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Abstrat

If nonontextuality is de�ned as the robustness of a system's response to a mea-

surement against other simultaneous measurements, then the Kohen-Speker ar-

guments do not provide an algebrai proof for quantum ontextuality. Namely, for

the argument to be e�etive, (i) eah operator must be uniquely assoiated with a

measurement and (ii) ommuting operators must represent simultaneous measure-

ments. However, in all Kohen-Speker arguments disussed in the literature either

(i) or (ii) is not met. Arguments meeting (i) ontain at least one subset of mutually

ommuting operators whih do not represent simultaneous measurements and hene

fail to physially justify the funtional omposition priniple. Arguments meeting

(ii) assoiate some operators with more than one measurement and hene need to

invoke an extra assumption di�erent from nonontextuality.

Keywords: ommutativity, omeasurability, ontextuality, Kohen-Speker argu-

ment

1 Introdution: the main argument in brief

The aim of this paper is to hallenge the view that Kohen-Speker (KS) arguments

provide an algebrai proof for quantum ontextuality if nonontextuality is interpreted

as the robustness of a system's response to a measurement against other simultaneous

measurements.

As a start, it is worth diserning KS arguments from KS theorems. KS theorems

are simply mathematial theorems in form of a oloring problem, while KS arguments

are physial arguments devised to prove that quantum mehanis (QM) is ontextual.

The KS theorems start from a family of self-adjoint operators arranged on a hypergraph
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suh that the subsets of mutually ommuting operators de�ne the hyperedges
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A generalization of a graph where an edge an onnet any number of verties.
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hypergraph.

3

Two examples for suh a hypergraph are the GHZ graph (on the left) and

the Peres-Mermin graph (on the right). Here eah hyperedge is depited by an unbroken

line onneting 4 ollinear verties on the GHZ graph and 3 ollinear verties on the Peres-

Mermin graph. Next, one introdues value assignments on the graph, that is, funtions

assigning to eah vertex one of the eigenvalues of the operators represented by the vertex

in every quantum state. Sine the operators are typially projetions or ontrations,

the assignments generally yield the numbers 0, +1 and −1. The value assignments are,

however, onstrained by the so-alled funtional omposition priniple

4

(FUNC) requiring

that if the operators on a given hyperedge stand in a ertain funtional relation to one

another, then the values assigned to the operators should also stand in the same funtional

relation in every quantum state.

5

In the ase of the GHZ graph, for example, the produt

of the operators on every hyperedge is the unit operator +1̂, exept for the horizontal

hyperedge, where the produt is −1̂. In the ase of the Peres-Mermin graph the produt

of the operators on every hyperedge is +1̂, exept for the third vertial hyperedge, where

it is −1̂. Sine the eigenvalues of eah operator on both graphs is ±1, FUNC allows

for only suh value assignments for whih the produt of the assigned numbers on every

hyperedge equals the produt of the operators (that is, +1 or −1) on that hyperedge. It

is easy to show that there is no suh value assignment on the above two graphs. More

generally, KS theorems provide omplex hypergraphs of operators suh that there is no

value assignment on the graph respeting FUNC. Some KS theorems work only in spei�

quantum states, others aross all states. Thus, one an di�erentiate state-dependent and

state-independent (algebrai) KS theorems.

To proeed from a KS theorem to a KS argument, one needs to provide a physial

interpretation for the KS graph. To this aim, one �rst assumes that QM admits an

ontologial (hidden variable) model. In other words, one assumes that the quantum states

are simply distributions of underlying (dispersion-free) onti states. Next, one assoiates

the operators with observables and measurements. Measurements are �lists of instrutions

to be implemented in the laboratory� (Spekkens, 2005, p. 2) and observables are physial
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See e.g. (Abramsky and Brandenburger, 2011), (Cabello et al. 2014), and (Aín et al., 2015).
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See (Redhead, 1989, p. 121) and (Held, 2018, Se. 4).
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Alternatively: the values assigned to mutually ommuting operators are the eigenvalues orresponding

to one of the ommon eigenstates of these operators.
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magnitudes whih haraterize a given quantum system. In a value-de�nite (deterministi)

ontologial model eah observable has a well-de�ned value in every onti state. Eah

observable is also assoiated with a measurement (proedure) suh that the outome of the

measurement reveals (faithfully) the value of the observable. Furthermore, eah observable

A and the orresponding measurement a is represented by a self-adjoint operator â suh

that the values of the observable and the outomes of the measurement are just the

eigenvalues of the operator. The exat nature of these assoiations will be examined

below. Finally, one interprets the quantum probability of an operator's spetral projetion

assoiated with a given eigenvalue as the probability of the orresponding observables

having the value assoiated with that eigenvalue, and also as the onditional probability

of the outome assoiated with that value provided the orresponding measurement is

performed.

On this interpretation eah value assignment on a KS graph represents a possible

distribution of values in a given onti state whih the observables assoiated with the

operators on the graph an take and whih the orresponding measurements reveal. The

onstraint FUNC is justi�ed as follows. Mutually ommuting operators on a hyperedge

have ommon eigenstates. If one prepares the system in one of these eigenstates, then the

funtional relationship between the operators will be realized as the funtional relationship

between the outomes of the orresponding measurements, and also between the values of

the assoiated observables. Note that to justify FUNC in an eigenstate, the measurements

need not be omeasurable (simultaneously measurable). But what justi�es FUNC in a

general quantum state? Here one an ome up with three answers.

First, one an say that any onti state featuring in the support of a general quantum

state must also show up in the support of at least one eigenstate.

6

This answer, however,

is not very appealing. After all, why should every quantum state be omposed of the

same onti states as the eigenstates are?

Seond, one an say that the mutually ommuting operators {âi} of the graph rep-

resent simultaneous measurements {ai} and on performing these joint measurements one

an diretly observe the funtional relationship in question between the joint measurement

outomes and hene (assuming faithful measurement) between the values of the observ-

ables. Note that simultaneous measurements are understood here in the very physial

sense, namely as measurements whih an jointly be performed at the same time on the

same system. Also note that, although simultaneous measurements get represented in

QM by ommuting operators, the onverse is not true: from the mathematial fat that

ertain measurements are represented by ommuting operators it does not follow that

these measurements an be simultaneously performed. We ome bak to this important

point below.

Third, one an refer to the mathematial fat that for every set {âi} of mutually

ommuting operators sitting on a hyperedge there is an operator b̂ and funtions {fi}
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Maroney and Timpson (2014) all it �operational eigenstate support marorealism.�
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suh that âi = fi(b̂). Thus, one an say that there is only one single observable B with a

orresponding measurement b and the set {âi} of mutually ommuting operators simply

represents the di�erent funtions {fi(B)} of this very observable. Consequently, FUNC

holds trivially: it simply expresses the funtional relationship among the di�erent fun-

tions of the outomes of b. Note that in this ase the measurements {fi(b)} assoiated with
{âi} an be alled �simultaneously measurable� only metaphorially sine one performs

only one single measurement, namely b, and applies the funtions to the outome.

Now we show that these latter two justi�ations of FUNC lead to two di�erent re-

alizations of a KS graph. To redue metaphysis and to get loser to the experimental

testability, we eliminate the onept of observable from the disussion and adopt an op-

erational approah relying purely on operators and measurements. We all an assoiation

of the operators of a KS graph with measurements a realization of the graph. A real-

ization is unique if eah operator on the graph is assoiated with only one measurement

and non-unique if some operators are assoiated with more than one measurement. A

measurement assoiated with an operator is said to be realizing the operator. Now, in

the third justi�ations of FUNC above a set of operators {âi} sitting on a hyperedge is

realized by one single measurement b sine the funtions fi applied to the measurement b

are represented by âi. Call a realization hyperedge-based if there is at least one hyperedge

on the graph whih is realized by (di�erent funtions of) one single measurement.

In a unique realization of the Peres-Mermin graph, for example, one has 9 di�erent

measurements assoiated with the 9 verties (operators) of the graph. In a (maximally)

hyperedge-based realization of the same graph one has only 6 measurements assoiated

with the 6 hyperedges (three rows or and three olumns) of the graph. Can this latter

realization be unique? No, it annot, as the following simple lemma shows:

Lemma. A hyperedge-based realization in whih all sets of mutually ommuting operators

represent simultaneous measurements annot be unique.

Proof. Let â1 be an operator sitting at the intersetion of two hyperedges suh that

all operators (among them â1) on the one hyperedge are realized by a measurement

b. Suppose a ontrario that â1 is realized only by b. Now, sine mutually ommuting

operators represent simultaneous measurements, the measurements realizing the operators

on the other hyperedge must be omeasurable with at least one measurement realizing â1.

But there is only one measurement realizing â1, namely b. Therefore, the measurements

realizing the operators on the other hyperedge are omeasurable with b. But then all

operators on the two hyperedges either represent funtions of b or measurements whih

are omeasurable with b. Assuming that simultaneous measurements get represented

by ommuting operators, this means that all operators on both hyperedges ommute.

Contradition. Consequently, â1 annot be realized only by b.

That is, a realization of a KS graph where all sets of mutually ommuting operators are

realized by simultaneous measurements but some suh sets by one single measurement
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annot be unique. In other words, only the above seond justi�ation of FUNC an lead

to a unique realization, the third justi�ation always leads to a non-unique realization.

To avoid the no-go result of the KS argument, unique and non-unique realizations

follow di�erent strategies. On a unique realization one bloks the argument by assuming

that at least one measurement (assoiated with an operator sitting at the intersetion of

two hyperedges) an have di�erent outomes in an onti state depending on whether it

is simultaneously performed with measurements represented by operators on the one or

on the other hyperedge. On a non-unique realization, however, the argument an also be

bloked by assuming that di�erent measurements represented by the same operator (at

the intersetion of two hyperedges) an have di�erent outomes in a given onti state.

These two strategies for avoiding the no-go result represent two di�erent interpreta-

tions of (non)ontextuality. On the �rst interpretation, nonontextuality is the indepen-

dene of the outome of a measurement in every onti state from whih other measure-

ments it is simultaneously measured with. On the seond interpretation nonontextuality

is a perfet orrelation in every onti state between the outomes of two di�erent measure-

ments represented by the same operator.

7

Note that the two interpretations are di�erent

and logially independent.

Historially, the �rst interpretation of nonontextuality goes bak to Bell, the seond

interpretation to Van Fraassen. Bell interprets nonontextuality as: the �measurement of

an observable must yield the same value independently of what other measurements may

be made simultaneously� (Bell, 1966/2004, p. 9). Van Fraassen's ontextuality, however,

is based on the insight that �[t℄wo observables [a and b℄ are statistially equivalent if they

have the same probability distribution . . . In that ase they are represented in physis by

the same Hermitean operator. . . . But that does not mean that a = b� (Van Fraassen,

1979, p. 158). In other words, two observables an be represented by the same self-adjoint

operator without being the same. But then, one is not fored to assign the same value to

them. Redhead (1989, p. 135) alls this fat ontologial ontextuality.

Many authors working in the operational approah (Spekkens, 2005; Hermens, 2011;

Leifer, 2014; et.) follow this seond interpretation. Spekkens, for example, writes: �A

nonontextual ontologial model of an operational theory is one wherein if two experi-

mental proedures are operationally equivalent [that is, they are represented by the same

self-adjoint operator℄, then they have equivalent representations in the ontologial model.�

(Spekkens, 2005, p. 1) There are also experiments devised to test nonontextuality in this

seond sense (Mazurek, 2016). The general idea behind this understanding of nonontex-

tuality, one again, is that if two measurements�even if they are not simultaneous�are

represented by the same self-adjoint operator (whih, as Van Fraassen rightly says, em-

pirially just means that the outome statistis of the two measurement are the same),

then it is rational to assume that in every onti state the outomes (or more generally,

7

Both de�nitions of nonontextuality an be generalized for probabilisti ontologial models by repla-

ing �outome� by �probability distribution of the outomes.�
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the probability distributions of the outomes) of the two measurements are also the same.

I don't doubt that this is a reasonable requirement on an ontologial model.

8

I think,

however, that this requirement is more losely related to the speial way in whih QM

is representing the onditional probabilities and muh less to the very onept of ontex-

tuality. If outomes of di�erent measurements (de�ned via di�erent �lists of laboratory

instrutions�) are represented by the same projetion, as happens in QM, then there might

indeed seem to be a need for the �ontext� to dismantle what was put together by the rep-

resentation. But this ontextuality is simply the onsequene of a speial representation

whih does not disriminate mathematially between that whih is di�erent physially,

namely the outomes of di�erent measurements. Had this di�erene been respeted by

the representation, ontologial ontextuality would not arise.

If one relies, however, on the everyday usage of the term, then �ontext� refers simply

to the irumstanes in whih a ertain event, observation or measurement ours. These

irumstanes are not onstitutive in the de�nition of the very event or measurement, but

an signi�antly in�uene the ourrene of the event or the result of the measurement.

The important aspet of these irumstanes, however, is that they are simultaneously

present with the event or measurement. A possible ontext for a measurement in physis

is another measurement whih is performed simultaneously with the one in question.

(A non-simultaneous measurement annot provide suh a ontext sine it lives in another

possible world.) In this sense nonontextuality refers to a kind of robustness of the de�nite

response to a measurement on a given system, with respet to simultaneous measurements

that are also performed on the system. I will refer to this kind of nonontextuality as

simultaneous nonontextuality. If we understand nonontextuality in this way, we just

arrive at the above �rst interpretation of nonontextuality.

I have no objetion against using nonontextuality in the seond sense as Spekkens

and many others use it. However, in this paper I will use nonontextuality exlusively in

the �rst sense (that is, as simultaneous nonontextuality) and refer to the seond one as

Spekkens' ondition. My aim is to explore whether the KS arguments an prove that QM is

ontextual in the �rst sense. The hallenge is then to onstrut (i) a unique realization for

a KS graph, that is, to assoiate eah operator of the graph with a di�erent measurement

suh that (ii) mutually ommuting operators represent simultaneous measurements. We

stress that points (i) and (ii) are both important. Mutually ommuting operators must

represent simultaneous measurements, otherwise FUNC, on whih the whole KS theorem

is based, will not be physially justi�ed. And the realization must be unique sine non-

unique realizations realizing ertain operators by more than one measurement need to

invoke nonontextuality in the seond sense that is, Spekkens' ondition. By abandoning

Spekkens' ondition (that is, by allowing the system to respond di�erently to di�erent

measurements represented by the same operator) one an always blok the KS argument.

In short, simultaneous measurability and unique realization are both sine qua non in

8

However, in Setion 13, I show a simple lassial ontologial models in whih this ondition is violated.
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proving quantum ontextuality.

9

In the paper I will proeed as follows. First, I introdue the framework of operational

theories (Set. 2) and ontologial (hidden variable) models (Set. 3); and de�ne (simul-

taneous) nonontextuality (Set. 4). Then, I aommodate QM in this framework (Set.

5); pik a simple example, the Peres-Mermin square (Set. 6); larify what operational

theories would realize it (Set. 7); and show that the standard spin measurement real-

ization does not do the job (Set. 8). Next, I ategorize KS argument into three types

(Set. 9), investigate the GHZ argument as an argument of type II (Set. 10); show

that arguments of type III an be e�etive only if they swith to non-unique realization

(Set. 11) and if they assume Spekkens' ondition (Set. 12). Using a simple toy model,

I ompare Spekkens' ondition and nonontextuality (Set. 13). Finally, I ontrast the

KS arguments with the Bell-type arguments (Set. 14).

2 Operational theories

An operational theory is a physial theory speifying the probability of the outomes of

some measurements performed on a physial system prepared previously in ertain states.

Let s, t, ... ∈ S be the possible states or preparations of the system under investigation. Let

a, b, ... ∈ M b
be the basi measurements whih an be performed on the system yielding

the outomes Ai, Bj , ... (i ∈ I, j ∈ J, ...) respetively. Suppose that the measurements

are repeatable and we perform them many times and obtain stable long-run relative

frequenies for the outomes in eah state:

#(Ai ∧ a ∧ s)

#(a ∧ s)
,

#(Bj ∧ b ∧ r)

#(b ∧ r)
, . . .

These relative frequenies allow us to introdue the onditional probabilities of obtain-

ing ertain outomes given that the system has been prepared in ertain states and the

appropriate measurements have been performed:

p(Ai|a ∧ s) , p(Bj |b ∧ r) , . . .

We all a state s ∈ S an eigenstate of the measurement a if

p(Ai|a ∧ s) ∈ {0, 1} for all i ∈ I (1)

If two measurements, say a and b, an be jointly or simultaneously performed, then

the joint frequenies

#(Ai ∧ Bj ∧ a ∧ b ∧ s)

#(a ∧ b ∧ s)

9

Throughout the paper I will use the term �quantum ontextuality� as the non-existene of a nonon-

textual value-de�nite ontologial model for QM.
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are also well-de�ned whih allows us to introdue the joint onditional probabilities:

p(Ai ∧ Bj |a ∧ b ∧ s)

Jointly or simultaneously performable measurements are also alled omeasurable.

Whether two measurements are omeasurable is a physial question. One an measure

the width and the length of a table at the same time. But one annot jointly hek�using

Arthur Fine's example�whether a given piee of wood is ombustible and whether it an

�oat on water. The two measurements annot be simultaneously performed; you annot

burn the piee of wood while in water. Similarly, you are not going to burn the piee of

wood along with throwing it in water�unless you want to test whether the ash �oats.

Let M denote the set of all measurements (basi and joint) physially performable on

a system and let the variables x, y range over the measurements in M . The outomes of x

and y are denoted by Xk
and Y l

, (k ∈ Kx, l ∈ Ly), respetively, and the set of outomes

of all measurements is denoted by O = ∪x{X
k}. Similarly, let the variable r range over

the preparations s, t, ... ∈ S of the system. An operational theory is then given by a set

of onditional probabilities of the outomes for the various basi and joint measurements

in the various preparations:

p(Xk|x ∧ r) for all k ∈ Kx, x ∈ M and r ∈ S (2)

whih add up to 1 if we sum up for k.

Measurements whih are not jointly measurable are not to be on�ated with disturbing

measurements. Consider the following example. In the army one performs two tests:

shooting test (a) and tightrope walking (b). The two tests are jointly measurable; soldiers

an well walk on a thin rope and shoot in the meanwhile. However, their performane

in shooting is heavily in�uened by whether they are walking on a rope or not while

shooting. Thus, two simultaneous measurements a and b are alled non-disturbing if

p(Ai|a ∧ b ∧ r) = p(Ai|a ∧ r) for all i ∈ I and r ∈ S (3)

p(Bj |a ∧ b ∧ r) = p(Bj |b ∧ r) for all j ∈ J and r ∈ S (4)

For spaelike separated measurements no-disturbane is equivalent to no-signaling.

A non-disturbing operational theory an be haraterized in the following ompat

way. First note that there is a natural partial ordering on the measurements of an op-

erational theory whih expresses �how joint� the measurements are. a ∧ b is �more joint�

than a or b. Call the set of basi measurements {a, b, ...} the basis of a measurement x,

if x = a ∧ b ∧ .... Now, for two measurements x, y ∈ M let x > y if the basis of x is

ontained in or equal to the basis of y. Using this partial ordering, an operational theory

is non-disturbing if:

p(Xk|x ∧ r) = p(Xk|y ∧ r) for all k ∈ Kx, r ∈ S and x, y ∈ M suh that x > y (5)

8



Denote by Mm
the set of maximally joint measurements, that is, the set of measure-

ments x for whih there is no other measurement y suh that x > y. For a non-disturbing

operational theory it is enough to speify the onditional probabilities (2) for all x ∈ Mm
;

all other onditional probabilities will then be set by (5).

3 Ontologial models

The role of an ontologial model

10

(hidden variable model) is to aount for the onditional

probabilities of an operational theory in terms of underlying realisti entities alled onti

states (hidden variables, elements of reality, beables). An ontologial model de�nes the

preparations of the system in terms of distributions over the onti states and spei�es the

response of the system to the di�erent measurements in the di�erent onti states in terms

of the so-alled response funtions. The ontologial model is suessful if the onditional

probabilities of the operational theory an be reovered in terms of these distributions

and response funtions.

Mathematially, the provision of an ontologial model starts with the spei�ation the

set Λ of onti states and a variable λ running over Λ. To make things simple we assume

that Λ is ountable.

11

Next, we assoiate with eah preparation a probability distribution

over the onti states:

p(λ|r) for all r ∈ S (6)

and to eah measurement and onti state a set of response funtions that is, a set of

onditional probabilities

p(Xk|x ∧ λ) for all k ∈ Kx, x ∈ M and λ ∈ Λ (7)

again with the obvious normalization.

One an also impose two natural sreening-o� onditions expressing the independene

of the preparations, measurements and onti states. The �rst sreening-o� ondition,

alled no-onspiray, requires that the probability distributions do not depend ausally,

and hene probabilistially, on the measurements performed on the system:

p(λ|r) = p(λ|r ∧ x) for all x ∈ M and r ∈ S (8)

The seond sreening-o� ondition, alled λ-su�ieny, requires that the response fun-

tions do not depend on the preparations in whih the onti states are featuring:

p(Xk|x ∧ λ) = p(Xk|x ∧ λ ∧ r) for all k ∈ Kx, x ∈ M, λ ∈ Λ and r ∈ S (9)

10

Cf. Spekkens (2005).

11

But nothing hinges on the ardinality of Λ.
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By means of (8)-(9) and using the theorem of total probability one obtains:

p(Xk|x ∧ r) =
∑

λ

p(Xk|x ∧ λ ∧ r) p(λ|r ∧ x)

=
∑

λ

p(Xk|x ∧ λ) p(λ|r) for all k ∈ Kx, x ∈ M and r ∈ S (10)

That is, one reovers the operational theory from the ontologial model in terms of the

probability distributions and response funtions.

An onti state λ with respet to a measurement x is alled value-de�nite if

p(Xk|x ∧ λ) ∈ {0, 1} for all k ∈ Kx (11)

otherwise it is alled probabilisti. Reall that one and same λ an be value-de�nite for

the one measurement and probabilisti for the other. An ontologial model is alled

value-de�nite if (11) holds for all x ∈ Mm
; otherwise it is alled probabilisti.

4 Nonontextuality

Ontologial models, both value-de�nite and probabilisti, trivially exist for an operational

theory if no further onstraints are put on them. But now require that the ontologial

model is nonontextual.

An ontologial model is (simultaneous) nonontextual if every onti state determines the

probability of the outomes of every measurement independently of what other measure-

ments are simultaneously performed; otherwise is ontextual.

(Simultaneous) nonontextuality an be formally expressed as follows:

p(Xk|x ∧ λ) = p(Xk|y ∧ λ) for all k ∈ Kx, λ ∈ Λ and x, y ∈ M suh that x > y(12)

In other words, eah onti state uniquely determines the probability of all outomes of a

given measurement irrespetive of what other measurements are o-measured. A spei�

onsequene of (12) is that the onditional probabilities of all basi measurements will be

�xed irrespetive of what other measurements they are o-measured with.

Observe, that nonontextuality

12

(12) is almost the same requirement as no-disturbane

(5), exept that the latter is required for the preparations while the former is required

for the onti states. Consequently, nonontextuality provides a neat explanation for why

an operational theory is non-disturbing: if an ontologial model for an operational theory

satis�es nonontextuality (12) (and also no-onspiray (8) and λ-su�ieny (9)), then the

12

From now on, I drop the quali�er �simultaneous� but the term �nonontextuality� will ontinue to

mean �simultaneous nonontextuality� as de�ned in (12).
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operational theory will satisfy no-disturbane (5). Hene, the assumption of nonontex-

tuality is a kind of inferene to the best explanation for the non-disturbing harater of

an operational theory.

Some notes are in plae here. (i) Nonontextuality (12) is a generalization of Shimony's

(1986) parameter independene for situations when the simultaneous measurements are

not neessarily spaelike separated.

(ii) If a value-de�nite ontologial model is nonontextual, then (11) will hold for all

x ∈ M (and not just for x ∈ Mm
).

(iii) Nonontextuality of an ontologial model does not generally imply fatorization:

p(Xk ∧ Y l|x ∧ y ∧ λ) = p(Xk|x ∧ λ) p(Y l|y ∧ λ) for all k ∈ Kx, l ∈ Ly, λ ∈ Λ

and x, y, x ∧ y ∈ M (13)

But it does if the ontologial model is value-de�nite.

(iv) Nonontextuality as de�ned in (12) resembles to the onept of nonontextuality

of Simon et al. (2001) but di�ers from that of Spekkens (2005) and other operationalists.

Below I will refer to this latter onept as �Spekkens' ondition.�

5 Quantum mehanial representation

On the minimal interpretation QM is an operational theory whih provides onditional

probabilities for the outomes of di�erent measurements in di�erent states. Thus, the

empirial ontent of QM ould be expressed simply by listing the various onditional

probabilities. However, in the standard formalism these onditional probabilities get

represented in a linear algebrai fashion. The physial system is assoiated with a Hilbert

spae; eah state r ∈ S is represented by a density operator ρ̂r; eah measurement x ∈ M

by a self-adjoint operator x̂; and the outomeXk
of x by the orthogonal spetral projetion

P̂

k

x of x̂ with eigenvalue Xk
. The representation is onneted to experiene by the Born

rule:

Tr(ρ̂rP̂
k

x) = p(Xk|x ∧ r) for all k ∈ Kx, x ∈ M and r ∈ S (14)

where Tr is the trae funtion.

Now, if a and b are omeasurable, then a ∧ b gets represented in QM by ommuting

operators â and b̂. But if â and b̂ are ommuting, then a and b will turn out to be

non-disturbing:

p(Ai|a ∧ b ∧ r) =
∑

j

p(Ai ∧Bj |a ∧ b ∧ r) =

∑

j

Tr(ρ̂rP̂
i

aP̂
j

b) = Tr(ρ̂rP̂
i

a) = p(Ai|a ∧ r) for all i ∈ I and r ∈ S

11



and similarly for p(Bj|a ∧ b ∧ r). Thus, the quantum mehanial representation of joint

measurements implies that QM annot represent omeasurable but disturbing measure-

ments. In other words, only non-disturbing operational theories an have a quantum

mehanial representation.

Being an operational theory, one an searh for an ontologial model for QM. The

KS arguments are intending to rule out suh an ontologial model if it is both value-

de�nite and nonontextual.

13

In the following setions I pik a speial KS theorem, the

Peres-Mermin square (Peres, 1990; Mermin, 1992) and investigate whether it an be

given a unique realization, that is, an operational theory omposed of 9 simultaneous

measurements whih does not admit a value-de�nite, nonontextual ontologial model.

6 An example: the Peres-Mermin square

Consider the following 3×3 matrix of self-adjoint operators:

â ≡ σ̂3 ⊗ 1̂ b̂ ≡ 1̂⊗ σ̂3 ĉ ≡ σ̂3 ⊗ σ̂3

d̂ ≡ 1̂⊗ σ̂1 ê ≡ σ̂1 ⊗ 1̂ f̂ ≡ σ̂1 ⊗ σ̂1

ĝ ≡ σ̂3 ⊗ σ̂1 ĥ ≡ σ̂1 ⊗ σ̂3 î ≡ σ̂2 ⊗ σ̂2

where σ̂1, σ̂2 and σ̂3 are the Pauli operators and 1̂ is the unit operator on the two

dimensional omplex Hilbert spae. The operators in the matrix are arranged in suh

a way that two operators are ommuting if and only if they are in the same row or in

the same olumn. Eah operator in the matrix has two eigenvalues, ±1. Denote the

spetral projetions of the operators â, b̂, ĉ, ... assoiated with the eigenvalues ±1 by

P̂

±

a , P̂
±

b , P̂
±

c , ..., respetively. Let the variables x̂, ŷ, and ẑ range over the operators of

the Peres-Mermin square. Denote the spetral projetions of x̂, ŷ, and ẑ by P̂

j

x, P̂
k

y , and

P̂

l

z (j, k, l = ±1), respetively. The set of states S is represented by the set of density

operators on the two dimensional omplex Hilbert spae (whih also inlude the ommon

eigenstates for eah subset of mutually ommuting operators).

The quantum probabilities for the spetral projetions of the three vertial and three

horizontal ommuting triples of operators are given by the trae formula:

Tr(ρ̂rP̂
±

x P̂
±

y P̂
±

z ) for all ρr density operators (15)

Now, it turns out that these quantum probabilities are non-zero only for ertain ombi-

nations of spetral projetions for a given ommuting triple (irrespetive of the quantum

13

The restrition to value-de�niteness is dropped in ertain arguments (Mazurek et al. 2016), but here

nonontextuality is de�ned as measurement nonontextuality á la Spekkens (2005) and not as (12).
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state). More spei�ally, for the third vertial triple ({ĉ, f̂ , î}) the quantum probabili-

ties are non-zero only for those ombinations of projetions for whih the produt of the

assoiated eigenvalues is −1. For the other �ve triples this produt must be +1. That is,

Tr(ρ̂rP̂
j

xP̂
k

yP̂
l

z) 6= 0 only if

{

j · k · l = −1 if {x̂, ŷ, ẑ} = {ĉ, f̂ , î}
j · k · l = +1 otherwise

(16)

Note that these admissible ombinations of eigenvalues are also assoiated with the four

ommon eigenstates of the triplet in question.

Now, these admissible ombinations of eigenvalues provide a onstraint on the value

assignments that is, on the funtions sending eah of the nine operators of the Peres-

Mermin square to one of their eigenvalues, that is, to ±1. The onstraint is that the

produt of the numbers in eah row and olumn should be +1, exept for the third

olumn where it should be −1. It is easy to see that no suh value assignment exists.

But does this no-go result prove that QM does not admit a nonontextual value-

de�nite ontologial model? Not until the Peres-Mermin square is given a unique physial

realization.

7 An operational theory realizing the Peres-Mermin

square

Consider an operational theory with 9 basi measurements:

a b c

d e f

g h i

The 3×3matrix in whih the measurements are arranged is to express now omeasurability

relations: measurements are simultaneously measurable if and only if they are in the same

row or in the same olumn.

Eah measurement an have two outomes, A±, B±, C±, ... = ±1. Let the variables

x, y and z range over the basi measurements M b
. Denote the outomes of x, y and z

by Xj, Y k
and Z l (j, k, l = ±1), respetively. Let the onditional probability of the 6

di�erent maximally joint measurements be:

p(X± ∧ Y ± ∧ Z± | x ∧ y ∧ z ∧ r) for all r ∈ S (17)

Suppose furthermore that the ondition probabilities of all other non-maximally joint

measurements an be obtained from (17) by marginalization. Thus, (17) haraterizes a

non-disturbing operational theory.

13



Now, suppose that the operational theory (17) is a physial realization of the Peres-

Mermin square in the sense that the quantum probabilities (15) in the Peres-Mermin

square represent just the onditional probabilities (17) via the Born rule (14). That is,

Tr(ρ̂rP̂
j

xP̂
k

yP̂
l

z) = p(Xj ∧ Y k ∧ Z l|x ∧ y ∧ z ∧ r) for all r ∈ S (18)

Note that (18) is well-de�ned sine the operators on the left hand side are mutually

ommuting if and only if the represented measurements on the right hand side are omea-

surable. Also note that the operational theory (17) is a unique realization of the Peres-

Mermin square, sine every operator is assoiated with a di�erent measurement. As we

saw in the Introdution, only unique realizations an deide on the status of nonontex-

tuality in QM. (In Setion 11 we will see what non-unique realizations an do.)

From (16) and (18) it follows that the support of the probability distributions over

the outomes that is, the set of possible outomes for eah maximally joint measurement

x ∧ y ∧ z and eah preparation r ∈ S is the following:

p(Xj ∧ Y k ∧ Z l | x ∧ y ∧ z ∧ r) 6= 0 only if

{

j · k · l = −1 if {x, y, z} = {c, f, i}
j · k · l = +1 otherwise

(19)

that is, the onditional probability is non-zero only for suh joint outomes whih ontain

an odd number of +1s and an even number of −1s in eah row and olumn, exept for

the last olumn where the number of +1s is even and the number of −1s is odd.
Does the operational theory (17) have a nonontextual value-de�nite ontologial model?

Assume (ontrary to fat) that there is suh a model with response funtions:

14

p(X± ∧ Y ± ∧ Z± | x ∧ y ∧ z ∧ λ) for all λ ∈ Λ (20)

Being nonontextual and value-de�nite, the response funtions are fatorizing:

p(X± ∧ Y ± ∧ Z± | x ∧ y ∧ z ∧ λ) = p(X± | x ∧ λ) p(Y ± | y ∧ λ) p(Z± | z ∧ λ) (21)

for all λ ∈ Λ. Thus, the ontologial model an be haraterized by the extremal onditional

probabilities:

p(X± | x ∧ λ) ∈ {0, 1} for all x ∈ M b
and λ ∈ Λ (22)

However, the support (19) of the operational theory restrits the possible extremal

onditional probabilities. Namely, for any three simultaneous measurements x, y and z

in M b
and λ ∈ Λ one requires that

p(Xj | x ∧ λ) p(Y k | y ∧ λ) p(Z l | z ∧ λ) = 1 only if

{

j · k · l = −1 if {x, y, z} = {c, f, i}
j · k · l = +1 otherwise

(23)

14

Note that for this argument we don't need the probability distributions p(λ|r).
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otherwise there ould be some onti states whih, if prepared (that is, p(λ|r) 6= 0 for some

r ∈ S), would render at least one onditional probability in (17) non-zero outside the

support (19).

However, it is easy to see that there is no suh a set of onditional probabilities (22)

whih satis�es (23). This is due to the impossibility to �ll in a 3×3 matrix with ±1s suh
that the produt of the numbers in eah row and olumn is +1, exept for the last olumn

where it is −1. Consequently, the operational theory (17) does not have a nonontextual

value-de�nite ontologial model.

Let me brie�y re�et on the question of experimental testability of the above operational

theory. Suppose that in a real experiment the support equation (19) annot be sharply

validated but only up to a fration 1 − ǫ of all runs. How small ǫ should be so that

a nonontextual value-de�nite ontologial model for the operational theory an still be

ruled out?

Suppose a ontrario that the ontologial model is nonontextual and it onforms to

the measurement statistis as muh as possible, that is, for all λ ∈ Λ only one of the six

onstraints (23) is violated. (For example some λ assigns +1 to all 9 measurements, vio-

lating thus the onstraint of the third olumn but respeting all the other �ve, et.) Sine

there are six di�erent triply joint measurements (of the three rows and three olumns),

hene�modulo some onspiray�there is a 1/6 probability for any λ that a ertain joint

measurement will pik just that triple for whih (23) is violated. Sine eah suh measure-

ment will ontribute to the violation of (19), (19) will be violated in a fration of 1/6 of

all runs. Consequently, if in a real experiment ǫ is smaller than 1/6, then the experiment

will rule out a nonontextual value-de�nite ontologial model for the operational theory.

This argument is a speial ase of a general argument provided by Simon et al. (2001)

and Larsson (2002) in the defense of the KS arguments against the so-alled �nite pre-

ision loophole argument of Meyer (1999), and Clifton and Kent (2000). As Barrett and

Kent (2004, Setion 4.3) niely point out, the �nite preision loophole is e�etive only if

nonontextuality is de�ned in terms of operators on a Hilbert spae and not operationally

in terms of measurements�in short, only if KS arguments are understood as KS theorems.

Thus, the �nite preision loophole arguments do not nullify the KS arguments based on

the above operational theory.

8 Do spin measurements realize the Peres-Mermin square?

The only question that remains is thus whether there exists an operational theory physi-

ally realizing the Peres-Mermin square?

The �rst idea that omes to mind is the standard spin measurements. Suppose that

the operator σ̂i ⊗ σ̂j (i, j = 1, 2, 3) represents the measurement that �rst we perform

two spin measurements by two Stern-Gerlah magnets on a pair of spin-

1

2
partiles in

diretions

~i and ~j, respetively (

~i,~j ∈ {~x, ~y, ~z}; ~x, ~y and ~z are mutually perpendiular);
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and seond we hek whether the outomes of the measurements on the opposite wings

are the same (+1) or not (−1). Denote this omposite measurement, symbolially, by

(si ∧ sj)
±
. Furthermore, let σ̂i ⊗ 1̂ (i = 1, 2, 3) and 1̂⊗ σ̂j (j = 1, 2, 3) represent that we

perform the spin measurement only on the left and right partile, respetively. Denote

these singular spin measurements, symbolially, by si ∧ 1 and 1 ∧ sj, respetively. Then,

the measurements realizing uniquely the Peres-Mermin square read as follows:

a ≡ s3 ∧ 1 b ≡ 1 ∧ s3 c ≡ (s3 ∧ s3)
±

d ≡ 1 ∧ s1 e ≡ s1 ∧ 1 f ≡ (s1 ∧ s1)
±

g ≡ (s3 ∧ s1)
± h ≡ (s1 ∧ s3)

± i ≡ (s2 ∧ s2)
±

Unfortunately, however, only four of the six ommuting subsets of operators represent

simultaneous measurements: the �rst two rows and the �rst two olumns. Measurements

in the third row and in the third olumn are, however, not omeasurable. For example,

the measurements c, f and i in the third olumn, that is, the spin measurements in

diretions ~z−~z, ~x−~x, and ~y−~y annot be simultaneously performed: one annot turn the

Stern-Gerlah magnets in diretions ~z−~z, ~x−~x, and ~y−~y at the same time. Consequently,

although the left hand side of (18) exists, the right hand side is ill-de�ned for the third

olumn and also for the third row. The quantum probabilities

Tr(ρ̂r P̂
±

c P̂
±

f P̂
±

i )

Tr(ρ̂r P̂
±

g P̂
±

h P̂
±

i )

annot be interpreted as onditional probabilities

p(C± ∧ F± ∧ I± | c ∧ f ∧ i ∧ r)

p(G± ∧H± ∧ I± | g ∧ h ∧ i ∧ r)

and hene neither their support is de�ned. So one does not have the onstraint

p(C i | c ∧ λ) p(F j | f ∧ λ) p(Ik | i ∧ λ) = 1 only if j · k · l = −1 (24)

p(Gi | c ∧ λ) p(Hj | f ∧ λ) p(Ik | i ∧ λ) = 1 only if j · k · l = 1 (25)

for the onti states in the third olumn and third row and hene annot arrive at the

ontradition outlined above. The whole argumentation ollapses. In short, the standard

spin measurement does not realize the Peres-Mermin square in form of an operational

theory (17), and onsequently does not provide a physial realization for a quantum

mehanial senario for whih a nonontextual value-de�nite ontologial model ould be

ruled out.

Obviously, the standard realization of the above operators in terms of spin measure-

ments is not the only possible physial realization. One may well ome up with another
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unique realization on whih the measurements are omeasurable if and only if the rep-

resenting operators are ommuting. However, I know of no suh realization. And the

burden of proof is on those who laim that the above arrangement of operators exlude

a nonontextual value-de�nite ontologial model for QM. An uninterpreted formalism

annot prove anything about the outer world.

15

Perhaps it is worth re�eting for a moment on the relation of ommutativity and omeasur-

ability (see Park and Margenau, 1968). Comeasurability is used in two di�erent meanings

in quantum physis. First, two measurements are alled omeasurable (ompatible, si-

multaneously measurable) if, performing them one after another, the �rst measurement

does not alter the outome statistis of the seond one. Obviously, this usage of the term

�simultaneous� is metaphori and has no bearing on the KS arguments.

The other meaning is the one we use throughout this paper: two measurement are

omeasurable if they an physially be performed at the same time on the same system.

Note, however, that this notion of omeasurability and the notion of ommutativity are

not synonym expressions. From the simple fat that two measurements are represented

by ommuting operators it does not follow that the measurements are simultaneously

performable. Comeasurability is a physial question whih annot be simply read o�

from their representation. Simultaneous measurements get represented in QM by om-

muting operators. But the onverse is not true. Not all ommuting operators represent

simultaneous measurements. Consider the following three pairs of ommuting operators:

[

Ŝ
2

1
, Ŝ

2

2

]

= 0

[σ̂1 ⊗ σ̂3 , σ̂3 ⊗ σ̂1] = 0

[σ̂1 ⊗ σ̂1 ⊗ σ̂1 , σ̂2 ⊗ σ̂2 ⊗ σ̂1] = 0

where Ŝ1, Ŝ2 and σ̂1, σ̂2 are spin-1 and spin-

1

2
operators, respetively. Eah pair is fea-

turing in one or other of a renowned KS argument: the �rst pair in the original Kohen-

Speker (1967) argument; the seond in Peres' (1990) and Mermin's (1992) version and

also in Cabello's (1997) version; and the third in the GHZ (1989) version of the argu-

ment. However, none of them an be interpreted as operators representing simultaneous

spin measurements on pairs or triples of spin-1 or spin-

1

2
partiles. But in the absene

of a unique realization of a KS graph where ommuting operators represent simultaneous

measurements, the no-go results do not prove that QM does not admit a nonontextual

value-de�nite ontologial model.

How then the above KS arguments work?

15

But one might respond: why not to measure c, f and i simultaneously by one single �global� mea-

surement (Rek et al., 1994)? We return to this question in Setion 11.
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9 Three types of Kohen-Speker arguments

To see the problem more learly, it is worth introduing the following ategorization. Sup-

pose we are given a unique realization, that is, a KS graph and an assoiated operational

theory realizing the operators on the graph in a one-to-one manner. Now, one an ast the

KS arguments into three types aording to the number of subsets of mutually ommuting

operators (operators on a hyperedge) whih do not represent simultaneous measurements

in the assoiated operational theory:

Arguments of type I: where all ommuting subsets represent simultaneous measure-

ments;

Arguments of type II: where all but one ommuting subset represent simultaneous

measurements;

Arguments of type III: where there is more than one ommuting subset not repre-

senting simultaneous measurements.

As it will turn out soon, there is a huge di�erene in the e�ay of the three types of

arguments.

It is only KS arguments of type I whih provide a state-independent (algebrai) proof

for quantum ontextuality, sine for these arguments FUNC an be physially justi�ed

by the probability distribution of the joint outomes of simultaneous measurements. Un-

fortunately, I am not aware of any argument of type I. In other words, I am not aware

of any unique realization of any KS graph where all ommuting subsets of operators

would represent simultaneous measurements. Consequently, I am also not aware of any

state-independent argument proving quantum ontextuality.

KS arguments of type II do exist but they provide only a state-dependent proof for

quantum ontextuality. An example for suh an arguments is the GHZ argument. I return

to this argument in the next setion.

Finally, KS arguments of type III abound. The Peres-Mermin square with the stan-

dard spin realization is one example: the number of ommuting subsets not representing

simultaneous measurements is two, the three operators in the third row and the three

operators in the third olumn. Another example for arguments of type III is the original

KS graph with 117 verties with the standard spin realization. Here none of the ommut-

ing subsets represents simultaneous measurements sine the spin measurements for three

orthogonal diretions annot be simultaneously performed. In setion 11, I will argue

that arguments of type III are inonlusive in proving quantum ontextuality. To get a

ontradition, they need to �ip to a non-unique (hyperedge-based) realization and invoke

Spekkens' ondition. However, by abandoning Spekkens' ondition the ontradition an

be avoided.
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10 Kohen-Speker arguments of type II

Let us see �rst the KS arguments of type II. A prototype of suh arguments is the GHZ

argument. The GHZ graph (pentagram) reads as follows:

σ̂2 ⊗ 1̂⊗ 1̂

σ̂1 ⊗ σ̂1 ⊗ σ̂1 σ̂2 ⊗ σ̂2 ⊗ σ̂1 σ̂2 ⊗ σ̂1 ⊗ σ̂2 σ̂1 ⊗ σ̂2 ⊗ σ̂2

1̂⊗ 1̂⊗ σ̂1 1̂⊗ 1̂⊗ σ̂2

σ̂1 ⊗ 1̂⊗ 1̂

1̂⊗ σ̂2 ⊗ 1̂ 1̂⊗ σ̂1 ⊗ 1̂

On the standard spin realization of the GHZ graph, all but one subsets of the mutu-

ally ommuting operators an be interpreted as representing simultaneous measurements.

Measurements represented by ommuting operators on four of the �ve edges of the GHZ

pentagram are omeasurable sine they are performed on three spaelike separated sub-

systems. But the measurements represented by the operators on the �fth, horizontal edge

are not omeasurable.

How does then the KS argument work in the GHZ ase?

The trik to irumvent the problem of non-omeasurability is to prepare the system

in one of the ommon eigenstates of the measurements on the horizontal edge.

16

The

outome for eah measurement on the horizontal edge will then be �xed even if the

measurements are not omeasurable. The produt of the possible outomes of the four

di�erent measurements will turn out to be −1 in eah ommon eigenstate. Now, the

measurements on the other four lines of the GHZ pentagram are omeasurable, and the

produt of their possible joint outomes in all states (among them in the above ommon

eigenstates) will be +1. This means that eah onti state in the support of these ommon

eigenstates needs to assigns ±1 to the individual measurements suh that the produt

of these numbers is +1 in eah line, exept in the horizontal line where it is −1. Suh

value assignment, however, is impossible, whih rules out a nonontextual value-de�nite

ontologial model for the GHZ senario.

More generally, KS arguments of type II where all but one set of ommuting operators

represent simultaneous measurements are all state-dependent arguments. One needs to

prepare the system in one of the ommon eigenstates of the non-omeasurable measure-

ments to �ompensate� the failure of omeasurability of these measurements. By doing

16

See (1) for how an eigenstate for a measurement is de�ned.
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so one obtains the same onstraint on the response funtions (neessary for deriving the

ontradition) as one would obtain if the measurements were omeasurable. But note

that these argument of type II annot be transformed into a state-independent argument.

They work only if the system is prepared in one of the ommon eigenstates of the operators

representing non-omeasurable measurements.

11 Kohen-Speker arguments of type III

Finally, let us turn to the KS arguments of type III that is, to arguments where there is

more than one ommuting subset not representing simultaneous measurements. Here the

strategy outlined in the previous setion does not work. Even if one prepares the system in

a ommon eigenstate of a set of operators representing non-omeasurable measurements,

there remains at least one other set of non-omeasurable measurements for whih the joint

outomes are not known. This bloks the KS argument sine the onstraint on the onti

state oming from this very set of measurements will be missing.

One might however raise the question: Why not simply replae a ommuting subset not

representing simultaneous measurements by one single measurement and apply ertain

funtions on the result? Then the omeasurability problem would be solved.

Well, it is indeed a mathematial fat that for any �nite set {âi} of mutually ommut-

ing operators there exists an operator b̂ and a set of funtions {fi} suh that âi = fi(b̂)
(Halmos, 1958). Note, however, that from this mathematial fat it does not follow that

there also is a physial measurement b represented by the operator b̂. The existene of

suh a measurement is a physial question whih does not automatially follow from the

existene of the operator b̂.

But now suppose that in a KS argument of type III we replae every subset of non-

omeasurable measurements {ai} realizing {âi} by one single measurement b suh that

the funtions {fi(b)} also realize {âi}. Will it turn the argument of type III into an

argument of type I?

No, it will not. Replaing non-omeasurable measurements by funtions of one single

measurement renders the realization hyperedge-based. But then we fae the following

problem: To test nonontextuality, we need to provide a unique realization of the KS graph

and guarantee that all subsets of mutually ommuting operators represent simultaneous

measurements. However, as Lemma in the Introdution shows, suh a realization annot

be hyperedge-based. So we need to give up the uniqueness of the realization, that is,

we need to assoiate at least one operator with more than one measurement. These

measurements will be physially di�erent but will be represented by the same operator.

Operationally this means that they have the same distribution of outomes in every

quantum state. To get the no-go result, however, one needs to assume more: namely

that they have the same distribution of outomes in every onti state, or in other words,

they have the same set of response funtions. This assumption, however, is an extra
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assumption, di�erent from nonontextuality. By abandoned it the KS argument an be

bloked.

To sum up, KS arguments of type III do not prove quantum ontextuality sine FUNC

annot be physially justi�ed for at least one set mutually ommuting operators in the

argument. Replaing non-omeasurable measurements by funtions of one single mea-

surement does not solve the problem either sine either we stik to unique realization

but then some hyperedges will not represent simultaneous measurements; or we swith to

non-unique realization but then we need to use an extra assumption in the argument. To

this assumption we turn in the next setion.

12 Spekkens' ondition

Rob Spekkens (2005) introdued a onstraint on ontologial models and alled it measure-

ment nonontextuality.

17

He took it to be a generalization of the quantum mehanial

nonontextuality for operational theories. I share Spekkens' view that his requirement

plays an important role in the KS arguments but, as explained in the Introdution, I on-

test that it expresses nonontextuality.

18

Hene, I will refer to Spekkens' nonontextuality

simply as Spekkens' ondition:

If the probability of an outome of a measurement is the same as the probability of an

outome of another measurement in every preparation, then the probability of the outomes

for the two measurements should also be the same in all onti states.

Formally, if for some x, y ∈ M , k ∈ Kx, and l ∈ Ly

p(Xk|x ∧ r) = p(Y l|y ∧ r) for all r ∈ S (26)

then

p(Xk|x ∧ λ) = p(Y l|y ∧ λ) for all λ ∈ Λ (27)

Now, Spekkens' ondition gives rise to a line of ounterfatual reasoning. If we measure

x in a ertain run of the experiment and obtain the outome Xk
, then, if the ontologial

model is value-de�nite with respet to x and y, we an onlude based upon Spekkens'

ondition that had we measured y, we would have obtained Y l
. But note that Spekkens'

ondition is not an assumption about possible worlds but a restrition on the ontologial

models for an operational theory.

Spekkens' ondition, similarly to nonontextuality (12), is also a kind of inferene to

the best explanation: if (27) and also no-onspiray (8) and λ-su�ieny (9) hold for an

17

See also (Liang et al., 2011), (Leifer, 2014) and (Krishna et al., 2017).

18

For a ritiism of Spekkens operational de�nition of measurement nonontextuality�based on a

ritiism of operationalism�see (Hermens 2011).
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ontologial model, then we obtain a neat explanation why (26) holds. The explanandum

in the ase of nonontextuality is no-disturbane, in the ase of Spekkens' ondition it is

the statistial math between outomes of di�erent measurements.

Note that Spekkens' ondition (26)-(27) is logially independent from ontextuality

(12). Spekkens' ondition does not rely on simultaneous measurability, while ontextual-

ity does. If there are no simultaneous measurements in an operational theory, then eah

ontologial model will be nonontextual sine (12) is ful�lled vauously. Still, the model

an violate Spekkens' ondition (26)-(27) if there are measurements yielding ertain out-

omes with the same probability in every state and di�ering in their response funtions.

Conversely, if premise (26) is not satis�ed in an operational theory, then Spekkens' on-

dition is ful�lled vauously. But if the theory is disturbing, the ontologial model an

still be ontextual. In a non-disturbing operational theory, however, (26) holds for all x

and y suh that x > y. Consequently, if Spekkens' ondition holds, nonontextuality will

also hold. In short, in a non-disturbing operational theory (like QM) Spekkens' ondition

implies nonontextuality.

It is instrutive to see what an ontologial model whih violates Spekkens' ondition

look like. If (26) holds in an operational theory but (27) does not, then the distributions

of onti states representing the preparations annot be arbitrary. Thus the violation of

Spekkens' ondition puts a onstraint on the possible distributions of onti states: one

annot pik arbitrarily from onti states when preparing the system. Preparations must

be omposed from the underlying onti states aording to a ertain pattern whih is

sensitive to how the onti states respond to ertain measurements. But note that it is not

an a priori truth that any probability distribution of onti states represents a physially

possible preparation. There may well be many physial reasons whih restrit the possible

preparations of a system and Spekkens' ondition is only one among those.

As we saw in the previous setion, Spekkens' ondition plays a ruial role in non-

unique KS arguments. In these arguments ertain operators of the KS graph will be

realized by two di�erent measurements. The two di�erent measurements, however�

being represented by the same operator�will have the same outome statistis. But this

is exatly the anteedent (26) of Spekkens' ondition. The role of Spekkens' ondition is

to ensure the onsequent (27), that is, to ensure that the response funtions of the two

di�erent measurements are perfetly orrelated. By this assumption the no-go result an

be derived. Thus, non-unique KS arguments heavily rely on Spekkens' ondition.

19
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There are exeptions, however. In ertain KS arguments the onstraint (27) is not obtained via

Spekkens' ondition but through some other (often ounterfatual) reasonings. In Lapkiewiz et al.

(2011), for example, an experiment is devised to prove the violation of the Klyahko-Can-Biniio§lu-

Shumovsky inequality (2008). To get the onlusion (�to lose the pentagram�), however, the authors

needed to assume that the response of system on two not simultaneous measurements (A1 and A
′

1
in the

paper) are perfetly orrelated. This is just a onstraint of type (27).
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13 A simple toy model

Before onluding, it is worth re�eting one more on the di�erene between nonontextu-

ality and Spekkens' ondition (the �rst and seond interpretations of nonontextuality, as

we alled them in the Introdution) and illustrating this di�erene on a simple toy model.

Suppose we �ll a box with balls and perform two sorts of basi measurements: we pull

a ball from the box and hek its olor or its size. The possible outomes for the olor

measurement are blak and white; for the size measurement the outomes are big and

small. Repeating the measurement many times we get long-run relative frequenies for

the various measurement outomes. The two measurements are omeasurable, hene also

the probability distribution over the joint outomes an be determined. Suppose further-

more that our operational theory is (i) non-disturbing and (ii) it satis�es the anteedent

of the Spekkens' ondition: for every preparation, that is, for every �lling up the box with

balls, the probability of pulling a blak ball upon olor measurement is the same as the

probability of pulling a big ball upon size measurement.

We would like to onstrut an ontologial model for our operational theory. The

model is nonontextual if, given an onti state, the probability of all four measurement

outomes is independent of whether we produe it by a basi or a joint measurement.

The model satis�es Spekkens' ondition if, given an onti state, the probability of the

outome blak/white upon olor measurement is the same as the probability of the out-

ome big/small upon size measurement.

An ontologial model whih is both nonontextual and also satis�es Spekkens' ondi-

tion is the following: there are just two types of balls in the box: one type is blak and

big, the other type is white and small. Upon measuring the olor of the �rst type of ball

we get invariable the outome blak independently of whether we o-measure the size or

not (and similarly for the other outomes). This model neatly explains the above two

probabilisti fats, (i) and (ii), of the operational theory.

But there are ontologial models in whih one of the two requirements is violated.

An example of a model satisfying nonontextuality but not Spekkens' ondition is the

following: there are now four types of balls in the box: blak and big; blak and small;

white and big; white and small. However, (for some physial reason) we an prepare the

box only in suh a way that there is exatly as many blak and small balls in the box as

there are white and big balls. Consequently, although Spekkens' ondition is violated, we

get as often blak balls upon olor measurement as big balls upon size measurement.

For an ontologial model violating nonontextuality but not Spekkens' ondition we

need to hange our non-disturbing operational theory into a disturbing one.

20

Thus,

suppose that there are again two types of balls in the box: blak and big; white and small.

Performing a basi measurement (olor, size) these onti state invariably provide the

orresponding outome. However, for joint measurements (olor and size) the outomes

20

Sine, as we saw in the previous setion, in non-disturbing operational theories Spekkens' ondition

implies nonontextuality.

23



�ip: for the onti state blak and big, for example, the outome for the joint measurement

will be white and small. The model is ontextual but satis�es Spekkens' ondition: the

probability of getting a blak ball upon olor measurement is the same as the probability of

getting a big ball upon size measurement in eah preparation�both equal to the relative

frequeny of blak and big balls in that preparation.

As the toy models attest, nonontextuality and Spekkens' ondition are di�erent and

logially independent assumptions.

14 Conlusions

In the paper I have argued that a KS argument an rule out a nonontextual value-

de�nite ontologial model for QM in a state-independent way only if the KS graph on

whih the argument is based is (i) given a unique realization suh that (ii) mutually

ommuting operators represent simultaneous measurements. If one abandons (i), then�

sine some operators will be realized by multiple measurements�one needs to assume

Spekkens' ondition. By giving up Spekkens' ondition, however, the no-go result an be

bloked. If one abandons (ii), the onstraint FUNC on the value assignments annot be

physially justi�ed. All in all, if nonontextuality is interpreted as the robustness of a

system's response to a measurement against other simultaneous measurements, then KS

arguments annot provide an algebrai for proof quantum ontextuality.

It is important to note that the main thrust of this negative laim was not to hallenge

the view that QM does not admit a nonontextual value-de�nite ontologial model. It

does not. State-dependent arguments (like the GHZ argument) provide a perfet proof to

this e�et. The aim of the paper was to hallenge the view that KS arguments an prove

this fat in a purely algebrai way based exlusively on measurements and not states (and

in this sense the KS arguments would be stronger than the state-dependent Bell-type

arguments).

But how do we know whether ommuting operators represent simultaneous measure-

ments or not? Well, the formalism of QM does not give us a de�nite answer. One annot

avoid going bak and see what kind of measurements the operators are representing. A

speial way to ensure omeasurability (in a somewhat extended meaning) is to perform

the measurements on two or more subsystems of a physial system. These subsystems are

typially spaelike separated parts of a bigger system. In the ase of spaelike separated

measurements nonontextuality (12) amounts to a loality requirement, alled parameter

independene: measurements performed on a subsystem annot in�uene the response

funtions of another measurement on a spaelike separated other subsystem.

Nonontextuality as parameter independene plays a ruial role in the Bell-type ar-

guments. In these arguments simultaneous measurability is guaranteed by spaelike sepa-

ration. KS arguments, however, are not designed spei�ally against loality but against

nonontextuality in general. Therefore, it would be interesting to see whether there exist
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suh KS arguments in whih simultaneous measurability is not guaranteed by spaelike

separation. Obviously, the most ba�ing form of ontextuality is nonloality. But it

would be instrutive to see whether there are other �softer� versions of ontextuality with

no appeal to loality. To unover suh ontextuality, one should �nd a family of simul-

taneous measurements whih are performed on the same system (and not on spaelike

separated subsystems) and formulate a KS argument based on these measurements. The

omeasurability of these measurements should then be justi�ed by expliitly identifying

experimental proedures whih an be performed on the same system at the same time,

like measuring length and width of a table. Suh omeasurability would then not appeal

to loality but would be justi�ed by the detailed physial desription of the measurement

proesses. Can we ome up with a KS argument where omeasurability is grounded in

suh a way? Does there exist a �genuine� KS argument with no appeal to loality? I don't

know the answer.

A similarly open question onerns the lak of KS arguments of type I, where all

sets of ommuting operators represent simultaneous measurements (whether realized by

spaelike separation or not). Why are there no arguments providing a state-independent

proof for quantum ontextuality? Is there a theoretial reason for their non-existene; or

are they simply not found beause they are not looked hard enough (partly due to the

negligene of the di�erene between ommutativity and omeasurability)? Again, I have

no answer.
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