

Fig. 1 The Boolean matrix associated with the mjx-closed relation given in Example 4, for
d = 4. The entries of the matrix are indexed, from top to bottom and from left to right,
by the elements of {0, 1, 2, 3}. A non zero entry indicates that the value pair corresponding
to the entry index belongs to the relation. The two vectors used for its storage according to
Proposition 4.

It is easy, but tedious, to verify that the relations given in Examples 3 and 4
satisfy the conditions (1), (2) and (3) and are, therefore, mjx-closed.

In the case where the first variable is Boolean, conditions (2) and (3) are
always true, (there are not three distinct values a, b, c in this variable domain),
and the only condition that needs to be checked to get the mjx closure is (1). This
observation allows us to give the following example.

Example 5 The relation (x = a) ⇒ (y = b ∨ y ≥ c) is mjx-closed, where x is a
Boolean variable, y any variable, and a, b, c are constants.

3.2 Checking mjx closure

Checking the closure by the mjx operator can be achieved by testing the three
necessary and sufficient conditions given in Proposition 3. The most simple way to
do this is to verify that every triple of elements (a, a′), (b, b′), (c, c′) that belong to
the relation does not violate these conditions. Unfortunately this method involves
d6 tests. In this section, we give an efficient solution to verify conditions (1), (2),
(3) in O(d2) steps.

We assume that the relation R to be verified is given as a Boolean matrix with
R(a, b) = 1 if and only if (a, b) ∈ R. It is reasonable to assume that computing
such a Boolean matrix from a given binary relation can be performed in O(d2)
steps. First, we can notice that checking conditions (1) and (2) requires O(d2)
steps. Indeed, we just have to run through each row and each column only once to
verify that the second 1 (if it exists) of the row or column is followed by a sequence
of 1’s.

In the remainder of this section, we assume that R=R∗, which can be achieved
by deleting the lines and columns of zeros in R. Moreover, we assume that R
satisfies conditions (1) and (2). A consequence of these assumptions is that each
zero entry in R, R(i, j)=0, is preceded by no more than one 1 in row i and no
more than one 1 in column j.
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In order to verify condition (3), for all (a, b′) such that R(a, b′) = 0, we need
to show that we cannot find a′, b, c, c′ such that b, c < a and a′, c′ < b′ and

(R(a, a′) = R(b, b′) = R(c, c′) = 1) ∧ (c 6= b) ∧ (c′ 6= a′) (4)

To efficiently perform this test, we use the following data structures:

– NL(i, j) =
∑

k<j R(i, k) = the number of 1’s in the ith row of R that are
located before column j.

– NC(i, j) =
∑

k<iR(k, j) = the number of 1’s in the jth column of R that
are located before row i.

– N(i, j) =
∑

k<j NC(i, k) = the total number of 1’s in the sub-matrix of R
composed of the rows before row i and columns before column j.

– lig1(j) = min{i | R(i, j) = 1} = the row of the first 1 in the jth column of
R.

– col1(i) = min{j | R(i, j) = 1} = the column of the first 1 in the ith row of
R.

These data structures can be initialized in O(d2) time by direct application of
their respective definitions. If R(a, b′) = 0 and since R satisfies conditions (1) and
(2), we deduce that there is at most one 1 in row a located before column b′ and
at most one 1 in column b′ located before row a. This implies that there is a single
value a′ = col1(a) and a single value b = lig1(b′) such that R(a, a′) = R(b, b′) = 1
which could possibly satisfy (b < a) ∧ (a′ < b′). If (b < a) ∧ (a′ < b′) then, to
complete the verification of condition (4), we need to check that the number of
pairs (c, c′) such that R(c, c′) = 1 ∧ (c 6= b) ∧ (c′ 6= a′) ∧ (c < a) ∧ (c′ < b′)
is 0. The number of such pairs is given by the following formula, which can be
calculated in constant time:

N(a, b′)−NL(b, b′)−NC(a, a′) +R(b, a′)

which gives the number of 1’s in the sub-matrix of R composed of the rows be-
fore the row a and the columns before the column b′ minus the number of 1’s
which are in row b or column a′. Note that we add the term R(b, a′) because
it is subtracted twice from N(a, b′): once by subtracting NL(b, b′) and again by
subtracting NC(a, a′).

We conclude, therefore, that our data structures allow the verification of con-
dition (4) in O(1) time for each pair of values (a, b′), avoiding a full search over
all possible values of a′, b, c and c′.

We have thus proved the following proposition.

Proposition 5 Verifying that a binary relation is mjx-closed can be performed in
O(d2) steps.

We can even say that this complexity is optimal, since in the worst case, we need
d2 steps to read any binary relation.
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3.3 Checking mjx closure for an unknown domain ordering

From a theoretical point of view, an interesting problem is to determine whether a
given set of relations over a domain D is mjx-closed for some unknown ordering of
D. It is already known that determining the existence of a domain ordering under
which a set of relations is max-closed or median-closed is NP-complete [GC08].
Therefore it is hardly surprising that the corresponding problem for mjx-closure
also turns out to be NP-complete, as we will now show. It is worth pointing out,
however, that the more general class of majority polymorphisms can be detected
in polynomial time [BCH+13].

Proposition 6 Given a set Γ of relations over domain D, determining whether
there exists a total ordering of D such that the relations in Γ are all mjx-closed is
NP-complete.

Proof The problem is clearly in NP since given a certificate (a domain ordering) the
set of relations can be checked for mjx-closure in polynomial time. To complete the
proof, it thus suffices to provide a polynomial reduction from the well-known NP-
complete problem 3-SAT. Let P3SAT be an instance of 3-SAT. For each variable
Xi (i = 1, . . . , n) in P3SAT , we add the integers i and i + n to D. We also add
another element k0 /∈ {1, . . . , 2n} to D. We make the assignment Xi = true

(i ∈ {1, . . . , n}) in P3SAT if and only if i > k0 in the ordering of D. We will add
relations to Γ (and extra values to D) so that there exists an ordering of D under
which Γ is mjx-closed if and only if the corresponding assignment to the variables
Xi (i = 1, . . . , n) is a solution to P3SAT . To achieve this it is sufficient to show
how to code the negation Xi = ¬Xj (where j = i + n, for each i = 1, . . . , n) and
how to code a ternary positive clause Xi ∨Xj ∨Xk (for i, j, k ∈ {1, . . . , 2n}).

k2 k0 j
k1 1 0 0
k0 0 1 1
i 0 1 0

k0 i j
k3 0 1 1
k4 0 1 1
k5 0 1 1

Fig. 2 Relations to code the negation Xi = ¬Xj . The first line and column contain the row
and column numbers. Those rows and columns that are not shown are all zeros.

To code the negation Xi = ¬Xj we add the binary relations shown in Figure
2 to Γ , where k1, . . . , k5 are domain values not occurring in other relations. From
Proposition 3, we can deduce that a necessary and sufficient condition for these
two relations to be mjx-closed is that the domain ordering satisfies:

k1 6= max(k1, k0, i) ∧
k2 6= max(k2, k0, j) ∧

((i 6= max(k1, k0, i)) ∨ (j 6= max(k2, k0, j))) ∧
((i > k0) ∨ (j > k0)).

It is easy to verify that the only possible orderings of the elements i, j, k0 are
i > k0 > j or j > k0 > i. Thus, adding the two relations shown in Figure 2 to Γ
imposes the constraint Xi = ¬Xj .
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k6 k k7
i 0 0 1
k0 0 1 0
j 1 0 0

k0 k6 k7
k8 0 1 1
k9 0 1 1
k10 0 1 1

Fig. 3 Relations to code the clause Xi ∨Xj ∨Xk. The first line and column contain the row
and column numbers. Those rows and columns that are not shown are all zeros.

To code the positive clause Xi ∨ Xj ∨ Xk, we add the two binary relations
shown in Figure 3 to Γ , where k6, . . . , k10 are domain values not occurring in
other relations. A necessary and sufficient condition for these relations to be mjx-
closed is that

(i = max(i, k0, j) ∧ k7 = max(k6, k, k7))

∨ (k0 = max(i, k0, j) ∧ k = max(k6, k, k7))

∨ (j = max(i, k0, j) ∧ k6 = max(k6, k, k7))

together with (k6 > k0) ∨ (k7 > k0). It is tedious but easy to check that all
orderings of the elements i, j, k, k0 are possible except those in which k0 > i, j, k.
Thus we have (i > k0) ∨ (j > k0) ∨ (k > k0) which corresponds to the clause
Xi ∨Xj ∨Xk.

4 Solving mjx-closed binary CSP

As outlined in Section 2, local consistency guarantees properties related to the
consistency of subsets of variables or constraints. Local consistency can be enforced
via problem transformations called constraint propagation. These transformations
enable the elimination of certain inconsistent values or tuples of values. This may
result in a reduction of the cost of subsequent search. There are several local
consistency levels, each providing a different balance between efficient filtering and
speed of search, the most well-known being arc consistency and path consistency.

4.1 Local consistency for mjx-closed binary CSP

It is known that solving a CSP instance whose relations are all closed under any
majority operation, such as mjx, can be achieved either by strong 3-consistency
[JCC98] or by singleton arc consistency [CDG13]. It turns out that, in the case of
mjx-closed relations, an enhanced form of strong directional path consistency is
sufficient (see Proposition 9).

Definition 5 Let P=(X,D,C) be a binary CSP instance.

– P is directional arc consistent if, for any pair of variables (xi, xj) such that
i < j and for any value vi ∈ Di, there is a value vj ∈ Dj such that the partial
instantiation {(xi, vi), (xj , vj)} satisfies the binary constraint between xi and
xj , if this constraint exists.

– P is directional path consistent if, for any triple (xi, xj , xk) of variables such
that i, j < k and for all pairs of consistent values (vi, vj) ∈ Di ×Dj , there is
a value vk in Dk such that the partial instantiation {(xi, vi), (xj , vj), (xk, vk)}
is consistent (i.e. satisfies all constraints of C involving only xi, xj , xk).
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In what follows, we show that establishing a simple property related to arc con-
sistency, that we call weak arc consistency, in addition to strong directional path
consistency, is enough to solve mjx-closed binary CSP instances. Weak arc con-
sistency imposes that any value belonging to the domain of a variable xi must be
part of at least one of the pairs in every relation involving xi. Weak arc consistency
amounts therefore to maintaining the following inclusions:

Di ⊆ Πi(Ri,j), for all ({xi, xj}, Ri,j) ∈ C (5)

where Πi(Ri,j) = {a ∈ D | (a, b) ∈ Ri,j}. Weak arc consistency is, indeed, weaker
than arc consistency since the latter consistency level maintains the following
invariant

Di ⊆ Πi(Ri,j on Dj), for all ({xi, xj}, Ri,j) ∈ C (6)

where on denotes the natural join with regard to the common variable xj . Since
(Ri,j on Dj) ⊆ Ri,j , we deduce that (6) implies (5). Moreover, it is easy to deduce
from (5) that, contrary to arc consistency, weak arc consistency is preserved by
domain reduction. This means that reducing the domain of any variable to one of
its subsets does not affect the inclusions appearing in (5). Observe also that weak
arc consistency is ensured by establishing arc consistency but is not ensured by
establishing directional arc consistency.

Algorithm 1 describes a procedure, SDPC+, which enforces strong directional
path consistency in addition to weak arc consistency. To enforce this latter local
consistency level, Algorithm 1 uses the classical projection (Π) and natural join
(on) operations. SDPC+ is a standard procedure for establishing strong directional
path consistency, to which we have added steps 1 to 3 and step 10. The role of
these supplementary steps is to establish weak arc consistency. First, we show that
the application of SDPC+ produces a strong directional path consistent instance.

Proposition 7 Let P be a binary CSP instance, then SDPC+(P ) is strongly di-
rectional path consistent and has the same solution set as P .

Proof First, observe that the loop beginning at line 1 of procedure SDPC+ deletes
inconsistent values and does not alter the level of consistency established in the
following steps. The rest of the algorithm consists of the steps needed to establish
strong directional path consistency (see [Dec03], for example), to which we have
added step 10. This last step deletes, from Di, the values that cannot have any
support in Dj , because these values are not part of any value pair of Ri,j . Of
course, such values are inconsistent and can be removed without modifying the
solution set of the instance.

Let us show that step 10 preserves the level of directional consistency estab-
lished before its execution. First, notice that step 10 can only reduce value domains.
We have to show that step 10 does not affect the directional arc consistency al-
ready established. At iteration k, the arcs that were already made directional arc
consistent are those of the form (xi′ , xk′), with k ≤ k′ ≤ n and i′ < k′. To alter
the directional arc consistency of one of these arcs, we need to reduce one of the
domains Dk′ (k ≤ k′ ≤ n), but, at iteration k, step 10 can only reduce the domains
Di, 1 ≤ i ≤ k − 1.

Moreover, step 10 cannot affect the directional path consistency that has been
established at iterations k to n. Indeed, at iteration k, the paths already made
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consistent are (xi′ , xj′ , xk′), with i′ < j′ < k′ and k ≤ k′ ≤ n. To alter the
consistency of one of these paths, it is necessary to reduce one of the domains
Dk′ (k ≤ k′ ≤ n), but, at iteration k, step 10 can only reduce the domains Di,
1 ≤ i ≤ k − 1.

Next, we show that SDPC+ enforces weak arc consistency on binary CSP
instances.

Proposition 8 Let P be a binary CSP instance, then SDPC+(P ) is weak arc
consistent.

Proof To begin with, notice that weak arc consistency of P is established by steps
1 to 3, since Di ∩ Πi(Ri,j) ⊆ Πi(Ri,j). Moreover, as we have already observed,
weak arc consistency is preserved by domain reduction, that is, if the weak arc
consistency is verified for a value domain Di then it remains verified if Di is
reduced to one of its subsets. It follows that the weak arc consistency on a domain
Di may be lost only if a constraint involving xi is updated, which can only take
place at step 9. Step 10 is, therefore, applied to restore the weak arc consistency
of Di again.

Algorithm 1 Procedure SDPC+(X,D,C)

1: for all ({xi, xj}, Ri,j) ∈ C do - - Establishing weak arc consistency
2: Di ← Di ∩ Πi(Ri,j)
3: end for

- - Establishing directional path consistency
4: for k ← |X| to 1 do
5: for all i < k such that ({xi, xk}, Ri,k) ∈ C do
6: Di ← Di ∩ Πi(Ri,k on Dk)
7: end for
8: for all i, j < k such that ({xi, xk}, Ri,k), ({xj , xk}, Rj,k) ∈ C do
9: Ri,j ← Ri,j ∩ Πi,j(Ri,k on Dk on Rj,k)

10: Di ← Di ∩ Πi(Ri,j) - - Restoring weak arc consistency
11: C ← C ∪ {({xi, xj}, Ri,j)}
12: end for
13: end for

Proposition 9 Let P be a binary CSP instance defined over a mjx-closed lan-
guage. Establishing strong directional path consistency together with weak arc con-
sistency suffices to determine whether P is consistent and, if so, to calculate a
solution in linear time.

Proof Establishing strong directional path consistency does not destroy the clo-
sure under mjx, since mjx is a specific majority operation and the closure under
this latter operation is preserved by enforcing strong directional path consistency
[CJ06]. This is also the case for weak arc consistency. Indeed, the additional steps
required by the latter consistency level affect only the domains of variables, that
is, the unary relations, which remain closed under mjx.

Suppose that P is strongly directional path consistent according to the increas-
ing order of variable index and also weak arc consistent. If P contains an empty
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domain then no solution exists. Otherwise, let (a1, . . . , ak−1) be a partial solution,
in other words a value assignment to variables (x1, . . . , xk−1) which satisfies all
the constraints involving these variables. By directional arc consistency, we can
find such a partial solution for k = 3. We show that it is always possible (for
k = 4, . . . , n) to extend (a1, . . . , ak−1) to a partial solution (a1, . . . , ak). It will
follow, by induction, that a solution can be found in linear time.

Let Ri,j be the relation defining the constraint on (xi, xj) and Ri,j(ai) the set
of values b ∈ Dj such that (ai, b) ∈ Ri,j . Thanks to directional arc consistency,
which follows from strong directional path consistency, we must have Ri,k(ai) 6= ∅,
for all i, 1 ≤ i ≤ k − 1. We therefore distinguish two cases:

1. ∃i, 1 ≤ i ≤ k− 1 such that Ri,k(ai) is a singleton. Let ak be the only element
of Ri,k(ai). By directional path consistency, all ai, 1 ≤ i ≤ k−1 are necessarily
consistent with ak. It follows that (a1, . . . , ak−1, ak) is a partial solution.

2. All Ri,k(ai), 1 ≤ i ≤ k − 1 contain at least two elements. Let us designate by
mk the maximum element of Dk. We will prove that mk is consistent with all
ai, 1 ≤ i ≤ k− 1. Since P is weak arc consistent, there must exist a′i such that
(a′i,mk) ∈ Ri,k, otherwise we would have Dk * Πk(Ri,k). Denote by bk and b′k
any two distinct elements of Ri,k(ai). Recall that the existence of such elements
is guaranteed by |Ri,k(ai)| ≥ 2. We conclude that (ai, bk), (ai, b

′
k), (a′i,mk) ∈

Ri,k, therefore (mjx(ai, ai, a
′
i),mjx(bi, b

′
i,mk)) = (ai,mk) ∈ Ri,j . We conclude

that (a1, . . . , ak−1,mk) is a partial solution.

In fact, procedure SDPC+ solves a much wider class than the one containing all
mjx-closed binary CSP instances. Indeed, SDPC+ may be used to solve CSP(Γ )
where Γ is closed under any (possibly unknown) majority polymorphism f , as we
now show.

Proposition 10 Let P be a binary CSP instance defined over a language Γ which
is f-closed where f is a majority polymorphism. Establishing strong directional path
consistency together with weak arc consistency suffices to determine whether P is
consistent and, if so, calculate a solution in time O(dm), where the number of
constraints m is assumed to be at least n.

Proof We assume that P is weak arc consistent and strong directional path con-
sistent according to the variable order x1, . . . , xn. By directional arc consistency,
there is a partial solution (a1, a2) to P on variables (x1, x2). We use an induc-
tive proof to show that (a1, a2) can be extended to a complete solution. Let
(a1, . . . , ak−1) be a partial solution on variables (x1, . . . , xk−1), where 3 ≤ k ≤ n.
To complete the inductive proof it suffices to show that this implies that ∃ak ∈ Dk

such that (a1, . . . , ak) is a partial solution on variables (x1, . . . , xk). This will im-
ply the existence of a backtrack-free algorithm of total complexity O(dm) to find
a complete solution, which simply exhausts over all possible assignments to the
next variable xk, checking constraints as it goes.

By directional path consistency, ∀i, j such that 1 ≤ i < j ≤ k − 1, ∃cijk ∈ Dk

such that
(ai, c

ij
k ) ∈ Ri,k ∧ (aj , c

ij
k ) ∈ Rj,k (7)

We will show by another induction that ∀j = 2, . . . , k−1, the following hypothesis
H(j) is true.

H(j) : ∃djk ∈ Dk such that ∀i = 1, . . . , j, (ai, d
j
k) ∈ Ri,k.
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Let d2k = c12k . Then, by (7), H(2) holds. To complete the proof it suffices to show
that H(k − 1) holds, since in this case we can set ak = dk−1

k to obtain a partial
solution (a1, . . . , ak).

So suppose that H(j − 1), where 3 ≤ j ≤ k − 1: we will show that this implies
H(j). To do so, we use yet another induction. We will show by induction on h that
∀h = 1, . . . , j − 1, the following hypothesis H′(h) holds.

H′(h) : ∃bhk ∈ Dk such that (∀i = 1, . . . , h, (ai, b
h
k) ∈ Ri,k) ∧ (aj , b

h
k) ∈ Rj,k

Let b1k = c1jk . Then, by (7), H′(1) holds. If H′(j−1) holds, then by setting djk = bj−1
k

we will have that H(j) holds which will then complete the proof.
So suppose that H′(h− 1) holds, where 2 ≤ h ≤ j − 1: we will show that this

implies H′(h). Let

bhk = f(dj−1
k , bh−1

k , chjk ).

By the hypothesis H(j − 1), and since h ≤ j − 1, we have

∀i = 1, . . . , h, (ai, d
j−1
k ) ∈ Ri,k. (8)

By the hypothesis H′(h− 1), we have

(∀i = 1, . . . , h− 1, (ai, b
h−1
k ) ∈ Ri,k) ∧ (aj , b

h−1
k ) ∈ Rj,k. (9)

And, by (7), we have

(ah, c
hj
k ) ∈ Rh,k ∧ (aj , c

hj
k ) ∈ Rj,k. (10)

Now, by weak arc consistency,

∀i = 1, . . . , h− 1, ∃a′i ∈ Di such that (a′i, c
hj
k ) ∈ Ri,k (11)

∃a′h ∈ Dh such that (a′h, b
h−1
k ) ∈ Rh,k (12)

∃a′j ∈ Dj such that (a′j , d
j−1
k ) ∈ Rj,k (13)

Thus, by closure of these relations under the majority operation f , we can deduce
from (8), (9) and (11) that

∀i = 1, . . . , h− 1, (f(ai, ai, a
′
i), f(dj−1

k , bh−1
k , chjk )) = (ai, b

h
k) ∈ Ri,k (14)

Similarly, from (8), (12) and (10) we can deduce that

(f(ah, a
′
h, ah), f(dj−1

k , bh−1
k , chjk )) = (ah, b

h
k) ∈ Rh,k (15)

And finally, from (13), (9) and (10) we can deduce that

(f(a′j , aj , aj), f(dj−1
k , bh−1

k , chjk )) = (aj , b
h
k) ∈ Rj,k (16)

Bringing together (14), (15) and (16), we have that H′(h) holds, which completes
the proof.

Returning to the specific case of the polymorphism mjx, procedure SDPC+

shows that efficient computation of intersection R∩S and composition Πx,y (R on
S) of relations is critical for the efficiency of solving mjx-closed CSPs. In the two
following subsections we show that these two operations can be achieved in O(d)
time if relations R and S are closed under mjx, instead of O(d2) and O(d3) for
arbitrary relations.
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4.2 Efficient implementation

In what follows, we present an efficient implementation of each of the components
of a solution algorithm dedicated to solving mjx-closed binary CSPs.

4.2.1 Intersection of two mjx-closed relations

The intersection operation is defined on pairs of relations as follows:

R ∩ S = {(u, v) ∈ D2 | (u, v) ∈ R ∧ (u, v) ∈ S}

Hereafter, we will use the function min 2(E) which returns the second smallest
value of the set E. We assume that each relation R is stored, in accordance with
Proposition 4, by means of the following variables:

– col1R(i) = min{j | R(i, j) = 1}, that is, the column of the first 1 in the ith

row of R;
– col2R(i) = min 2{j | R(i, j) = 1}, that is, the column of the second 1 in the
ith row of R.

In the case where the first or the second 1 does not exist, the associated variable
col1R(i) or col2R(i) will take a default value greater that d, which we denote by
∞. Relying on the fact that the second 1 in a row is followed by a sequence of 1’s,
the intersection T = R ∩ S can be computed according to the following rules: ∀i,

col1T (i) =


col1R(i) if col1R(i) = col1S(i)
col1R(i) if col1R(i) ≥ col2S(i)
col1S(i) if col1S(i) ≥ col2R(i)
max(col2R(i), col2S(i)) otherwise

and

col2T (i) =


max(col2R(i), col2S(i)) if col1R(i) = col1S(i)
col2S(i) if col1S(i) ≥ col2R(i)
col2R(i) if col1R(i) ≥ col2S(i)
max(col2R(i), col2S(i)) + 1 otherwise

For simplicity, we assume here that Di = {1, . . . , d} and d+1 =∞. For each value
of i, these calculations are performed in constant time. So the calculation of R∩S
is performed in O(d) time. Since we must return the 2d values col1T (i), col2T (i)
which represent the relation T , we can deduce that this complexity is optimal.

4.2.2 Composition of two mjx-closed relations

In this section, we focus on the second operation that intervenes in enforcing
directional path consistency, namely, relation composition. We limit ourselves to
the composition of binary relations, because any unary relation may be easily
expressed by a binary one, as it will be shown latter. First, let us express binary
relation composition via the more classical natural join and projection operations.
Let Ri,k and Rk,j be two binary relations sharing attribute k, then the composition
of Ri,k and Rk,j , denoted by Ri,k ◦Rk,j , can be expressed as follows:

Ri,k ◦Rk,j = Πi,j(Ri,k on Rk,j)
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where the natural join is performed with regard to the common attribute k.

The composition of two binary relations R and S can also be defined in exten-
sion, by means of a more explicit formula, as follows:

R ◦ S = {(u, v) ∈ D2 | ∃w ∈ D, (u,w) ∈ R ∧ (w, v) ∈ S}

It is well established that polymorphisms are preserved under the projection and
the joint operations [CJ06]. Thus, if R and S are mjx-closed then so is T = R ◦S.
It follows that we can represent T using the values col1T (i), col2T (i) (for each row
i in the matrix that represent T ). For simplicity of presentation, we assume that
matrices R and S are both of size d× d. To optimize the calculations, we will use
the following data structures:

– m1R(i) = min{j | ∃k ≥ i, R(k, j) = 1}, that is, the first column j such that
there is a 1 in at least one of the rows k ≥ i

– m2R(i) = min 2{j | ∃k ≥ i, R(k, j) = 1}, that is, the second column j such
that there is a 1 in at least one of the rows k ≥ i.

In the composition algorithm given below, the first loop incrementally computes
the values of m1S(i) and m2S(i) for each row i, beginning with the last row. In
order to calculate row i in the matrix T = R ◦ S, we distinguish three cases,
according to the form of row i in R (1) (0, . . . , 0), (2) (0, . . . , 0, 1, 0, . . . , 0) or (3)
(0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 1). In each case, we can deduce the form of row i in T
directly from the definition of the composition operation.

1. If row i of R is all zero then the row i of T will also be all zero.
2. If row i of R includes only one 1 (in column j) then row i of T will be identical

to row j of S.
3. If row i of R contains at least two 1’s (with the first two 1’s in columns j and
k > j), then col1T (i) = min{col1S(j),m1S(k)} and col2T (i) = min 2{col1S(j),
col2S(j), m1S(k), m2S(k)}.

The input parameters of Algorithm 2 are two relations R and S, which are assumed
to be mjx-closed and stored in the form of the positions of the first two 1’s in each
row (col1R and col2R for R and col1S and col2S for S). The first operation of
the algorithm is to fill data structures m1S and m2S , described above (first loop
for). The algorithm then calculates the composition according to the three rules
given above (second loop for). The result of the algorithm, for inputs R and S,
are two vectors which store, respectively, the positions of the first and second 1
in each row of the matrix associated with the relation R ◦ S. The complexity of
our composition algorithm is O(d). Since we must return the 2d values col1T (i),
col2T (i), we can deduce that this complexity is optimal.
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Algorithm 2 Function Composition(R,S): T = R ◦ S
- - R and S are given in the form of vectors col1R, col2R and col1S ,col2S
- - The result, T = R ◦ S, is calculated in col1T and col2T
1: m1 ← ∞
2: m2 ← ∞
3: for i = d to 1 do
4: m1S(i) ← min(col1S(i),m1)
5: m2S(i) ← min 2(col1S(i),col2S(i),m1,m2)
6: m1 ← m1S(i)
7: m2 ← m2S(i)
8: end for
9: for i = 1 to d do

10: j ← col1R(i)
11: k ← col2R(i)
12: if (k = ∞) then
13: if (j = ∞) then - - case 1: line i of R contains only zeros.
14: col1T (i) ← ∞
15: col2T (i) ← ∞
16: else - - case 2: line i of R contains one 1.
17: col1T (i) ← col1S(j)
18: col2T (i) ← col2S(j)
19: end if
20: else - - case 3: line i of R contains two 1’s.
21: E ← {col1S(j), col2S(j), m1S(k), m2S(k)}
22: col1T (i) ← min(E)
23: col2T (i) ← min 2(E)
24: end if
25: end for
26: return (col1T , col2T )

In the next section we present in detail the algorithm SDPC+ to establish
strong directional path consistency and weak arc consistency, designed for in-
stances in which all relations are mjx-closed. It has O(n3d) time complexity and
O(n2d) space complexity.

4.2.3 A solution algorithm for mjx-closed CSP

In this section, we describe an algorithm that establishes the level of local con-
sistency needed to solve binary CSP instances defined by means of mjx-closed
relations. Recall that, according to Proposition 9, it suffices to establish strong
directional path consistency enhanced with weak arc consistency.

Algorithm 3 is a version of procedure SDPC+ which takes into account the spe-
cific features of mjx-closed relations. It begins by establishing weak arc consistency
via the calls to procedures WeakAC and WeakACInv, both of these procedures
having a linear complexity O(d) (see Algorithms 4 and 5). Following the update of
relation Ri,j , (see line 12), we need to restore the weak arc consistency for the arcs
(xi, xj) such that i, j < k (see the calls to procedures WeakAC and WeakACInv
at lines 13 and 14).

The intersection and composition functions described above are called in or-
der to achieve these two basic operations in linear time. To compute the term
Πi,j(Ri,k on Dk on Rj,k), (see line 10 of Algorithm 1), by means of function Com-
position, the domain Dk is transformed into a binary relation denoted by Rk,k and
defined as follows:
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Rk,k(a, b) =

{
1 if a = b ∧ a ∈ Dk

0 otherwise

It is easy to see that Rk,k is mjx-closed. So, it can be stored in two vectors col1Rk,k

and col2Rk,k
. These vectors are initialized by function RelBin, which executes in

linear time. This allows us to compute the term Πi,j(Ri,k on Dk on Rj,k) by
means of two calls to function Composition, since Πi,j(Ri,k on Dk on Rj,k) =
Ri,k ◦Rk,k ◦Rk,j .

Finally, since all the steps performed by Algorithm 3, inside its for loops,
are linear in d, we deduce that the overall time complexity of this algorithm is
O(n3d). The space complexity is, in turn, mainly due to storage space required
for the relations. In a binary CSP, we may have O(n2) constraints and since all
these constraints are mjx-closed relations, and then can be stored in O(d) space,
we obtain a space complexity of O(n2d).

Algorithm 3 Procedure MJX-SDPC+(X,D,C)

1: for all i < j such that ({xi, xj}, Ri,j) ∈ C do
2: WeakAC(i, j,D,Ri,j)
3: WeakACInv(i, j,D,Ri,j)
4: end for
5: for all k ← |X| to 1 do
6: for all i < k such that ({xi, xk}, Ri,k) ∈ C do
7: ReviseDomain(i, k,D,Ri,j)
8: end for
9: Rk,k ← RelBin(Dk)

10: for all i < j < k such that ({xi, xk}, Ri,k), ({xj , xk}, Rj,k) ∈ C do
11: T ← Composition(Composition(Ri,k, Rk,k), Rj,k)
12: Ri,j ← Intersection(Ri,j , T )
13: WeakAC(i, j,D,Ri,j)
14: WeakACInv(i, j,D,Ri,j)
15: C ← C ∪ {({xi, xj}, Ri,j)}
16: end for
17: end for

Algorithm 4 Procedure WeakAC(i, j,D,Ri,j)

1: for all a ∈ Di do
2: if col1Ri,j(a) =∞ then
3: Di ← Di \ {a}
4: end if
5: end for

5 Conclusion

In this article, we presented a new polynomial relational class, namely, the class
of binary CSP instances in which all relations are closed by the mjx operator.
This ternary majority operator is a function that returns the maximum of its
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Algorithm 5 Procedure WeakACInv(i, j,D,Ri,j)

1: for all b ∈ Dj do
2: T [b]← 0
3: end for
4: minCol2←∞
5: for all a← 1 to d do
6: T [col1Ri,j(a)]← 1
7: minCol2← min(minCol2, col2Ri,j(a))
8: end for
9: for all b ∈ Dj do

10: if T [b] = 0 ∧ b < minCol2 then
11: Dj ← Dj \ {b}
12: end if
13: end for

Algorithm 6 Procedure ReviseDomain(i, j,D,Ri,j)

1: mj ← max(Dj)
2: for all a ∈ Di do
3: if col1Ri,j(a) /∈ Dj ∧ col2Ri,j(a) > mj then
4: Di ← Di \ {a} - - a has no support in Dj

5: end if
6: end for

arguments when they are all distinct. We have shown, with examples, that some
useful relations are mjx-closed. We also provided an alternative characterization of
mjx-closed relations, which allowed us to demonstrate that such relations can be
stored in O(d) space. Another contribution is an optimal O(d2) algorithm which
identifies mjx-closed relations for a fixed domain ordering.

Even if only few instances encountered in practice fall into our tractable class,
our algorithms could be used as an efficient filtering technique on a global con-
straint consisting of all mjx-closed constraints in an instance. The set of these
constraints can be efficiently identified in O(md2) time and hence they do not
need to be identified as mjx-closed by the user.

The use of appropriate data structures for storing mjx-closed relations pro-
vides more than a mere gain in memory, since it has allowed us to propose two
new algorithms, with linear complexity (O(d)), to calculate the intersection and
composition of two mjx-closed relations. As a consequence, we optimized the time
complexity of strong directional path consistency which falls to O(n3d) for mjx-
closed relations. Next, we showed that strong directional path consistency en-
hanced by a new local consistency level, called weak arc consistency, ensure the
consistency of binary CSPs with mjx-closed relations, resulting in a O(n3d) time
complexity and a O(n2d) space complexity.

These results show that the study of a polynomial relational class defined by a
judicious choice of polymorphism may be interesting in terms of a compact storage
method and an efficient solution algorithm. It would be interesting in the future
to study other relational classes defined by simple polymorphisms to find other
similar results or even to try to establish a theory about relational classes that
can be solved in low-order polynomial time. The fact that relational classes closed
under any majority polymorphism can also be solved by strong directional path
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consistency and weak arc consistency, as we prove in this paper, may provide a
first step in this direction.
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