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Summary. — As part of our program to develop the description of three-body
effects in quantum vacuum phenomena, we study the three-body interaction of two
anisotropically polarizable atoms with a perfect electrically conducting plate, a gen-
eralization of earlier work. Three- and four-scattering effects are important, and
lead to nonmonotonic behavior.

PACS 03.70.+k – Theory of quantized fields.
PACS 11.80.La – Multiple scattering.
PACS 34.35.+a – Interactions of atoms and molecules with surfaces.
PACS 42.50.Lc – Quantum fluctuations, quantum noise, and quantum jumps.

1. – Introduction

Even before the discovery of the Casimir effect [1], Casimir and Polder studied the
retarded dispersion force between two atoms, and between one atom and a perfectly con-
ducting surface [2]. The Casimir-Polder force between an atom and a conducting plate
was, until relatively recently, only observed in one experiment [3], although the temper-
ature dependence of this force has now been confirmed [4]. In contrast, the experimental
observation of the Casimir-Polder force between atoms has remained beyond reach. For
an elementary review of aspects of Casimir-Polder forces see ref. [5].

In this paper we wish to consider three-body Casimir-Polder energies, involving two
polarizable atoms and a perfectly conducting plate. This was considered recently, but
in a somewhat restricted geometry [6]. A scalar analog was also recently examined by
Shajesh and Schaden [7]. (In the nonretarded regime, this was also considered by de
Melo e Souza et al., following earlier work described in ref. [8].) Here we wish to examine
the situation a bit more generally. Our interest is not so much in finding observable
effects, which are probably difficult to detect, but to understand the general features of
three-body interactions; this is a small part of our continuing efforts in this direction.
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Fig. 1. – Two anisotropically polarizable atoms interacting with a perfectly conducting plate.
The atom a, a = 1, 2, has polarizability αa, and is a distance Za above the plate. The distance
between the atoms in the direction parallel to the plate is a. The difference in heights above
the plate is ΔZ = Z1 − Z2.

2. – Two-body energy

For simplicity, we assume we are in the fully retarded regime, that is, the atoms are
sufficiently far from each other or the plate so that we can describe them by their static
electric polarizabilities,

αa = αa(ω = 0), a = 1, 2.(1)

We also neglect magnetic polarizability, and quadrupole and higher multipole moments
of the atoms. We will, however, assume that the atoms are not isotropically polarizable.
In the isotropic case, the two-body interaction energy between the atoms, a distance r
apart, is given by the famous formula (h̄ = c = 1)

E12 = − 23
4π

α1α2

r7
,(2)

but it is considerably more complicated when the atoms are not isotropically polarizable,

E12 = −13Tr(α1 · α2) − 56 (r̂ · α1 · α2 · r̂) + 63 (r̂ · α1 · r̂)(r̂ · α2 · r̂)
8πr7

,(3)

where r = rr̂ is the relative position vector of the two atoms. This formula was apparently
first given by Craig and Power [9]. In contrast, the interaction energy of a polarizable
atom with a perfectly conducting plate a distance Z away is very simple,

ECP = − Tr α

8πZ4
.(4)

(One might recall that the dimension of α is (length)3, and that α is necessarily a
symmetric matrix.)

We now wish to consider what happens when all three bodies are present, the two
atoms and the perfectly conducting plate.

3. – Three-body energy

We wish to consider two polarizable atoms in the neighborhood of a perfectly con-
ducting plate. The geometry is sketched in fig. 1. The two atoms have polarizabilities αa,
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and are located at distances from the plate Za, a = 1, 2. The difference in heights from
the plate is ΔZ = Z1 − Z2, and the horizontal distance (parallel to the plate) between
the two atoms is called a.

To compute the interaction energy, we use the multiple-scattering formalism. For
the case at hand, where only a single scattering with each atom need be considered, the
two-body terms are (this is just the famous TGTG formula in weak coupling [10,11])

Eab =
i

2

∫
dω

2π
Tr T̃aT̃b,(5)

where a, b = 1, 2, 3, and we denote the two atoms as bodies 1 and 2, while the perfectly
conducting plate is body 3. Here the modified scattering operator is

T̃ = TΓ0 = V(1 − Γ0V)−1Γ0.(6)

The free propagator Γ0 is [12]

Γ0(r, r′) = −e−|ζ|R

4πR3

[
1u(|ζ|R) − R̂R̂v(|ζ|R)

]
, R = r − r′,(7)

where ζ = −iω is the imaginary frequency, and

u(x) = 1 + x + x2, v(x) = 3 + 3x + x2.(8)

The scattering matrix for the atom is just the potential,

T1,2 = V1,2 = 4πα1,2δ(r − r1,2),(9)

where ra are the positions of the atoms. The structure in which the scattering matrix
for the plate appears is

Γ0T3Γ0 = Γ3 − Γ0;(10)

Γ3 is the Green’s dyadic for the plate. In fact, with n̂ denoting the normal to the plate,

(Γ3 − Γ0)(r, r′) = −Γ0(r, r′ − 2n̂n̂ · r′) · (1 − 2n̂n̂) ≡ −Γ(r, r′).(11)

This is just the image construction for a perfect electric mirror [13].
Using these constructions, the results in the previous section are easily derived. Our

concern here is with the three-body terms. These are of three, related, types [14], where
the subscripts on the right-hand side refer to the ordering of the scattering between the
bodies,

ΔE3 = E123 + E213 + E1323.(12)

The three-scattering energy is

E123 =
i

2

∫
dω

2π
Tr T̃1T̃2T̃3 =

1
2

∫ ∞

−∞

dζ

2π
TrV1Γ0V2Γ,(13)
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while E213 is obtained by interchanging 1 and 2. The four-scattering contribution is

E1323 =
i

2

∫
dω

2π
Tr T̃1T̃3T̃2T̃3 = −1

2

∫ ∞

−∞

dζ

2π
TrV1ΓV2Γ.(14)

It is very straightforward to work out these contributions in the static approxima-
tion (1), where we ignore the frequency dependence of the polarizability. Let us now
choose the plate to lie in the x-y plane. Because of the operator appearing in Γ, it is
convenient to define βa = (1⊥ − ẑẑ) · αa, 1⊥ = x̂x̂ + ŷŷ. We can write all the energy
contributions, including the two-atom ones, as follows:

E12(r12) = −F (r12, r21;α1,α2),(15a)
E123(r12, r21̄) = F (r12, r21̄;α2,β1),(15b)
E213(r21, r12̄) = F (r21, r12̄;α1,β2),(15c)

E1323(r21̄, r12̄) = −F (r21̄, r12̄;β1,β2).(15d)

Here rab = ra − rb, and the positions of the images of the atoms are denoted by rā.
These relative position vectors satisfy

r21 + r12̄ + r2̄1̄ + r1̄2 = 0,(16a)
(r21 + r12̄) · (r12̄ + r1̄2) = 0.(16b)

The function appearing in the energies is

F (x,y;α,β) =
1

4πx3y3(x + y)
[A(x, y)Tr(α · β) − B(x, y)(ŷ · β · α · ŷ)(17)

−B(y, x)(x̂ · α · β · x̂) + C(x, y)(x̂ · α · ŷ)(ŷ · β · x̂)],

where

A(x, y) =
8

(x + y)4
[
x4 + 5x3y + 14x2y2 + 5xy3 + y4

] x=y−→ 13,(18a)

B(x, y) =
8

(x + y)4
[
3x4 + 15x3y + 26x2y2 + 10xy3 + 2y4

] x=y−→ 28,(18b)

C(x, y) =
48

(x + y)4
[
x4 + 5x3y + 9x2y2 + 5xy3 + y4

] x=y−→ 63.(18c)

4. – Special cases

4.1. Isotropically polarizable atoms, equidistant from the plate. – Let us first consider
isotropic atoms equidistant from the plate, so ΔZ = 0 and Z1 = Z2 = Z. Defining

γ =

√
1 +

4Z2

a2
,(19)

we express the three-body interaction in terms of the two-atom Casimir-Polder energy,

ΔE3 = E123 + E213 + E1323 = g(γ)E12,(20)
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Fig. 2. – The three-body correction to the Casimir-Polder force between two atoms in the
presence of a perfectly conducting plate. Here it is assumed that the atoms are isotropically
polarizable, and are equidistant from the plate. What is plotted is the ratio of the three-body
correction relative to the two-atom energy, plotted as a function of Z/a. The variable γ is
defined in eq. (19).

where in this case E12 is given by eq. (2). Here

g(γ) = − 64(1 + 4γ)
23γ3(1 + γ)4

+
1
γ7

,(21)

where the last term is the four-scattering contribution. This function vanishes as γ → ∞,
that is, at large distances from the plate, and has a maximum negative deviation of about
12%, and has the value on the plate, at Z = 0, of g(1) = 3/23 ≈ 0.13, as shown in fig. 2.
(In the scalar analog considered in ref. [7], the correction on the plate is g(1) = −1, so the
three-body energy cancels the two-atom energy when the atoms touch the plate(1).) Note
that the three-scattering terms, which are always negative, dominate for Z/a > 0.16, but
very close to the plate the four-scattering term, which is always positive, causes the sign
of the correction to reverse. However, close to the plate, these corrections are negligible
compared to the two-body atom-wall energy (4), because

E12

ECP
=

α2

r3

46
3

(
Z

r

)4

� 1,(22)

since typical values of α ∼ (10−8 cm)3, while the separation consistent with our macro-
scopic approximation is not going to be smaller than r ∼ 10−6 cm. We might note that
if the atoms and the plate are all equidistant, Z = a, the three-body effect is small, and
the four-scattering contribution is totally negligible.

4.2. Anisotropically polarizable atoms, equidistant from the plate. – As a second ex-
ample, we show the result considered in ref. [6], when the atoms are at equal heights,

(1) g(γ) for the scalar analog reported in ref. [7] has an error of a factor of 2 in its first term.
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Fig. 3. – The three-body correction to the Casimir-Polder force between two atoms in the
presence of a perfectly conducting plate. Here it is assumed that the atoms are completely
anisotropic, being polarizable only in the direction perpendicular to the plate, and are the same
distance from the plate. What is plotted is the ratio of the three-body correction relative to the
two-atom energy, plotted as a function Z/a. The variable γ is again defined in eq. (19).

ΔZ = 0, with a simple anisotropic polarizability,

αa = diag(αa
⊥, αa

⊥, αa
z), a = 1, 2.(23)

Then

E123 =
2

πa7

1
γ5

1
(1 + γ)5

[
α1

zα
2
z(−3 − 15γ − 24γ2 + 10γ4 + 5γ5 + γ6)(24)

+α1
⊥α2

⊥(3 + 15γ + 28γ2 + 20γ3 + 6γ4 − 5γ5 − γ6)
]
.

This agrees with the result given in ref. [6], when the identical contribution of E213 is
included.

The four-scattering term may be given in a similar form

E1323 = − 1
8πa7γ11

[α1
zα

2
z(63 − 70γ2 + 20γ4)(25)

+α1
⊥α2

⊥(63 − 56γ2 + 26γ4) + (α1
⊥α2

z + α1
zα

2
⊥)63(γ2 − 1)].

This is identical to the corresponding term in ref. [6]. These energies, of course, agree
with the result (21) in the isotropic case αa

⊥ = αa
z .

We plot the contributions for the α1
zα

2
z terms in fig. 3. That is, suppose the atoms

are only polarizable in the z direction. Then the two-body Casimir-Polder interaction
between the atoms is

E12 = − 13
8πa7

α1
zα

2
z,(26)
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and we normalize the three- and four-scattering contributions relative to this value

2E123

E12
= g3(γ),

E1323

E12
= g4(γ), g(γ) = g3(γ) + g4(γ).(27)

Again it is seen that the four-scattering contribution is significant only very close to the
plate. Now the sign of the correction is negative only for Z/a > 0.485.

4.3. Anisotropically polarizable atoms, unequal distances from the plate. – As a final
example, let us assume that the atoms are only polarizable in the z direction, αa

z �= 0,
αa
⊥ = 0, but that the atoms are at different distances from the plate, ΔZ �= 0. Then,

with the distances between the atoms being r, and the distance between one atom and
the image of the other being R ≡ Γr, that is

R2 = a2 + (Z1 + Z2)2, r2 = a2 + (Z1 − Z2)2,(28)

we easily find

E12 = −α1
zα

2
z

8πr7

(
20 − 70

a2

r2
+ 63

a4

r4

)
,(29a)

E123 = E213 = − 2α1
zα

2
z

πr7Γ5(1 + Γ)5

[
2Γ2(1 + Γ)2(1 + 3Γ + Γ2)(29b)

−a2

r2
(1 + Γ)2(3 + 9Γ + 11Γ2 + 9Γ3 + 3Γ4)

+6
a4

r4
(1 + 5Γ + 9Γ2 + 5Γ3 + Γ4)

]
,

E1323 = − α1
zα

2
z

8πr7Γ7

(
20 − 70

a2

Γ2r2
+ 63

a4

Γ4r4

)
.(29c)

We plot these functions versus Γ in fig. 4.
The figure shows that although the four-scattering term is generally negligible com-

pared to the three-scattering term, it is significant near the plate. In fact, for Γ = 1,
which corresponds to one atom touching the plate, the following relation holds:

E123 = E1323 = E12, r = R,(30)

so the total energy is (again, we exclude the infinite two-body atom-wall energy)

E = E12 + 2E123 + E1323 = 4E12(31)

at that unphysical point. Nonmonotonic effects can be seen when a/r is sufficiently
near 1, or ΔZ/a sufficiently small.
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Fig. 4. – The three-body correction to the Casimir-Polder energy (in units of α1
zα2

z/r7) between
two atoms in the presence of a perfectly conducting plate. Here, it is assumed that the atoms
are polarizable only in the direction perpendicular to the plate, and are at different distances
from the plate. Note that although for large distances, that is, for large values of Γ, the three-
scattering contribution dominates, for values close to Γ = 1 the four-scattering contribution is
significant, and leads to nonmonotonicity in the slope. The energies plotted are for a/r = 0.75,
or ΔZ/a ≈ 0.88, where the effect of the four-scattering term is most significant.

To close this section, we consider the same geometry, but atoms that are only polar-
izable transversely, αa

z = 0, αa
⊥ �= 0. Then we immediately find

E12 = −α1
⊥α2

⊥
8πr7

(
26 − 56

a2

r2
+ 63

a4

r4

)
,(32a)

E123 = E213 =
2

πr7Γ5(1 + Γ)5
[
2Γ2(1 + 5Γ + 14Γ2 + 5Γ3 + Γ4)(32b)

−a2

r2
(3 + 15Γ + 28Γ2 + 20Γ3 + 28Γ4 + 15Γ5 + 3Γ6)

+6
a4

r4
(1 + 5Γ + 9Γ2 + 5Γ3 + Γ4)

]
,

E1323 = − α1
⊥α2

⊥
8πr7Γ7

[
26 − 56

a2

Γ2r2
+ 63

a4

Γ4r4

]
.(32c)

Now the effects of the four-scattering terms are always much less dramatic. For
example, for a/r = 0.5, in fig. 5 we plot the contributions to the correction to the
Casimir-Polder energy between the atoms. The three-scattering contribution always
dominates, although the four-scattering term can be important near the plate. Now, at
the unphysical point Γ = 1 we have

E123 = −E1323 = −E12,(33)

so the total energy is zero there. Thus, g(1) = −1 for this case, similar to the scalar
analog considered in ref. [7], where the three-body energy cancels the two-body energy
when the atoms touch the plate. Of course, this result does not include the infinite
Casimir-Polder energy (4) corresponding to the atom touching the plate.
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Fig. 5. – Here we plot the three-body correction (in units of α1
⊥α2

⊥/r7) to the Casimir-Polder
energy E12 for a/r = 0.5, for atoms polarizable only in directions parallel to the plate. Now
there are no nonmonotonic effects, and the three-scattering contribution is dominant, although
the four-scattering term can be significant near the plate.

5. – Conclusions

We have illustrated, in the simple context of two polarizable atoms interacting with
each other and a nearby perfectly conducting plate, the three-body interactions beyond
the two-body Casimir-Polder forces. These three-body energies break up into three-
and four-scattering terms in this context, where the atom interactions are regarded as
weak. This work generalizes that of ref. [6], which considered atoms equidistant from
the plate, and that of ref. [7], which considered a scalar analog of the Casimir-Polder
interaction. We observe regions of nonmonotonicity in the energy, which is reminescent
of results found earlier, numerically, in the context of rectangular objects near conducting
surfaces [15,16].

These effects are of conceptual interest only, because they generally represent small
corrections to the Casimir-Polder interaction between atoms, which itself has never been
directly observed, due to lack of sufficiently refined experimental technique. Where the
three-body interactions are comparable to the two-body atom-atom energy, they are
dwarfed by the two-body atom-wall interaction (4). The importance of this work lies
in its contribution to our developing understanding of three-body effects in Casimir
or quantum vacuum energy calculations. Further examples of these effects, in more
nontrivial contexts, will appear elsewhere.

∗ ∗ ∗

This work was supported in part by grants from the US National Science Founda-
tion, the US Department of Energy, and the Julian Schwinger Foundation. We thank
Fardin Kheirandish and Reinaldo de Melo e Souza for discussions. KVS would
like to thank Martin Schaden for contributions in the early stages of this work, and
Tom Sizmur for discussions.



192 KIMBALL A. MILTON, E. K. ABALO, PRACHI PARASHAR and K. V. SHAJESH

REFERENCES

[1] Casimir H. B. G., Proc. Kon. Ned. Akad. Wetensch., 51 (1948) 793.
[2] Casimir H. B. G. and Polder D., Phys. Rev., 73 (1948) 360.
[3] Sukenik C. I., Boshier M. G., Cho D., Sundoghar V. and Hinds E. A., Phys. Rev.

Lett., 70 (1993) 560.
[4] Obrecht J. M., Wild R. J., Antezza M., Pitaevskii L. P., Stringari S. and

Cornell E. A., Phys. Rev. Lett., 98 (2007) 063201.
[5] Milton K. A., Am. J. Phys., 79 (2011) 697.
[6] Rodriguez-Lopez P., Rahi S. J. and Emig T., Phys. Rev. A, 80 (2009) 022519.
[7] Shajesh K. V. and Schaden M., Int. J. Mod. Phys. Conf. Ser., 14 (2012) 521.
[8] de Melo e Souza R., Kort-Kamp W. J. M., Sigaud C. and Farina C., Int. J.

Mod. Phys. Conf. Series, 14 (2012) 281; arXiv:1204.2858; and poster presented at the
PASI Frontiers of Casimir Physics Workshop, Ushuaia, Argentina, October 2012, http://
physics.iupui.edu/sites/default/files/physics/deMeloeSouzaz-poster2.pdf.

[9] Craig D. P. and Power E. A., Chem. Phys. Lett., 3 (1969) 195; Int. J. Quantum Chem.,
3 (1969) 903.

[10] Milton K. A., Parashar P. and Wagner J., Phys. Rev. Lett., 101 (2000) 160402.
[11] Milton K., Parashar P., Wagner J. and Cavero-Pelaez I., J. Vac. Sci. Technol. B,

28 (2010) C4A8.
[12] Milton K. A., Parashar P. and Wagner J., in The Casimir Effect and Cosmology,

edited by Odintsov S. D., Elizalde E. and Gorbunova O. G. (Tomsk State Pedagogical
University Press) 2008, pp. 107–116.

[13] Levine H. and Schwinger J., Comm. Pure Appl. Math. III, 4 (1950) 355, reprinted in
Milton K. A. and Schwinger J., Electromagnetic Radiation (Springer, Berlin) 2006,
pp. 543–579.

[14] Shajesh K. V. and Schaden M., Phys. Rev. D, 83 (2011) 125032.
[15] Zaheer S., Rodriguez A. W., Johnson S. G. and Jaffe R. L., Phys. Rev. A, 76 (2007)

063816.
[16] Rodriguez A., Ibanescu M., Iannuzzi D., Capasso F., Joannopoulos J. D. and

Johnson S. G., Phys. Rev. Lett., 99 (2007) 080401.


