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Summary. — We derive a non-linear differential equation that must be satisfied by
the quantum potential, in the context of the Madelung equations, in one dimension
for a particular class of wave functions. In this case, we exhibit explicit conditions
leading to the blow-up of the quantum potential of a free particle at the boundary
of the compact support of the probability density.

PACS 03.65.-w – Quantum mechanics.
PACS 03.65.Ca – Formalism.
PACS 02.30.Hq – Ordinary differential equations.

1. – Introduction

The hydrodynamical formulation of quantum mechanics is based on the work of David
Bohm [1] and on the equations obtained by Madelung in his pioneering paper published
in 1927 [2]. The lines of research related to this approach have grown during the last years
and have found applications in several fields in the context of the Quantum Trajectories
Method [3] (for instance, for the analysis of semiconductor devices [4]). One of the
central concepts in this case is the so-called Quantum Potential, the term appearing in
the quantum Hamilton-Jacobi equation (see sect. 2) which depends on the structure of
the probability density function associated to the wave function. Of particular interest is
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c© Società Italiana di Fisica 83

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Open-access Literature Archive and Repository

https://core.ac.uk/display/322377819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


84 G. DEVILLANOVA, G. FLORIO and F. MADDALENA

the problem related to the presence of singularities of the quantum potential. Typically,
in the proximity of these points, due to the fact that the probability density goes to
zero, the analysis of the problem is not easy and can require a particular care and
proper strategies [5]. As a matter of fact, it would be interesting to find conditions in
terms of the probability density that guarantees the presence of blow-up of the quantum
potential.

In this paper we will follow a particular approach to this problem. More precisely, we
will identify a class of wave functions whose squared modulus (in this case the probabil-
ity density function of a single particle) can be directly expressed as a function of the
quantum potential. We will confine our analysis to the case of one spatial dimension,
then derive (at fixed time) a non-linear differential equation for the quantum potential.
Finally, we will show that the solutions of this equation exhibit a blow-up behavior so
that the probability density must have a compact support. We will see that this behavior
is strictly connected to the assumed relation between quantum potential and probability
density.

The paper is organized as follows. In sect. 2 we review the Madelung equations
obtained by the Schrödinger equation and define the Quantum Potential. In sect. 3 we
define the class of wave functions that we want to analyze; as an example we will show that
the Gaussian wave packet belongs to this class. Moreover, we will obtain a differential
equation to be satisfied by the quantum potential associated to the probability density.
In sect. 4 we specialize this differential equation to the case of a simpler dependence
and in sect. 5 we will show that the solution of the simplified differential equation (the
quantum potential) must exhibit a blow-up for a finite value of the position. In sect. 6
we perform a qualitative analysis of the solutions in the proximity of the blow-up points.
In sect. 7 we draw some conclusions.

2. – Quantum hydrodynamics equations and the quantum potential

In this section we briefly review the derivation of the Madelung equations [2] that are
the basis of the hydrodynamical interpretation of quantum mechanics and of the Bohm
theory [1].

Let us consider a single particle with mass m > 0 moving under the influence of
a time-invariant potential described by the smooth function V : R → R (we restrict
our analysis to the one-dimensional case). The associated time-dependent Schrödinger
equation is

i�
∂Ψ(q, t)

∂t
=

(
− �

2

2m

∂2

∂q2
+ V (q)

)
Ψ(q, t),(1)

where � is the reduced Planck constant and Ψ(q, t) is the normalized (square-integrable)
complex-valued wave function that, in polar form, can be expressed by

Ψ(q, t) =
√

μ(q, t) e
i
�

S(q,t) ,(2)

in terms of the probability density μ(q, t) and of the action function S(q, t) (which are
both real-valued).
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Inserting eq. (2) into eq. (1) and rearranging the terms, we obtain the coupled partial
differential equations

∂μ(q, t)
∂t

+
∂J(q, t)

∂q
= 0,(3)

∂S(q, t)
∂t

+
1

2m

(
∂S(q, t)

∂q

)2

+ V (q) + Φ(q, t) = 0,(4)

where the terms J(q, t) and Φ(q, t) are respectively a probability current

J(q, t) =
1
m

μ(q, t)
∂S(q, t)

∂q
,(5)

which depends on both μ(q, t) and S(q, t) and the so-called quantum potential

Φ(q, t) = − �
2

2m

1√
μ(q, t)

∂2
√

μ(q, t)
∂q2

= − �
2

4m

[
1

μ(q, t)
∂2μ(q, t)

∂q2
− 1

2μ2(q, t)

(
∂μ(q, t)

∂q

)2
]

,

(6)

which only depends on μ(q, t). So, while eq. (3) is a continuity equation for the quantum
probability density μ(q, t) which, at time t flows at the point q with rate J(q, t), eq. (4)
is the quantum Hamilton-Jacobi equation.

In the following sections we analyze some particular cases of blow-up of the quantum
potential for a particular class of wave functions.

3. – A non-linear equation for the quantum potential at fixed time

We consider the case of a free particle, i.e. we set V (q) = 0, ∀q ∈ R. Moreover, we
fix a time t = t0 and assume that the probability density exponentially depends on the
quantum potential at time t0, i.e. has the form

ρ(q) := μ(q, t0) = Cαe−αf(φ(q)) with φ(q) = Φ(q, t0),(7)

where α ∈ R, Cα is a normalization constant and f is a regular real valued function. We
notice that eq. (7) is a particular case of the general dependence

ρ(q) = g(φ(q)),(8)

where g is a regular real valued function.

3.1. Example: Gaussian wave packet . – We show that the probability density of a
Gaussian wave packet, for instance, exhibits this behavior for a suitable α < 0, f being,
in this case, the identity map. To this aim we set, at time t0 = 0, the initial state of



86 G. DEVILLANOVA, G. FLORIO and F. MADDALENA

a Gaussian wave packet

Ψ(q, 0) =
1

(2πΔq2)
1/4

exp
[
− q2

4Δq2 +
i

�
p0q

]
,(9)

μ(q, 0) =
1

(2πΔq2)
1/2

exp
[
− q2

2Δq2

]
,

where p0 is the average initial momentum and Δq2 is the variance (uncertainty) of the
position of the packet. Then, taking into account the analytic behavior obtained in [6]
for the free evolution of a particle described by a Gaussian wave packet, we obtain

μ(q, t) =
1(

2πΔtq
2
)1/2

exp
[
− (q − qt)2

2Δtq
2

]
,(10)

where

Δtq
2 = Δq2 +

�
2t2

4m2Δq2 and qt =
p0

m
t.(11)

Rewriting eq. (6) with μ(q, t) given by eq. (10), we obtain the expression of the quantum
potential for a free particle described by a Gaussian wave packet

Φ(q, t) =
�

2

4mΔtq
2

(
1 − (q − qt)2

2Δtq
2

)
,(12)

from which we deduce

1 − (q − qt)2

2Δtq
2 =

4mΔtq
2

�2
Φ(q, t).(13)

So, setting at some fixed t > 0, α = −(4mΔtq
2)/�

2 < 0, we get from eq. (10) that the
behavior assumed in eq. (7) is satisfied when f is the identity map and

Cα =
1

(2πe2Δtq
2)

1/2
=

√
− 2m

πe2�2α
.(14)

Finally, from eq. (10) we get

μ(q, t) =

√
− 2m

πe2�2α
e−αΦ(q,t) = Cαe−αΦ(q,t) ,(15)

as claimed.
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3.2. Non-linear differential equation from eq. (7). – In what follows we obtain a dif-
ferential equation describing the behavior of the quantum potential at a fixed time for
wave functions satisfying eq. (7). At time t0 eq. (6) becomes

φ(q) = − �
2

4m

[
1

ρ(q)
d2ρ(q)
dq2

− 1
2ρ2(q)

(
dρ(q)
dq

)2
]

.(16)

We evaluate the first and second derivative of the function ρ(q) getting

dρ(q)
dq

=
dg(φ)
dφ

dφ(q)
dq

,
d2ρ(q)
dq2

=
dg(φ)
dφ

d2φ(q)
dq2

+
d2g(φ)
dφ2

(
dφ(q)

dq

)2

.(17)

where we have abused the notation introduced in eq. (8) by writing

g(φ) = g(φ(q)).(18)

Moreover, from eq. (8) we get

dg(φ)
dφ

= −αρ(q)
df(φ)

dφ
,(19)

d2g(φ)
dφ2

= −αρ(q)
d2f(φ)

dφ2
+ α2ρ(q)

(
df(φ)

dφ

)2

(20)

= −αρ(q)

[
d2f(φ)

dφ2
− α

(
df(φ)

dφ

)2
]

,

where, as above, f(φ) means f(φ(q)).
Inserting eqs. (19)-(20) into eq. (17) and then into eq. (16) we find, rearranging the

terms, that the quantum potential φ associated to a probability density μ(q, t) given by
eq. (7) at time t0 satisfies the following differential equation:

df(φ)
dφ

d2φ(q)
dq2

−
[

α

2

(
df(φ)

dφ

)2

− d2f(φ)
dφ2

] (
dφ(q)

dq

)2

− 4m

α�2
φ(q) = 0.(21)

4. – A simplified form of the non-linear equation

Motivated by the result obtained in the previous section for the Gaussian wave packet,
we consider the case in which f is the identity map, so eq. (7) becomes

ρ(q) = Cαe−αφ(q).(22)

We also assume that the probability density ρ(q) is symmetric around q = 0; this happens
when φ is even (i.e. φ(−q) = φ(q)) as happens for the quantum potential relative to the
Gaussian packet at time t = 0 (at any time if p0 = 0), see eq. (12). The particular
dependence of the probability density on the the quantum potential assumed in eq. (22)
will be fundamental to obtain the main result of the paper. As a matter of fact, we will
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Fig. 1. – (Color online) (a) Solution of eq. (23) for α = 0.5, α = 2, α = 4 and α = 10. (b) Plot
of the normalized probability density ρ(q) corresponding to the solution of eq. (23) for α = 0.5
(solid line), α = 2 (dashed line), and α = 10 (dotted line). We have set m = 1, � = 1, φ0 = 1
and φ′(0) = 0.

show that this dependence, under certain assumptions, implies a blow-up of the quantum
potential at finite position.

Using eq. (22) we see that eq. (21) reduces to

φ′′(q) − α

2
(φ′(q))2 − 4m

α�2
φ(q) = 0,(23)

where we have used the standard notation

φ′(q) =
dφ(q)

dq
, φ′′(q) =

d2φ(q)
dq2

.(24)

Then we assume φ(0) = φ0 > 0 and, being φ even, φ′ must be odd (i.e. φ′(−q) =
−φ′(q)) and, as a consequence, φ′(0) = 0. By substituting these conditions into eq. (23)
we immediately obtain that the solution has

φ′′(0) =
4m

α�2
φ0 > 0, with α > 0,(25)

differently from the case of the Gaussian wave packet where α < 0. Therefore, for
q � 0, the quantum potential behaves as a confining potential. In fig. 1(a) we plot the
(numerical) solution of eq. (23) for different values of the parameter α > 0; fig. 1(b)
shows some examples of probability densities corresponding to the quantum potentials
obtained from eq. (23); in both cases we have set m = 1, � = 1 with the initial conditions
φ0 = 1, φ′(0)=0. The numerical integration indicates that the quantum potential exhibits
a blow-up for finite values of q and, therefore, the corresponding ρ(q)’s have a compact
support and vanishes on the boundary.

In order to analyze this property, it is useful to manipulate eq. (23). Let us define
the function

w(φ) = (φ′)2 + Bφ,(26)

where A = α/2 and B = 4m/(α�
2). Thus, eq. (23) takes the form

φ′′ = Aw(φ) + B(1 − A)φ.(27)
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By taking the derivative of eq. (26) with respect to q, we deduce

Bφ′ =
dw(φ)

dq
− 2φ′φ′′ =

dw(φ)
dφ

φ′ − 2φ′φ′′,(28)

and therefore

φ′
(

B − dw

dφ
+ 2φ′′

)
= 0.(29)

Inserting eq. (27) into eq. (29) we obtain

φ′
(

B − dw

dφ
+ 2Aw + 2B(1 − A)φ

)
= 0.(30)

Taking into account that φ ≡ 0 is the only constant solution of eq. (23) which does not
satisfy the initial condition φ(0) > 0, we will focus on the equation

dw(φ)
dφ

= 2Aw(φ) + 2B(1 − A)φ + B.(31)

Equation (31) is a first order normal differential equation, so we get, by standard calcu-
lations, that, for any C ∈ R,

w(φ) = Ce2Aφ +
B

A
(A − 1)φ − B

2A2
,(32)

is a solution to eq. (31) (as it is possible to check by direct substitution).
So, by eq. (26), we obtain a new first order equation for the quantum potential at

time t0 relative to a probability density μ(q, t) which satisfies eq. (22) at fixed time t0

|φ′(q)| =

√
Ce2Aφ(q) − B

A
φ(q) − B

2A2
=

√
Ceαφ(q) − 8m

α2�2
φ(q) − 8m

α3�2
.(33)

In the following section we will analyze some properties of the solutions to eq. (33).

5. – Blow-up at finite positions

We will focus on the case α > 0 which is not covered by the quantum potential relative
to a Gaussian wave packet. In particular, we shall deal with

1) φ(0) = φ0 > 0;

2) φ even to have, by eq. (22), a probability density ρ(q) symmetric around q = 0; un-
der such assumption φ′ must be odd (i.e. φ′(−q) = −φ′(q)) and, as a consequence,
φ′(0) = 0;

3) φ increasing on [0,+∞[ (i.e. φ′(q) = |φ′(q)| if q ≥ 0) and, as a consequence,
decreasing on ] −∞, 0] (i.e. φ′(q) = −|φ′(q)| if q ≤ 0).
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Therefore, we can find an even solution to eq. (23) with initial conditions φ(0) = φ0,
φ′(0) = 0 by an even extension of the unique solution to the equation

φ′(q) =

√
Ceαφ(q) − 8m

α2�2
φ(q) − 8m

α3�2
.(34)

with initial condition φ(0) = φ0.
We are now ready to show the existence of finite blow-up of the quantum potential,

which is solution of eq. (34) and, after even extension, of eq. (23). This property is
characterized by the following statement.

Proposition 1. For every φ0 > 0 the solution to eq. (34) satisfying φ(0) = φ0 exhibits
a blow-up at the finite value q∗ < +∞ satisfying the following inequality:

q∗ ≤
√

α�√
2m

max

( √
α3 + e−αφ0/2√

Fα(φ0) − Fα(2φ0)
e−αφ0/2,

√
α +

e−αφ0√
Fα(φ0) − Fα(2φ0)

)
,(35)

where, for all x ∈ R, Fα(x) = (αx + 1)e−αx.

Proof. By imposing the condition φ′(0) = 0, or equivalently the “pairing” condition
w(φ0) = −Bφ0, we get from eq. (34)

C =
8m

α2�2

(
φ0 +

1
α

)
e−αφ0(36)

and therefore

φ′(q) =

√
8m

α3�2
eαφ/2

√
(αφ0 + 1)e−αφ0 − (αφ + 1)e−αφ.(37)

Then, we define the function

Fα(x) = (αx + 1)e−αx,(38)

which results to be strictly decreasing ∀x ≥ 0 so that eq. (37) takes the form

φ′(q) =

√
8m

α3�2
eαφ/2

√
Fα(φ0) − Fα(φ) =: θ(φ),(39)

where θ(φ) is well defined for φ ≥ φ0. Notice that φ �→ θ(φ) is a positive and continuous
function. To prove the thesis we are going to show that the Osgood condition [7] is
satisfied, namely that

q∗ =
∫ +∞

φ0

1
θ(φ)

dφ < +∞.(40)

To this aim, since the funcion 1/θ(φ) is unbounded near φ0, we additively split the
integral in eq. (40) into two terms and proceed to estimate them. We set

q∗1 =
∫ 2φ0

φ0

1
θ(φ)

dφ and q∗2 =
∫ +∞

2φ0

1
θ(φ)

dφ.(41)
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In order to evaluate q∗1 we have to estimate

lim
ω→φ+

0

∫ 2φ0

ω

1
θ(φ)

dφ.(42)

We firstly observe that,

∃ lim
φ→φ0

√
Fα(φ0) − Fα(φ)√

φ − φ0

= α
√

φ0 e−αφ0/2 =: l0,(43)

so that, not only√
Fα(φ0) − Fα(φ) � l0

√
φ − φ0 = α

√
φ0 e−αφ0/2

√
φ − φ0 as φ → φ0,(44)

but, a posteriori, also

d
dφ

√
Fα(φ0) − Fα(φ) � l0

d
dφ

√
φ − φ0 as φ → φ0.(45)

Therefore, setting

η0 = max

(
l0
√

2φ0 − φ0√
Fα(φ0) − Fα(2φ0)

, 1

)
= max

(
αφ0e

−αφ0/2√
Fα(φ0) − Fα(2φ0)

, 1

)
(46)

we easily obtain the following bound

q∗1 =

√
α3�2

8m

∫ 2φ0

φ0

e−αφ/2√
Fα(φ0) − Fα(φ)

dφ

≤
√

α3�2

8m

∫ 2φ0

φ0

e−αφ0/2 η0

α
√

φ0e−αφ0/2
√

φ − φ0

dφ(47)

≤
√

α2�2

8m

η0√
φ0

∫ 2φ0

φ0

1√
φ − φ0

dφ =

√
α2�2

2m
η0 < +∞.

In order to estimate q∗2 we argue as follows. Since x �→ Fα(x) is strictly decreasing on
R+, for every φ > 2φ0 we have

1√
Fα(φ0) − Fα(φ)

<
1√

Fα(φ0) − Fα(2φ0)
.(48)

Therefore we find

q∗2 =

√
α3�2

8m

∫ +∞

2φ0

e−αφ/2√
Fα(φ0) − Fα(φ)

dφ

≤
√

α3�2

8m

1√
Fα(φ0) − Fα(2φ0)

∫ +∞

2φ0

e−αφ/2dφ(49)

=

√
α�2

2m

1√
Fα(φ0) − Fα(2φ0)

e−αφ0 < +∞.

Then, by setting q∗ = q∗1 + q∗2 and employing eq. (47) and eq. (49) we get the thesis.
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6. – Qualitative analysis of the quantum potential in the proximity of the
blow-up

We can now perform a qualitative analysis of the features of the solutions of eq. (34)
in proximity of the blow-up points.

Using the function Fα(x) introduced in eq. (38) by which C = 8mFα(φ0)/(α3
�

2),
eq. (34) becomes

φ′(q) =
√

Ceαφ(q)/2

√
1 − Fα(φ)

Fα(φ0)
.(50)

Taking into account that Fα(φ)/Fα(φ0) tends to zero as φ → +∞, eq. (50) takes the
form

φ′(q) �
√

Ceαφ(q)/2 =

√
8m(αφ0 + 1)

α3�2
exp

[
−α(φ − φ0)

2

]
.(51)

for φ large enough. Equation (51) admits a solution of the form

φ(q) � − 2
α

ln
(
−α

2

√
Cq + D

)
,(52)

where D is an integration constant. In this approximation the quantum potential exhibits
a blow-up when q+ = 2D/(α

√
C), with D,C < +∞. The points q+ and q− = −q+

represent, in the above approximation, the boundary of the support of the even solution
to eq. (51).

7. – Conclusions

In this paper we have defined a class of wave functions whose probability density
(assumed symmetric with respect to q = 0) can be directly expressed in terms of the
associated quantum potential. Moreover, we have found that it is possible to derive a
differential equation for the quantum potential whose solution exhibits a blow-up behav-
ior forcing the probability density to have a compact support. This kind of analysis is of
interest to predict the existence of singularities of the quantum potential and, therefore,
the identification of probability densities with compact support. It would be interesting
to extend these results to a more general functional dependence of the probability density
on the quantum potential going beyond the identity map. Moreover, this analysis have
been performed fixing a certain value of time t0. One could also extend this work in order
to study the evolution of the quantum potential during the propagation of the particle.
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